
Proceedings of Machine Learning Research vol 75:1–4, 2018 31st Annual Conference on Learning Theory

Phase Transitions, Optimal Errors and Optimality of Message-Passing

in Generalized Linear Models

Jean Barbier JEAN.BARBIER@EPFL.CH
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Abstract

Generalized linear models (GLMs) arise in high-dimensional machine learning, statistics, commu-

nications and signal processing. In this paper we analyze GLMs when the data matrix is random,

as relevant in problems such as compressed sensing, error-correcting codes or benchmarks mod-

els in neural networks. We evaluate the mutual information (or “free entropy”) from which we

deduce the Bayes-optimal inference and generalization errors. Our analysis applies to the high-

dimensional limit where both the number of samples and dimensions are large and their ratio is

fixed. Non-rigorous predictions for the optimal inference and generalization errors existed for spe-

cial cases of GLMs, e.g. for the perceptron in the field of statistical physics based on the so-called

replica method. Our present paper rigorously establishes those decades old conjectures and brings

forward their algorithmic interpretation in terms of performance of the generalized approximate

message-passing algorithm. Furthermore, we tightly characterize, for many learning problems,

regions of parameters for which this algorithm achieves the optimal performance, and locate the

associated sharp phase transitions separating learnable and non-learnable regions1.

Keywords: high-dimensional inference | generalized linear model | Bayesian inference | percep-

tron | phase transitions | approximate message-passing algorithm

1. Extended abstract. Full version appears as arXiv:1708.03395
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We discuss generalized linear estimation models (GLMs) Nelder and Baker (1972); McCul-

lagh (1984) where data are generated as follows: Given a n-dimensional vector X∗, hidden to the

statistician, he/she observes instead an m-dimensional vector Y where each component reads

Yµ = ϕ
( 1√

n
[ΦX∗]µ

)

, 1 ≤ µ ≤ m, (1)

where Φ is a m× n “measurement” or “data” matrix. The model is “linear” because the output Yµ
depends on a linear combination of the data zµ = [ΦX∗]µ =

∑n
i=1

ΦµiX
∗
i . The GLM generalizes

the ordinary linear regression by allowing the output function ϕ(z) to be non-linear and/or stochas-

tic. There are two main learning problems in GLMs: i) The estimation task requires, knowing the

measured vector Y and the matrix Φ, to infer the unknown vector X∗; ii) the prediction or general-

ization task instead requires, again knowing Y and Φ, to predict accurately new values Ynew when

new rows (i.e. data-points) are added to the matrix Φ.

In the present work, we build a rigorous theory for these tasks for random instances of the GLM.

In this setting each element Φµi of the matrix is sampled i.i.d. from a probability distribution of zero

mean and unit variance, and the unknown vector X∗ has been also created randomly from a prob-

ability distribution P0, with each of its iid components X∗
1
, . . . , X∗

n ∼ P0. We assume that P0 and

ϕ are known to the statistician: if they are not, the task can only be harder. Our results are derived

in the challenging and interesting high-dimensional limit where m,n→∞ while m/n→α a con-

stant. Random instances of GLMs are both practically and theoretically relevant in many different

contexts: In compressed sensing Donoho and Tanner (2005); Candes and Tao (2006); Donoho et al.

(2009); Rangan (2011); Zdeborová and Krzakala (2016); In statistical learning: Bayati and Mon-

tanari (2012); El Karoui et al. (2013); Donoho and Montanari (2016); In artificial neural networks:

Gardner and Derrida (1989); Seung et al. (1992); Watkin et al. (1993); In communications: Shannon

(1948); Tanaka (2002); Guo and Verdú (2005); Barbier and Krzakala (2017).

Many previous studies rely on the algorithmic performance of the so-called generalized approx-

imate message-passing algorithm (GAMP) Mézard (1989); Donoho et al. (2009); Rangan (2011).

GAMP is remarkable in that its asymptotic (n,m → ∞, m/n → α) performance can be analyzed

rigorously using the so-called state evolution Bolthausen (2014); Bayati and Montanari (2011); Bay-

ati et al. (2015). However, GAMP is not expected to be always information-theoretically optimal.

Most results giving information-theoretic predictions (except for the linear case Barbier et al. (a,b);

Reeves and Pfister) are based on powerful and sophisticated but non-rigorous techniques originat-

ing in statistical physics of disordered systems, such as the cavity and replica methods Mézard et al.

(1987). Historically, the first of these non-rigorous, yet correct, results on information-theoretic

limitations of learning was for the perceptron with binary weights and was established using the

replica method in Gardner and Derrida (1989); Györgyi (1990); Seung et al. (1992).

We closed the above gap between mathematically rigorous work and conjectures (some of them

several decades old) from statistical mechanics. In particular, we prove that the results for GLMs

stemming from the replica method are indeed correct and imply the optimal value of both the es-

timation and generalization error. The proof is based on a powerful evolution of the interpolation

method Guerra and Toninelli (2002) called the adaptive interpolation method, and recently devel-

oped in Barbier and Macris (2017). We compute in particular the asymptotic mutual information

(or free energy in the statistical mechanics language) between the unknown variable X∗ and the

measurement Y. We also compute the minimal mean-square error on the reconstruction of X∗ and

the generalization error in the so-called teacher-student scenario.
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A second object of focus is the algorithmic complexity: When is it possible to efficiently per-

form these optimal estimations? To answer this question, we compare our information-theoretic

results to the performance of the GAMP algorithm and its state evolution Rangan (2011). We deter-

mine regions of parameters where this algorithm is or is not information-theoretically optimal. Up

to technical assumptions, our results apply to all activation functions ϕ and priors P0, thus unifying

a large volume of previous work where many particular functions have been analyzed on a case

by case basis. This generality allows us to provide a unifying understanding of the types of phase

transitions and phase diagrams that we can encounter in GLMs. Among other, we discuss the per-

ceptron problem, one-bit compressed sensing, real valued-phase retrievial (or sign-less compressed

sensing) and Relu-type measurements.
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this work was done while Léo Miolane was visiting EPFL

References

J. Barbier and F. Krzakala. Approximate message-passing decoder and capacity achieving sparse

superposition codes. IEEE Transactions on Information Theory, 63(8):4894–4927, 2017.

J. Barbier, M. Dia, N. Macris, and F. Krzakala. The mutual information in random linear estimation.

In 54th Annual Allerton Conf. on Communication, Control, and Computing, page 625, a.

Jean Barbier and Nicolas Macris. The adaptive interpolation method: A simple scheme to prove

replica formulas in bayesian inference. arXiv:1705.02780[v3], 2017.

Jean Barbier, Nicolas Macris, Mohamad Dia, and Florent Krzakala. Mutual information and opti-

mality of approximate message-passing in random linear estimation. arXiv:1701.05823, b.

M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with applications

to compressed sensing. IEEE Transactions on Information Theory, 57(2):764–785, 2011.

M. Bayati and A. Montanari. The lasso risk for gaussian matrices. IEEE Transactions on Informa-

tion Theory, 58(4):1997–2017, 2012.

Mohsen Bayati, Marc Lelarge, and Andrea Montanari. Universality in polytope phase transitions

and message passing algorithms. The Annals of Applied Probability, 25(2):753–822, 2015.

Erwin Bolthausen. An iterative construction of solutions of the tap equations for the sherrington–

kirkpatrick model. Communications in Mathematical Physics, 325(1):333366, 2014.

Emmanuel J. Candes and Terence Tao. Near-optimal signal recovery from random projections:

Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406, 2006.

3



PH. TRANSITIONS, OPT. ERRORS AND AMP IN HIGH-D. GENERALIZED LINEAR MODELS

David Donoho and Andrea Montanari. High dimensional robust m-estimation: asymptotic variance

via approximate message passing. Probability Theory and Related Fields, 166:935–969, 2016.

David L Donoho and Jared Tanner. Sparse nonnegative solution of underdetermined linear equations

by linear programming. Proc. Nat. Acad. Sci., 102(27):9446–9451, 2005.

David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for com-

pressed sensing. Proc. Nat. Acad. Sci., 106(45):18914–18919, Nov 2009.

N. El Karoui, D. Bean, P. J. Bickel, C. Lim, and B. Yu. On robust regression with high-dimensional

predictors. Proc. Nat. Acad. Sci., 110(36):14557, 2013.

Elizabeth Gardner and Bernard Derrida. Three unfinished works on the optimal storage capacity of

networks. Journal of Physics A: Mathematical and General, 22(12):1983, 1989.

Francesco Guerra and Fabio Lucio Toninelli. The thermodynamic limit in mean field spin glass

models. Communications in Mathematical Physics, 230(1):71–79, 2002.
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Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: thresholds and algorithms.

Advances in Physics, 65(5):453–552, 2016.

4


