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Optimal L°° Estimates for the Finite Element
Method on Irregular Meshes*

By Ridgway Scott*

Abstract.   Uniform estimates for the error in the finite element method are derived for

a model problem on a general triangular mesh in two dimensions.   These are optimal if

the degree of the piecewise polynomials is greater than one.   Similar estimates of the

error are also derived in hp.   As an intermediate step, an L    estimate of the gradient of

the error in the finite element approximation of the Green's function is proved that is

optimal for all degrees.

The finite element method may be briefly described as the Ritz method using a
piecewise polynomial trial space: the solution to a differential problem is approximated
by minimizing an integral involving the squares of derivatives of the difference between
the true solution and piecewise polynomial trial solutions.  Thus, there naturally follow
estimates for the error in the mean square sense (cf. [1], [23]).  It is widely believed
that estimates of a similar form should hold in a uniform sense; but until recently, the
best general estimates predicted an asymptotically less accurate uniform approximation
[15], [8], [12].  It should be noted that optimal uniform estimates were known in
one dimension [27], [9], [26] or, in higher dimensions, on a regular mesh [3] -[6],
[10], [22] ; but those techniques do not generalize to an irregular mesh in higher di-
mensions.  The purpose of this paper is to present a technique for deriving uniform
estimates on a general mesh that are optimal in a wide range of cases.  We consider a
model problem in two dimensions in order to minimize technicalities not relevant to
uniform estimates per se.   Results similar to ours have been obtained independently by
Natterer [14] and Nitsche [16].

We now describe our results and the method of proof in some detail.   Consider
the Neumann problem

- Au + u = f    in £2    and
dnu =0    on 9Í2,

where Í2 is a convex domain in R2 with smooth boundary 9Í2, and let u* be the finite
element approximation to u from the space of C° piecewise polynomials of degree
k - 1 on a quasi-uniform mesh of triangles of size h.   Theorem 1 shows that as h tends
to zero, the L°° norm of the error u - u* tends to zero at the optimal rate hk if k ~> 3
(piecewise quadratics and higher) and at least as fast as h2 [log h | if k = 2 (the piece-
wise linear case) provided that u has bounded weak derivatives of order k.   In Section
6, we derive similar estimates for u - u*, and the derivatives of u - u*, in Lp, 1 <p < °°.

Received July 31, 1975.
AMS (MOS) subject classifications (1970).  Primary 41A25, 6SN15, 65N30; Secondary 41A1S.
'Work performed under the auspices of the Energy Research and Development Administration.

Copyright O 1976, American Mathematical Society

681

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



682 RIDGWAY SCOTT

The proof of the above results is by duality: we derive an L   estimate for the gra-
dient of the error g - g* in the finite element approximation of the Green's function g
defined by

- Ag + g = 5    in £2    and
dng = 0    on 9Í2,

where S is the Dirac distribution with singularity at an arbitrary point in £2.  In particu-
lar, Theorem 2 shows that the gradient of g -g* has an Lx norm of order h if k > 3
and h |log h | if k = 2.  This rate of approximation to g is shown to be optimal in the
Remark in Section 1.  Thus, the duality proof is apparently stuck with the | log /i | in
the piecewise linear case.  The proof of Theorem 2 contains some new results about
g -g* of independent interest, in particular, Proposition 1 and Lemma 6, as well as the
Lx estimate for the gradient oîg- g* itself.

The idea of the proof of Theorem 2 was inspired by the interior estimates of
Nitsche and Schatz [17].  First, the integral of the gradient of g - g* in a disc of radius
0(h) around the singularity of g is shown to be 0(h) for all k.   Then, in the exterior
of this disc, the ideas of [17] are used (with some refinements) to reduce the estimate
of the gradient of g - g* to a global estimate of g -g* in a negative Sobolev norm, to
which [21] applies.  (Schatz and Wahlbin [20] have succeeded in modifying our proof
to obtain an estimate of g - g* more directly from interior estimates.)  The reader will
notice several similarities in some steps of the proof of Theorem 2 to the technique of
Natterer [14] and Nitsche [16], although the main thrust of their proof is different.
Instead of studying the dual problem g - g*, they derive general estimates for u - u*
in weighted mean square norms.  In our proof, weighted norms appear implicitly in the
special context of g - g*.

We collect here as a reference some standard notation used throughout the paper.
For details, see the book by Stein [24]. For a real valued function u defined on a do-
main Í2 C R2, we use the shorthand notation

fau = fauix)dx,
where dx denotes Lebesgue measure.  As usual, if p is any real number in the range
1 <p < °°,

*W."(W*
with the usual modification when p = °°.  Given a multi-index a = (ai, a2), let Dau
denote the weak derivative of u, that is,

for all smooth functions <p having compact support in the interior of £2, where \a\ =
a1 + a2.  Define a seminorm by

and a norm by
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ESTIMATES FOR THE FINITE ELEMENT METHOD 683

"""<(") = iolM1^)'

where A: is a nonnegative integer and p is any number that satisfies 1 < p < °°.  The
Banach space H^(Í2) becomes a Hilbert space when p = 2, and this is denoted by
Hk(£l).  Its dual space (with the dual norm) is denoted by //_*(Í2).

1.  Presentation of Results. Let Í2 C R2 be a bounded convex** domain with
smooth boundary, and let u solve

- Au + u = f    in Í2,
(1.1)v     J dnu = 0    on 9Í2.

The smoothness of the data / will be specified later implicitly by assumptions on u.
Define
(1.2) a(v,w)=(    Vv • Vw + vw.

We will view this bilinear form as being defined on W}(Í2) x H/J0(Í2).  Let T be a tri-
angulation of £2 having straight interior edges. We associate two parameters with T,
namely, for each "triangle" t6T, define p(r) (resp. a(r)) to be the diameter of the
smallest disc containing t (resp. largest disc contained in r), and let

(1.3) h = max û(t),      y = min —— .
tGT tgt   h

(A family of triangulations {T„} is called quasi-uniform if y > y0 > 0 for all Tn.)
Given T as above, define Sfc = Sfc(T) to be the space of continuous piecewise polyno-
mials of degree k - 1, i.e., the subspace of C°(£2) consisting of functions whose re-
striction to a triangle t £ T is a polynomial of degree < k — 1.  Define u* G Sk by

(14) a(u*, v) = (f v)    for all vGSk.

The following theorem is the main result of this paper.
Theorem 1. Let h and y be the parameters associated with T in (1.3).   Then

sup \u - u* | < c ■
>2|log/j| ifk = 2'

[hk ifk>3\      "-<">
where c depends only on Í2, y, and k.

Proof.   Let z0 G Í2, and consider the Green's function g with singularity at z0:

(1.5) -A* + * = 5Zo    in«,
dng = 0        on 3S2.

Thus, we have

(1.6) (u-u*)(z0)=a(g,u-u*).

Let us introduce the finite element approximation g* G Sfc to g :

(1 -7) a(g*, v) = a(g, v) = v(z0)    for all i; G Sfc.

Integrating by parts yields the following:

a(v, u - u*) = 0    for all v in Sk.

* * The restriction of convexity is not essential.
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684 RIDGWAY SCOTT

Thus, we have

(u -u*)(z0) = a(g, u -u*) = a(g-g*,u - u*)

(L8) ^^-^"-^^^-^"ivKn)11"-^^)'
for any i> G Sfc.  It is well known (cf. [23] or see (1.11) below) that there is a v in Sfc
such that

<1J» l"-^L(0)<c(7'*)*k'I|"k(0)'

Thus, Theorem 1 will be completed if we prove the following:
Theorem 2. Let g and g* satisfy (1.5) and (1.7), respectively, for z0 G £2.

Then

! A llog A |   ifk = 2   and
h ifk>3,

where c = c(£2, y, k) is independent of z0.
Remark.   It is at this point that we can explain why the factor of |logft| appears

when k = 2.  Our proof relies on approximating the singular function g, which just
fails to be in W\(Q.).  However, it is in the interpolation space [IVj(í2), Wj3(í2)] ̂
(see [19]).  With piecewise quadratics or better, g may thus be approximated to order
h, although this does not say that g* does.  (Our proof that g* does has the flavor of
interpolation in it, but we do not simply reduce to an approximation problem.)  How-
ever, piecewise linear approximation to g is completely different, as was shown to us
by Claes Johnson.  The singularity of g is primarily logarithmic, so it suffices to con-
sider g(z) = log \z - z0 | with z0 in the interior of £2.  Johnson showed that, on a
quasi-uniform mesh,

(1.10)        inf   \s~u\   ,       >c(Q.,z{s,i)h\\Qih\    for h <h0(ïl,z0,y).
ueS2 rvjtlij

We reproduce his proof here.  For t G T, define rmin(r) = infzSr \z - z0\ and
rmax(r) = supzST \z - z0 |.   Let r_G T be such that rmin(T) > h.   For such t (see
(5-7»> 'maxW < 2rmin(r).  Let X* G R2 minimize /T | v* - j?| over X G R2.  Then
X* = g¡(z¡) for some z¡ G r, for otherwise we could increase or decrease X* to get a
better approximation.  We thus have

g. (z)-Xf=(z- z,.) • Vgß.) + Rt(z).

Using the fact that | Vg ¡(z¡) I = |z(- - z0 \~2 and Taylor's theorem to bound R¡, we find

^4 J.3 j.4L ̂ Xr\>c1-r--c2 — >c1 — -c2-
max min ^'min m

where c, depends on y.  Let Af = \J{t GT.jh < ''„,¡„(7") <(j + x)h}, j = 1,2,
Then

inf
ues2

^,»-„,«5 (^-¡a.).
Let A7 be the greatest integer less than dist(z0, Slc)/h.   If/ <N, then there are at least
■nj triangles r C >ly., so we have
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ESTIMATES FOR THE FINITE ELEMENT METHOD 685

inf    f    \Vg-W\>h(^-~).
«eS2 JAj \ l y2 /ues2

Summing for /' = 1, 2, . . . , N, we find

inf    f   \Vg- ^v\>h(c5\ogN -c6)>c1h\\ogh\-c8h,
uGS2 J &

and this proves (1.10). Note that if we allow mesh refinement near z0, then a better
approximation to g is obtained, so quasi-uniformity is necessary for (1.10) to be valid.

Before beginning the proof of Theorem 2, we collect some well-known facts that
will be used throughout the proof.  We begin with the concept of the interpolate of a
continuous function.  Let The a fixed triangle, and choose the following nodes for T.

(i)  the vertices of T,
(ii)  the k - 2 points on each edge of T that divide the edge into k - 1 equal

segments, and
(iii) lÁ(k - 3) (k - 2) distinct points in the interior of T, chosen so that if a poly-

nomial of degree k - A vanishes at all of them, it vanishes identically.
Here, (iii) applies only to k > 4 and (ii) applies only to k > 3.  Now define nodes

for each triangle r in T by an affine identification of r and T   (When t is a boundary
triangle, we identify the two straight sides of r with two of the sides of T)  Define the
interpolate u¡ G Sfc of a continuous function u by the requirement that u - u¡ vanish
at all the nodes.  The following well-known [23] estimate establishes (1.9):

(lu)   A2/ni«-ML-(n) + t/ll»-M^(ii)<^*)Äsl«^(n).

where 1 < p < °°, 2 < s < k. In addition to this estimate, we will need several esti-
mates used in deriving (1.11), so we recall now its proof. It suffices to prove a local
version, namely, for t G T,

(1.12) h2lp\\u-uI\\L^T)+ZQhi\\u-uI\\wip{T)<c(y,k)hs\u\wSp{T).

This is proved as follows.  Because the nodal basis for Sfc is uniform [23, Section 3.1],
we have
(1.13) \\"i\\wi(T)<c(y,k)h2lp-'\\u\\L^{Ty      j = 0,l,...,k-l.

By the Bramble-Hilbert lemma, there exists a polynomial P of degree < k — 1 such that

(1.14) h2'p\\u- P\\L„(T) + tv\\» - P\\wJp{T)<chS\u^sp(Ty

The proof of this in [2] requires that c depend on t, but in [11], a proof is given
showing that for convex r, c depends only on y and k.   We may write u - u¡ =
u - P - (u - P)j because P = P¡.  Applying the triangle inequality plus (1.13) and
(1.14) yields (1.12).

Finally, we need an inverse relation for Sk.  Let co (resp. co0) be the disc of
diameter 2 (resp. 7) centered at the origin.  Denote by Vn the space of polynomials of
degree n in two variables.   Then because of the equivalence of norms on a finite dimen-
sional vector space, we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



686 RIDGWAY SCOTT

■«.*;<«> <CÍ**>|JV<„0>   ^^lPe?k_x.

(The constant c may be chosen independent of p and q in view of Holder's inequality;
it may also be assumed to be nonincreasing in 7.)  Scaling the variables by a factor h,
we find

mwpu» ^(r,^2/?-2/p-s«lP^0)    forallPGP^,

where hco = {x G R2 : h~xx G co}, etc.  Now each t G T contains a disc of diameter
7A (say with center z) and is contained in a disc of diameter 2h with center z.   Thus
(after shifting the origin to z) we have

(1.15) \M\wsiT)<c(y,k)h2li-2lp-s\\v\\LP(T)    forueS*

because u |t G Pk_1.

2.  Error Estimate in L2.  We begin with the following proposition which extends
the results of [21] up to the boundary and has a simplified proof.

Proposition 1. For 0 <s <k - 2,\\g- g*\\     s      *Zch1+s,where c =
c(£2, k, 7) is independent of zQ.

Proof.   Let x be a triangle in T containing z0, and let Q be the polynomial of
degree k - 1 satisfying fT QP = P(z0) for all polynomials P of degree k ~ 1.   Because
t contains a disc of radius yh, we see that [21 ]

i2-1) sup|ß|<c(7, k)hT2.
Define rfe£2(íí) by

-      (ß    inr,
5 = )

(0    in Í2 - t.

Then, <5 - 8, v) = 0 for all v G Sk (5 = Sz ).   Let £ solve

- A? + g = ô"    in fi,
dng =0     on 3Í2.

Since g* may be viewed as the finite element approximation to ~g, we have the well-
known estimate (cf. [1, Chapter 6])

llir-^«H-(n)<c^n'*)A2+i|l?ll^(n)-
From elliptic regularity theory, we have

"'W) <c(í2)^2(íi) <c(íl,7,*)*-1.
Therefore,
(2.2) II? - g\-s(ri) < c(fi, 7, fc)//1 +s.

To estimate g - g, we let i¿> G //S(S2) and solve

- A<ï> + $ = <¿>   in fi,
3„<ï> = 0    on 3fi.

Integrating by parts (twice), we get

(g -g, V) = a(g -g, $) = <ô - ¿f, $>.
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Since 8 - 8 is orthogonal to Sk, we have

(2.3) (g-g,<P) = <8-8, *-$7>.
In view of (1.11) and (2.1), (2.3) is estimated by

\(g~g, *)\<c(y, k)hx+sunW22+S{n)

<c(fi,7,*)Ai+*IMIn(n).
Since i¿> was arbitrary, this means that

\\g-g\\H-s(ri)<c(Çl,y,k)hx+°.

Combined with (2.2), this completes the proposition.

3.  Expansion of g to Required Accuracy.  The purpose of this section is to show
that the only singularities of g that we must contend with are logarithmic. While this
is obvious for z0 in the interior of fi, it must be demonstrated to hold uniformly as
z0 —► 9fi.  Let k(z) denote the curvature of 9fi at the point z G dfi, and let
d = H(supzG8nK(z))-i.  For each z0 G fi such that dist(z0, 9fi) < d, there is a
unique z1 G dfi such that \zx - z0 \ = dist(z0, 9fi).  For such z0, let us define

(3-1) z~0=Zl +(z1-z0)/(1-k(z1)¡z1-z0¡).***

Lemma 1. Let z0 G fi satisfy dist(z0, 9fi) < d and define

G(z) = logjz - z0 i + logjz - z„ |,

where z0 is given by (3.1).  Then g = (l/27r)G + W, where W satisfies || W\\h2       <
c(fi) with c(fi) independent of zQ.

We give the proof of Lemma 1 in the Appendix as it is technical and unrelated
to the rest of the paper.  To complement the expansion given in Lemma 1, define

G(z) = log\z -z0 |    if dist(z0, 9fi)>d

Then, for all z0 we have g = (1/2tt)G + W, where || W\\fí2       < c(fi), with c(fi) inde-
pendent of z0 G il.  The mapping u —> u* defined by (1.1) and (1.4) is linear, so we
may write

(3.2) g-g*=^(G-G*) + (W-W*).
It is well known (cf. [1, Chapter 6]) that for - 1 < s < k - 2,

(3.3) Il W - w*UH-sin) < c(". ?> k)h°+1 » *V(n) < c(fi, 7, k)hs+2.

Applying this with s = - 1 shows that, to complete the proof of Theorem 2, it suf-
fices to verify that

ÍAilogAl   iffc = 2   and
h if k > 3.

The remainder of the paper is devoted to proving (3.4), and makes use of the simpli-
fied form of G.   As a first step, we apply (3.3) and Proposition 1 to the decomposition
(3.2) to obtain the following:

Proposition 2. For 0 <s <k ~ 2,we have

***z0 is the reflection of zQ with respect to the osculating circle to SSI at z j.
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\\G-G*\\H_S(n)<c(n,y,k)hs+i,

where the constant does not depend on zQ.

A.   Estimates Near z0.  We first prove a result that is analogous to the fact that
the logarithm has bounded mean oscillation [13].

Lemma 2.  Let z1 be any point in R2, and lei 0 < p < °°.   Then there is a con-
stant G depending on zx and p such that

f (G-G)2<97rp2.
J tlz-zj |<p)

Proof   Consider the case G = log ¡z -z0\.   We first observe that

^ /{,z-zo,<A}(1Og|Z-Z0|-[0og/i)-^])2=^2.

There are two cases to consider:
(1) \zl - z0 | < 2p.  Apply (4.1) with R = 3p, using G = (log 3p) - Vi.
(2) \zx - z0 | > 2p.  Then I VG|< 1/p for |z - z, |< p, and if we take G =

G(zj), we have

i :<  )(G-G)2<fp2J tlz-ZjKp) z

by Taylor's theorem.
Thus, we have shown that we can find G such that

f. 1(G-G)2<jttp2.
J{|z-z,K/0}V 4

When G = logjz - z0 | + log|z - z0 |, we apply this twice and use the triangle inequal-
ity to complete the lemma.

Lemma 3. Let 0 < p < cxh be given.   Then

Ji>n{|,-,0,<p} lz -*oi"lv-(G - G*)\p <r(fi, y, k, ß, p, cx)pßh2-p

for l <p<ß + 2.
Proof.  We have j VG | < r~1 + z7- ', where r = \z - z0\ and F = |z - z~0 |.

Since a > r in fi, we have

f     .      -r^lVGI" <tt2P+1 fPr<'-P+1d>-<c(ß, p)pß~p + 2.Jnn{r<p} Jo \r, y;r

To estimate VG*, we pick r G T such that t <~ï {r < p} ¥= 0.  Then choose G by
Lemma 2 so that

(4.2) jT(G - G)2 <9-uh2.

Now we have

(4.3) JVlvGT = JV|V(G*-G)|P <(p+h)ßh2 sup |V(G*-G)|P.

Applying (1.15) with v = G* - G, we have
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sup |V(G*-G)| <c(7, k)h-2(fT(G*-G)2y2.

Applying the triangle inequality, (4.2), and Proposition 2, we get

sup | V(G*-G)| <c(fi, 7, k)h~x.
T

Substituting this into (4.3) completes the lemma.

5. Estimates Away Fromz0. Lemma 3 shows, in particular, that in a disc of
radius 0(h) around z0, the W\ norm of the error G - G* is 0(h), regardless of k.   We
now concentrate on estimating the error outside such a disc (this is the heart of the
proof) using the ideas of interior estimates [17] (here they should be called exterior
estimates).   Let us write r = \z - z0\, and for "cut-off function" we choose ra, where
a = 2 when k = 2 and a = 3 when k > 3.  Let us use the expression E for the error
G-G*:

(5.1) E = G~G*.

Given any constant cx > 0, we have

fr ,       IV£"l= (r        ,       r-a'2ral2 \VE\

V-2) \}{r>c1h}nn j    \J{r>c1h}nSl J

Ulog/i|,/2    if* = 2)   .
<c(c., fi) I \ (f   ra1 h~*        if*>3ÍUn IVF|

We now expand the remaining integral, essentially commuting ra with V:

(5 3) Jn^IV^=Lv^.V(^-/^(Vf.vO
< Jn ,E . v(r«£) + ajja r«~2E2f ( Jfl ,« | ,E\2f ,

where we have used the fact that | V>a \ = ara~x.  Therefore,

(5-4) L''a|v£|2 <2L Vß- V(raE) + <*2 fnra~2E2.

Lemma 4. Suppose that 0 < e < 1.  Then

[   ra-2E2<ef   ra\VE\2 + c(fi, y, k)e-xha.

Proof.   When k = 2, this follows from Proposition 2, so assume that k > 3 (and
thus a = 3).  We have (Proposition 2)

(rE,E)<\\rE\\Hhn)\\E\\H_ï(n)<c(^y,k)h2\\rE\\Hl(ii)

<c(Sl,y,k)h3e-x + he\\rE\\2Hhn).
Expanding, we have

■*"4*(0)</ofra+3)£8+/o2,a|Vir|a
<c(fi, 7, *)A2 + J"   ^IV^I2.
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We have r2 < h~xr3 on {r > A}, so Lemma 3 implies that

f  r2|V£f = ff,       . + f,       ,       V2 | Vis |2

<c(fi, 7, ¿O^2 +/i_1Jn'-3|V£'l2.

These estimates combine to prove the lemma in view of the fact that e < e~x.
Applying Lemma 4 with e = 1/18 to (5.4), we find that

/nraIV£|2 <4jn VE- V(raE)-rc(n,y,k)h°.

What remains to be shown, to complete Theorem 2, is that

(5.5) jnVE. V(ra£)<|/nra|7£-|2 + c(fi, 7, Â;)Aa|logAI3"".

First, let us define an interpolate of G.   Define

^i = (J{i"GT:dist(z0,r)>A}.

Then {z G fi : |z - z0 \ > 2h} C fij, and G is a smooth function on fij.   Define G¡
on fij by requiring G¡ to be the restriction to fix of a function in Sk that equals G at
all nodes contained in fit.

Lemma 5.   With G¡ defined as above, we have

and

in  ra-\G-Gj)2 <c(Sl,y,k)ha

jn   r~a \V(ra(G - Gj))\2 < c(fi, 7, *)Aa|logA|3-a.

Proof.   Let r G T be contained in fi,.  Then by (1.12),

(5.6) IIC - Gj\\wUt) < c(y, k)hk-s\\G\\wt{T)

for s = 0, 1.  Let rmax = supTr and rmin = inf^.  Then IIGH^(t) < c(k)(rminYk.

Since ''max - '■mil» < h and Vin > &> we have

(5-7) r      Ir ■   <2'max''min ^ *••

Thus, we conclude that

frrP(G - G¡)2 + A2 JV j V(G - G7)|2 <c(y, k)(fTrß~2k>) h2k.
Summing over all t c fij, we prove the lemma, since

! I log A¡ if 0-2*+ 2 = 0,
hß-2k + 2l(-ß + 2k-2)    ifj3-2fc+ 2<0,

and
ra I Vra(G - Gj)|2 < 2a2ra~2(G - Gj)2 + 2ra | V(G - G¡)\2.

Lemma 6.  ^Gt-G\m        <c(Sl,y,k).
Proof.   By (1.15), Proposition 2, and Lemma 5,
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^-G*h-(nl)<c^k)h~l^-G\2(nl)

<C(7,*)A-(IIG-G/||L2(ni) + ||G-G*||L2(ni))
<c(7, A)A-°t/2||ra/2-1(G-G/)||i.2(n ) + c(fi,7, *)

<c(fi, 7, k).

Lemma 7. Let if G Sfc.  Then, if v = (ray)¡, we have

in   ^aIV(rV-u)|2<c(7, *)/„  ra~V.

Proof.  LetrGT, rCfij.  Then by (1.12),

(5g) ^-»l.i^^^-'W^

because Dß(ip\r) - 0 for |(3| = fc.   In view of (5.7) and the fact that r > A on fij

kal^(T) <<?</)taf ra"' <cO)(infra-1) A1-'.

Combining (1.15) with (5.7), one obtains

l*lIK*-/(T)<c(%*)*'-*-1H^a(r)

<c(y,k)(mfr1-a>2)hi-k-1\\r"'2-1v\\L2(T).

Applying these estimates in (5.8) yields

Now Holder's inequality implies that

¡t r~a | V(ra<p - v) |2 < c(7, *) fr ra~ V.

Summing this over r C fij completes the proof.
We return now to the proof of (5.5).  Let v G Sk.  Since a(E, v) = 0, Lemmas

3 and 4 yield

f   v£- - xj(raE) = J   V£" • V(raE - v) - j^Ev

<fn  VE • V(ra£ - v) + c(fi, 7, fc)(Aa + A M^^)

(5.9) + 1^*-^+^^

< fniVE. V(r"E - v) + c(Sl, y, k)(ha + h \v\wlin<i))

+ ¿ |n ra IVE I2 + c(fi, 7, *)Aa + Jn r2 ~V.

Let d G Sk be any function that interpolates ra(G¡ - G*) in fij.  The triangle inequal-
ity plus Lemmas 4, 5, and 7 give

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



692 RIDGWAY SCOTT

1L   VE ■ V(raE - v) < — f ra |V£|2 + 8 f    /•-<*1 V(/*£ - u) |2
J i' i j¿ Jíí J Si j

«-1̂/n^|V/7|2 + 16/nir-a|V(ra(G-G7))|2

+ \6^a   ra\nra{ßI-G*)-v)\1

(5.10) <¿Jn'*IVE|2 + <-(fi,7,*)Aa|logA|3-<*

+ c(%A)/ni/fl-2(G/-G*)2

<¿/nraIVf|2 +c(fi,7,A:)Aa|logA|3-a

+ c(7, *)(/0 x r«-\G - G7)2 + /n i r-2(G - G*)2)

<— f /-a|Vr7|2 +c(fi,7, Â:)Aa|logA|3-a.
lo jn

Applying (5.10) to (5.9), one obtains

Jn V£". V(raE)<j¿ fnra\VE\2 + c(fi, y, *)Aa|log A|3~a

+ /ftr2-V+c(fi,7,*)/.lul^(n?),

where u G Sk is any function that interpolates ra(G¡ - G*) in fij.  For definiteness,
we take v to be zero at the nodes in the interior of fij.  Thus all that remains is to
bound v suitably.  From (1.13), (5.7), and (1.15), we find

*'»lH(oî)+*^^"^0"^<nî)<c<**).o%ol^C'-<^,
and

l"-1"a/2u''i2(ni)<c(r *>«'*B+1<G/-cX»(n1)-

The first line is estimated by Lemma 6 and the second is estimated as in (5.10) with
the triangle inequality plus Lemmas 4 and 5, proving (5.5).  This completes the proof
that

ÍA |log A |    if* = 2,
\G-G%hn)<c&,y,k)\Wx(n) (A ifk>3.

From Proposition 2, we have \\G — G*\\  ¡       < c(fi, y, k)h, so the proof of Theorem
2 is complete.

6.  Further Results. We first extend Theorem 1 to give estimates for the error
u - u* in Lp.  It is notable that they do not immediately follow by interpolating be-
tween the known L2 estimates and Theorem 1.  This would require knowing what are
the interpolation spaces between Wk and Wk for p = 2 and q = °°.  However, this is
known only when 1 < p, q < °°  [7], [19].

Theorem 3. Let u and u* be as in Theorem 1. For p a number such that 1 <
p < °° and s an integer such that 1 < s < *,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ESTIMATES FOR THE FINITE ELEMENT METHOD 693

II" - "*HiP(n) < c(fi, 7, k)hs |log A |" lu \w, (0),

wAere ß = 0 if k > 3 and ß = \\ - 2/p\ if k = 2.
Proof. Following the proof of Theorem 1, let y G fi, let g be the Green's func-

tion with singularity y, and let g* be its projection onto Sfe. Define K(x, y) = gy(x) -
g*(x).  Then A' is a symmetric function and

(u - u*)(x) = j^ K(x, y)u(y) + VK(x, y) • Vu(y) dy.

The kernel (A', VAT) defines a mapping K for bounded functions U: fi —► R3 by

Kt/(x) =/*(*, ^i/jCy) + vK(x, 7) - (U2, U3)(y) dy.

By Theorem 2 and Theorem 4.1.2 of [18], K maps ¿p(fi)3 = Lp(fi) x Lp(fi) x ¿P(fi)
to ¿p(fi) and

! A Hog A |    if* = 2)
» i,t>,j,0W"

where c is the constant in Theorem 2.  By (1.7), K(v, Vu) = 0 for v G Sfe, so

Í A |log A¡    if* = 2)
[{u~u%p(^<c\ i iní   ll("'V»)-(ü'Vü)llLP(o,3-

L(n)        (A if/c>3juesfc L (n)

If s > 2, we choose u = w7 to get

!A4 llogA|    if k = 2)
a*    if*>3r'n<">-

If s = 1, the choice v = C yields the same estimate, where C is the constant such that [2]

ll"-C|l^(n)<^)'"^(n)-
This proves the theorem if * > 3 or if * = 2 and p = 1 or °°.

Now suppose that k = 2.  It is known [1] that

(6.2) ll"-"*lli2(n)<c(fi,7)AH«ll//i(íí).

As will be shown subsequently, this implies that for all U G L2(fi)3,

(6.3) ll^ll¿2(n)<^T)A||í/||¿2(n)3.

Assuming this for the moment, the Riesz convexity theorem [25] implies that for all

p,   1 < p < °°,
ll^lliP(íí)<^(n.T)AliogAl0llí/|ilP(n)3.

The rest of the proof is as before.
Now we prove (6.3).  The idea is standard: we simply project a general U onto a

function of the form («, V«) and apply (6.2).  So let C/G I2(fi) x Hx(Sl) x HX(Q.)
be given, and let u solve the boundary value problem

- Au + u = i/j + V • (U2, U3)    in fi,

dnu - n • (U2, U3) on dfi.

Integrating by parts shows that KU = K(u, Vu) because the kernel of K has the special
form (K, X/K).  So (6.2) yields
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WKUW = \\K(u, vu)|| <cA||(u, Vu)|| <ch\\U\\,

where the norm is the norm in ¿2(fi)3.  This proves (6.3) for U G ¿2(fi) x Hx(£l) x
//'(fi), and the general case follows because this space is dense in ¿2(fi)3.

Up to now, we have estimated only function values.  However, as is well known,
these estimates suffice to obtain optimal estimates of derivatives also.

Theorem 4.  Suppose that u and u* are as in Theorem 1.  Let s and t be integers
with 1 < t < s < * and let p satisfy 1 < p < °°.   Then

wAere ß = 0 if k > 3 and ß = 11 -2/p\ifk = 2.  (When p = °°, the term on the left
is replaced by maxT(=T \\u - u*|| ,t , ,.)

Proof.  Write u - u* = (u - u¡) + (u¡ - u*) and apply the triangle inequality.
For u - Uj, we apply (1.11).  For u, - u*, apply (1.15) to reduce to norms of function
values, rewrite u¡- u* = (u - u*) - (u - u7), and apply Theorem 3 and (1.11) respec-
tively.

Appendix. Proof of Lemma 1.  Let us focus our attention on Zj rather than z0,
i.e., let Zj G 9fi and consider

z0 = Zj + tn (Zj),      F0 = Zj - !_K(   )r ^zi>

for t G ] 0, d], where n (Zj) is the inward normal to 9fi at Zj.  Let D be the disc of
radius R = k(Zj)_1 with center at z = Zj + An (Zj), let Z? be the domain obtained by
deleting the line {z = Zj + tn (Zj) : t G [/?, 2/?]}, and let V be 90 minus this line.
Viewing the z's as complex numbers, the function

N(z) = log|log(z -z) -log(z0 -2)1 + log ¡log(z - z ) - log(z0 - z)\

satisfies A(G - AO = 0 in Dx = R2 - {z = Zj + m"(Zj) : t > R] and dnN = 0 on T.+
To see this, write z = Re^ + z and view G and A^ as functions of f for f G S =
{^ + /Tj : 7? < r? < r) + 27r}, where r\ is chosen so that n (z x ) = e'v .  We have

2     ief - e?0 |    |ef -ef°| )

If "fol    '   if-foi    )'
For any analytic function /, (f(z) - f(z0))/(z - zQ) is also analytic, so G - N is of the
form log 11/> |, where ip is analytic and =£ 0 in 5.   Thus, G - N is smooth, and since both
G and N are harmonic in Dx - {z0, z0},G - N must be harmonic in all of Dx.  (N is
obviously harmonic as a function of f, and since z = Re* + z is analytic, N is harmonic
as a function of z.)  As a function of f = ? + itj, A7 is symmetric about the line {£ = 0},
hence A^(0 + z"t?) = 0.  Thus, 9„A/ is zero on the image r of {% = 0, if < 17 < 77' + 27r}
via the conformai map z = i?ef + z.   Let fij = {z G fi : \z - zx | < 3J/2}.  Then

l|7V-G|lW2(ni)<c^

independent of z0 (i.e., independent of t) in view of (A.l).  Now choose a smooth cut-

twhen k(zj) = 0, choose N = G and let r be the tangent line to 3ft at z

(A.l) G(z(f))-Vvïztt)) = log.
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off function x such that x=linfi0={|z-Zj|< Ad/3] and x = 0 outside fij.  We
have

w = ̂ -¿G=(^-¿x^)+¿x(Ar-G) + ¿(x-i)G.

The last two terms are bounded in //2(fi) independently of t, so it remains to prove
the same of Wj —g— xN/2-n, which satisfies the equations

- Awj + Wj = r- (NAX- + VA^ • Vx - NX)    in fi,

K"\ = - ¿ (NbnX + X9„A0 on 9i2-

The function NA\ + VN • Vx - Ax is in I2(fi), boundedly in t, and the function
A9nx is in //1(9fi), boundedly in t.   Hence, it remains to show that

(A.2) Hx8«^iiiri(ao)<c(n)
independently of t.   (Elliptic regularity then implies that ||w, ||„2,_.. < c(fi), com-

H   (í¿)
pleting the proof.)  The reason (A.2) is valid is that hnN = 0 on T, and T is a third or-
der approximation to 9fi at Zj.  Let us define a mapping from 9fi to T (near Zj) by
choosing r = r(s) so that

7(s) = z(s)+rn(z(s))er,

where z(s) parametrizes 9fi by arc length with zx = z(0).  The function T(s) is smooth
for s near 0, and

|j-(z-7)(0) = 0,      / = 0,1,2.

Let v (s) be the normal vector to Y at z"(s).  Then v is smooth for s near 0, and

^j(v-n)(0) = 0,      i = 0, 1,
ds'

where n(s) = n (z(s)).  We have

bnN(z(s))=n(s)-VN(z(s))

= n(s) ■ [VN(z(s)) - VA(7(s))] + [n(s) - v(s)] ■ VN(7(s))

because v (s) • VN(z(s)) = 0.  Viewing A as a function also of t, we have

dnN(z(s))=*(s,t),
where

and

els I3 cs2
\<p(s,t)\<-^]-.+

97^'^

s2 + t2     (s2 + t2)v>

__£\sr__+_c\s?_+_      c\s\
(s2 + t2fi2   (s2 +12)  (s2 + t2yi2 '

where we have made use of the observation that \D*N\ < c(s2 + t2)~Ml2.  These
terms are all bounded as t —■> 0, so we actually have HoyVH^x        < c(fi) for some
neighborhood co of zt in 9fi.   Outside of any such neighborhood, bnN is clearly
bounded, so we are done.
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