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This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically

optimal within a class of nonlinear shrinkage estimators. The key is to employ large-dimensional asymp-

totics: the matrix dimension and the sample size go to infinity together, with their ratio converging to a finite,

nonzero limit. As the main focus, we apply this method to Stein’s loss. Compared to the estimator of Stein

(Estimation of a covariance matrix (1975); J. Math. Sci. 34 (1986) 1373–1403), ours has five theoretical ad-

vantages: (1) it asymptotically minimizes the loss itself, instead of an estimator of the expected loss; (2) it

does not necessitate post-processing via an ad hoc algorithm (called “isotonization”) to restore the positivity

or the ordering of the covariance matrix eigenvalues; (3) it does not ignore any terms in the function to be

minimized; (4) it does not require normality; and (5) it is not limited to applications where the sample size

exceeds the dimension. In addition to these theoretical advantages, our estimator also improves upon Stein’s

estimator in terms of finite-sample performance, as evidenced via extensive Monte Carlo simulations. To

further demonstrate the effectiveness of our method, we show that some previously suggested estimators of

the covariance matrix and its inverse are decision-theoretically optimal in the large-dimensional asymptotic

limit with respect to the Frobenius loss function.

Keywords: large-dimensional asymptotics; nonlinear shrinkage estimation; random matrix theory; rotation

equivariance; Stein’s loss

1. Introduction

The estimation of a covariance matrix is one of the most fundamental problems in multivariate

statistics. It has countless applications in econometrics, biostatistics, signal processing, neuro-

imaging, climatology, and many other fields. One recurrent problem is that the traditional esti-

mator (that is, the sample covariance matrix) is ill-conditioned and performs poorly when the

number of variables is not small compared to the sample size. Given the natural eagerness of

applied researchers to look for patterns among as many variables as possible, and their practical

ability to do so thanks to the ever-growing processing power of modern computers, theoreticians

are under pressure to deliver estimation techniques that work well in large dimensions.

A famous proposal for improving over the sample covariance matrix in such cases is due to

Stein [41,42]. He considers the class of “rotation-equivariant” estimators that keep the eigenvec-

tors of the sample covariance matrix while shrinking its eigenvalues. This means that the small

sample eigenvalues are pushed up and the large ones pulled down, thereby reducing (or “shrink-

1350-7265 © 2018 ISI/BS
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ing”) the overall spread of the set of eigenvalues. Stein’s estimator is based on the scale-invariant

loss function commonly referred to as “Stein’s loss”.

Stein’s shrinkage estimator broke new ground and fathered a large literature on rotation-

equivariant shrinkage estimation of a covariance matrix. For example, see the articles by Haff

[16], Lin and Perlman [30], Dey and Srinivasan [12], Daniels and Kass [10], Ledoit and Wolf

[26,27], Chen, Wiesel and Hero [9], Won et al. [44], and the references therein.

Although Stein’s estimator is still considered the “gold standard” (Rajaratnam and Vincenzi

[36]) and has proven hard to beat empirically, a careful reading of Stein’s original articles reveals

several theoretical limitations.

1. The estimator proposed by Stein [41,42] does not minimize the loss, nor the risk (that is, the

expected loss), but instead an unbiased estimator of the risk. This is problematic because

the primary objects of interest are the loss and the risk. A priori there could exist many

unbiased estimators of the risk, so that minimizing them could lead to different estimators.

Furthermore, the resulting estimators may not minimize the primary objects of interest: the

loss or the risk.

2. The formula derived by Stein generates covariance matrix estimators that may not be pos-

itive semidefinite. To solve this problem, he recommends post-processing the estimator

through an “isotonizing” algorithm. However, this is an ad hoc fix whose impact is not

understood theoretically. In addition, the formula generates covariance matrix estimators

that do not necessarily preserve the ordering of the eigenvalues of the sample covariance

matrix. Once again, this problem forces the statistician to resort to the ad hoc isotonizing

algorithm.

3. In order to derive his formula, Stein ignores a term in the unbiased estimator of the risk that

involves the derivatives of the shrinkage function. No justification, apart from tractability,

is given for this omission.

4. Stein’s estimator requires normality, an assumption often violated by real data.

5. Finally, Stein’s estimator is only defined when the sample size exceeds the dimension.

One important reason why Stein’s estimator is highly regarded in spite of its theoretical lim-

itations is that several Monte Carlo simulations, such as the ones reported by Lin and Perlman

[30], have shown that it performs remarkably well in practice, as long as it is accompanied by

the ad hoc isotonizing algorithm.

Our paper develops a shrinkage estimator of the covariance matrix in the spirit of Stein [41,

42] with two significant improvements: first, it solves the five theoretical problems listed above;

and second, it performs better in practice, as evidenced by extensive Monte Carlo simulations.

We respect Stein’s framework by adopting Stein’s loss as the metric by which estimators are

evaluated, and by restricting ourselves to his class of rotation-equivariant estimators that have

the same eigenvectors as the sample covariance matrix.

The key difference is that we carry this framework from finite samples into the realm of “large-

dimensional asymptotics”, where the number of variables and the sample size go to infinity to-

gether, with their ratio (called the “concentration”) converging to a finite, nonzero limit. Such an

approach enables us to harness mathematical results from what is commonly known as “Random

Matrix Theory” (RMT). It should be noted that Stein [42] himself acknowledges the usefulness

of RMT. But he uses it for illustration purposes only, which opens up the question of whether
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RMT could contribute more than that and deliver an improved Stein-type estimator of the covari-

ance matrix. Important new results in RMT enable us to answer these questions positively in the

present paper.

We show that, under a certain set of assumptions, Stein’s loss (properly normalized) converges

almost surely to a nonrandom limit, which we characterize explicitly. We embed the eigenvalues

of the covariance matrix estimator into a “shrinkage function”, and we introduce the notion of a

“limiting” shrinkage function. The basic idea is that, even though the eigenvalues of the sample

covariance matrix are random, the way they should be asymptotically transformed is nonran-

dom, and is governed by some limiting shrinkage function. We derive a necessary and sufficient

condition for the limiting shrinkage function to minimize the large-dimensional asymptotic limit

of Stein’s loss. Finally, we construct a covariance matrix estimator that satisfies this condition

and thus is asymptotically optimal under Stein’s loss in our large-dimensional framework, and in

the class of nonlinear shrinkage estimators under consideration. Large-dimensional asymptotics

enable us to:

1. show that Stein’s loss, the corresponding risk, and Stein’s unbiased estimator of the risk are

all asymptotically equivalent;

2. bypass the need for an isotonizing algorithm;

3. justify that the term involving the derivatives of the shrinkage function (which was ignored

by Stein) vanishes indeed;

4. dispense with the normality assumption; and

5. handle the challenging case where the dimension exceeds the sample size.

These five theoretical advantages translate into significantly improved finite-sample performance

over Stein’s estimator, as we demonstrate through a comprehensive set of Monte Carlo simula-

tions. In particular, concerning point 4., Stein [41,42] assumes normality to show that the relevant

objective function is an unbiased estimator of the risk. But as we establish in the present paper,

this objective function converges to the same limit as the risk in an appropriate asymptotic set-

ting. Hence, our results demonstrate that Stein’s estimator – as well as our new estimator – is

also a relevant estimator when normality does not hold.

Our procedure is divided into two distinct steps: first, we find an “oracle” estimator that is

asymptotically optimal but depends on unobservable population quantities; second, we find a

bona fide estimator that depends only on observable quantities, is asymptotically equivalent to

the oracle, and thus inherits the oracle’s asymptotic optimality property. The second step is not

original, as we adapt technology developed earlier by Ledoit and Wolf [27,28]. However, the first

step is a key original contribution of the present paper, made possible by the introduction of the

new concept of “limiting shrinkage function”. In order to demonstrate its effectiveness, we apply

it to the estimators of Ledoit and Wolf [27,28] and prove that these previously suggested estima-

tors are asymptotically optimal with respect to their respective loss functions. (This optimality

result strengthens the two earlier papers.) In passing, we unearth deep, unexpected connections

between Stein’s loss and the quadratic loss functions used by Ledoit and Wolf [27,28].

Additional evidence for our method being effective is the fact that it enables us to discover a

new oracle covariance matrix estimator that is optimal with respect to the “Symmetrized Stein’s

loss” within our class of nonlinear shrinkage estimators, under large-dimensional asymptotics.

Not only does this estimator aim to be close to the population covariance matrix, but at the same
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time it aims to have an inverse close to the inverse of the population covariance matrix. Such

symmetry is mathematically elegant and points to a promising avenue for future research.

The remainder of the paper is organized as follows. Section 2 briefly summarizes the finite-

sample theory of Stein [41,42]. Section 3 details the adjustments necessary to transplant Stein’s

theory from finite samples to large-dimensional asymptotics. Section 4 showcases the effective-

ness of our new method for deriving oracle estimators of the covariance matrix that are asymp-

totically optimal in the nonlinear shrinkage class with respect to various loss functions. Section 5

develops our feasible estimator of a covariance matrix, which is asymptotically optimal in the

nonlinear shrinkage class with respect to Stein’s loss. Section 6 extends the analysis to the chal-

lenging case where the matrix dimension exceeds the sample size, the sample covariance matrix

is singular, and Stein’s estimator is not even defined. Section 7 investigates the case where the

largest eigenvalue goes to infinity at the same rate as the matrix dimension while the bulk of the

eigenvalues remain bounded. Section 8 studies finite-sample properties via Monte Carlo simula-

tions. Section 9 shows an empirical application to real data. Section 10 contains concluding re-

marks. The proofs of all mathematical results are collected in the supplementary material (Ledoit

and Wolf [29]).

2. Shrinkage in finite samples under Stein’s loss

This section expounds the finite-sample theory of Stein [41,42], with minor notational changes

designed to enhance compatibility with the large-dimensional analysis conducted in subsequent

sections. Such changes are highlighted where appropriate.

2.1. Finite-sample framework

Assumption 2.1 (Dimension). The number of variables p and the sample size n are both fixed

and finite; p is smaller than n.

Assumption 2.2 (Population Covariance Matrix). The population covariance matrix �n is a

nonrandom symmetric positive-definite matrix of dimension p × p.

Let τn := (τn,1, . . . , τn,p)′ denote a system of eigenvalues of �n. The empirical distribution

function (e.d.f.) of the population eigenvalues is defined as

∀x ∈R Hn(x) := 1

p

p∑

i=1

1[τn,i ,+∞)(x),

where 1 denotes the indicator function of a set.

Note that all relevant quantities are indexed by n because in subsequent sections we let the

sample size n go to infinity (together with the dimension p).
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Assumption 2.3 (Data generating process). Xn is a matrix of i.i.d. standard normal random

variables of dimension n × p. The matrix of observations is Yn := Xn ×
√

�n, where
√

de-

notes the symmetric positive-definite square root of a matrix. Neither
√

�n nor Xn are observed

on their own: only Yn is observed.

The sample covariance matrix is defined as Sn := n−1Y ′
nYn = n−1

√
�nX

′
nXn

√
�n. It admits

a spectral decomposition Sn = Un�nU
′
n, where �n is a diagonal matrix, and Un is an orthogonal

matrix: UnU
′
n = U ′

nUn = In, where In (in slight abuse of notation) denotes the identity matrix of

dimension p×p. Let �n := Diag(λn) where λn := (λn,1, . . . , λn,p)′. We can assume without loss

of generality that the sample eigenvalues are sorted in increasing order: λn,1 ≤ λn,2 ≤ · · · ≤ λn,p .

Correspondingly, the ith sample eigenvector is un,i , the ith column vector of Un.

Definition 2.1 (Estimators). We consider covariance matrix estimators of the type S̃n :=
UnD̃nU

′
n, where D̃n is a diagonal matrix: D̃n := Diag(ϕ̃n(λn,1) . . . , ϕ̃n(λn,p)), and ϕ̃n is a (pos-

sibly random) real univariate function which can depend on Sn.

(Since ϕ̃n is allowed to depend on Sn, in particular, ϕ̃n(λn,i) is not necessarily a function of

λn,i only but may depend on the other λn,j also.)

This is the class of “rotation-equivariant” estimators introduced by Stein [41,42]: rotating the

original variables results in the same rotation being applied to the estimate of the covariance

matrix. Such rotation equivariance is appropriate in the general case where the statistician has no

a priori information about the orientation of the eigenvectors of the covariance matrix.

We call ϕ̃n the “shrinkage function” because, in all applications of interest, its effect is to

shrink the set of sample eigenvalues by reducing its dispersion around the mean, pushing up

the small ones and pulling down the large ones. Note that Stein [42] does not work with the

function ϕ̃n(·) itself but with the vector (ϕ̃n,1, . . . , ϕ̃n,p)′ := (ϕ̃n(λn,1), . . . , ϕ̃n(λn,p))′ instead.

This is equivalent because the sample eigenvalues are distinct with probability one, and because

the values taken by the shrinkage function ϕ̃n(·) outside the set {λn,1, . . . , λn,p} do not make

their way into the estimator S̃n. Of these two equivalent formulations, the functional one is easier

to generalize into large-dimensional asymptotics than the vector one, for the same reason that

authors in the RMT literature have found it more tractable to work with the e.d.f. of the sample

eigenvalues,

∀x ∈ R Fn(x) := 1

p

p∑

i=1

1[λn,i ,+∞)(x),

than with the vector of the sample eigenvalues.

Definition 2.2 (Loss function). Estimators are evaluated according to the following scale-

invariant loss function used by Stein [41,42] and commonly referred to as Stein’s loss:

L
S
n(�n, S̃n) := 1

p
Tr

(
�−1

n S̃n

)
− 1

p
log det

(
�−1

n S̃n

)
− 1,

and its corresponding risk function RS
n(�n, S̃n) := E[LS

n(�n, S̃n)]. Here, we introduce Tr(·) as

the notation for the trace operator.
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Note that Stein [41,42] does not divide by p, but this normalization is necessary to prevent the

loss function from going to infinity with the matrix dimension under large-dimensional asymp-

totics; it makes no difference in finite samples. By analogy with Stein’s loss, we will refer to

RS
n(�n, S̃n) as “Stein’s risk”.

Stein’s loss is proportional to the Kullback and Leibler [24] divergence from the multivariate

normal distribution with zero mean and covariance matrix �n to the multivariate normal distri-

bution with zero mean and covariance matrix S̃n, which is commonly expressed in the following

notation:

L
S
n(�n, S̃n) = 2

p
DKL

(
N (0, S̃n) ‖N (0,�n)

)
. (2.1)

2.2. Stein’s loss in finite samples

Stein [42] introduces a function closely related to the nonlinear shrinkage function: ψ̃(x) :=
ϕ̃(x)/x. Under Assumptions 2.1–2.3, Stein shows that the risk function satisfies the identity

RS
n(�n, S̃n) = E[�n(�n, S̃n)], with

�n(�n, S̃n) := n − p + 1

np

p∑

j=1

ψ̃n(λn,j ) − 1

p

p∑

j=1

log
[
ψ̃n(λn,j )

]
+ log(n)

+ 2

np

p∑

j=1

∑

i>j

λn,j ψ̃n(λn,j ) − λn,iψ̃n(λn,i)

λn,j − λn,i

+ 2

np

p∑

j=1

λn,j ψ̃
′
n(λn,j ) − 1

p

p∑

j=1

E
[
log

(
χ2

n−j+1

)]
− 1,

(2.2)

where

ψ̃ ′
n(x) := ∂ψ̃n(x)

∂x

and χ2
n−j+1, for j = 1, . . . , p, denote independent chi-square random variables with respec-

tive degrees of freedom as indicated by their subscripts; for example, see Muirhead [34], The-

orems 3.2.15 and 4.3.1. Therefore, the random quantity �n(�n, S̃n) can be interpreted as an

“unbiased estimator of the risk (function)”.

Ignoring the term (2/np)
∑p

j=1 λn,j ψ̃
′
n(λj ), the unbiased estimator of risk is minimized when

the shrinkage function ϕ̃n satisfies ∀i = 1, . . . , p, ϕ̃n(λn,i) = ϕ∗
n(λn,i), where

∀i = 1, . . . , p ϕ∗
n(λn,i) := λn,i

1 − p−1
n

− 2
p
n
λn,i × 1

p

∑
j 
=i

1
λn,j −λn,i

. (2.3)

Although this approach broke new ground and had a major impact on subsequent develop-

ments in multivariate statistics, a drawback of working in finite samples is that expression (2.3)
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diverges when some λn,j gets infinitesimally close to another λn,i . In such cases, Stein’s original

estimator can exhibit violation of eigenvalues ordering or even negative eigenvalues. It there-

fore necessitates post-processing through an ad hoc isotonizing algorithm whose effect is hard

to quantify theoretically; for example, see the insightful work of Rajaratnam and Vincenzi [36].

Eschewing isotonization is one of our motivations for going to large-dimensional asymptotics.

The appendix of Lin and Perlman [30] gives a detailed description of the isotonizing algorithm.

If we call the isotonized shrinkage function ϕST
n , Stein’s “isotonized” estimator is

SST
n := UnD

ST
n U ′

n, where DST
n := Diag

(
ϕST

n (λn,1), . . . , ϕ
ST
n (λn,p)

)
. (2.4)

3. Shrinkage in large dimensions under Stein’s loss

This section largely mirrors the previous one and contains adjustments designed to convert from

finite samples to large-dimensional asymptotics, where the dimension goes to infinity together

with the sample size.

3.1. Large-dimensional asymptotic framework

Assumption 3.1 (Dimension). Let n denote the sample size and p := p(n) the number of vari-

ables. It is assumed that the ratio p/n converges, as n → ∞, to a limit c ∈ (0,1) called the “lim-

iting concentration”. Furthermore, there exists a compact interval included in (0,1) that contains

p/n for all n large enough.

The extension to the case p > n is covered in Section 6.

Assumption 3.2.

a. The population covariance matrix �n is a nonrandom symmetric positive-definite matrix of

dimension p × p.

b. Let τn := (τn,1, . . . , τn,p)′ denote a system of eigenvalues of �n, and Hn the e.d.f. of pop-

ulation eigenvalues. It is assumed that Hn converges weakly to a limit law H , called the

“limiting spectral distribution (function)”.

c. Supp(H), the support of H , is the union of a finite number of closed intervals, bounded

away from zero and infinity.

d. There exists a compact interval [h,h] ⊂ (0,∞) that contains {τn,1, . . . , τn,p} for all n large

enough.

The existence of a limiting concentration (ratio) and a limiting population spectral distribution

are both standard assumptions in the literature on large-dimensional asymptotics; see Bai and

Silverstein [1] for a comprehensive review. The assumption that Supp(Hn) is uniformly bounded

away from zero is widespread and made by such authors as Johnstone [22], Bickel and Levina [8],

Mestre [32], Won et al. [44], and Khare, Oh and Rajaratnam [23], among others. The assumption

that Supp(Hn) is uniformly bounded away from infinity is even more widespread and made by
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such authors as Bai and Silverstein [2–4], Johnstone [22], Bickel and Levina [8], Mestre [32],

El Karoui [14], Won et al. [44], and Khare, Oh and Rajaratnam [23], among others. In particular,

our set of assumptions is much less restrictive than the “spike model” of Johnstone [22] which is

still widely in use; for example, see Donoho, Gavish and Johnstone [13]. (Note that Bickel and

Levina [8] use only the assumption of an upper bound for estimating the covariance matrix itself,

whereas they use the assumption of both a lower and an upper bound for estimating the inverse

of the covariance matrix.)

Furthermore, since in Assumption 3.2.d the lower bound h can be arbitrarily small and the

upper bound h can be arbitrarily large, the assumption also covers the case of a poorly condi-

tioned covariance matrix. Indeed, Monte Carlo simulations reported in Figure 3 indicate that our

estimator performs well in practice even when the smallest eigenvalue goes to zero, while Monte

Carlo simulations reported in Figure 9 indicate that our estimator performs well in practice even

when the largest eigenvalue goes to infinity.

In order to streamline the language, we adopt the convention throughout the paper that the

words “limit”, “convergence”, “asymptotic”, and variations thereof, signify convergence under

large-dimensional asymptotics as defined by Assumptions 3.1–3.2, unless explicitly stated oth-

erwise.

Assumption 3.3 (Data generating process). Xn is an n × p matrix of i.i.d. random variables

with mean zero, variance one, and finite 12th moment. The matrix of observations is Yn :=
Xn ×

√
�n. Neither

√
�n nor Xn are observed on their own: only Yn is observed.

Note that we no longer require normality.

Remark 3.1 (Moment condition). The existence of a finite 12th moment is assumed to prove

certain mathematical results using the methodology of Ledoit and Péché [25]. However, Monte

Carlo studies in Ledoit and Wolf [27,28] indicate that this assumption is not needed in practice

and can be replaced with the existence of a finite fourth moment.

The literature on sample covariance matrix eigenvalues under large-dimensional asymptotics

is based on a foundational result by Marčenko and Pastur [31]. It has been strengthened and

broadened by subsequent authors including Silverstein [37], Silverstein and Bai [38], and Silver-

stein and Choi [39], among others. These works imply that, under Assumptions 3.1–3.3, there

exists a continuously differentiable limiting sample spectral distribution F such that

∀x ∈ R Fn(x)
a.s.−→ F(x). (3.1)

In addition, the existing literature has unearthed important information about the limiting spec-

tral distribution F , including an equation that relates F to H and c. The version of this equation

given by Silverstein [37] is that m := mF (z) is the unique solution in the set

{
m ∈ C : −1 − c

z
+ cm ∈C

+
}

(3.2)
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to the equation

∀z ∈ C
+ mF (z) =

∫
1

τ [1 − c − czmF (z)] − z
dH(τ), (3.3)

where C+ is the half-plane of complex numbers with strictly positive imaginary part and, for any

increasing function G on the real line, mG denotes the Stieltjes transform of G:

∀z ∈C
+ mG(z) :=

∫
1

λ − z
dG(λ).

The Stieltjes transform admits a well-known inversion formula:

G(b) − G(a) = lim
η→0+

1

π

∫ b

a

Im
[
mG(ξ + iη)

]
dξ, (3.4)

if G is continuous at a and b. Although the Stieltjes transform of F , mF , is a function whose

domain is the upper half of the complex plane, it admits an extension to the real line, since Sil-

verstein and Choi [39] show that: ∀λ ∈R, limz∈C+→λ mF (z) =: m̆F (λ) exists and is continuous.

Another useful result concerns the support of the distribution of the sample eigenvalues.

Assumptions 3.1–3.3 together with Bai and Silverstein [2], Theorem 1.1, imply that the sup-

port of F , denoted by Supp(F ), is the union of a finite number κ ≥ 1 of compact intervals:

Supp(F ) =
⋃κ

k=1[ak, bk], where 0 < a1 < b1 < · · · < aκ < bκ < ∞.

Assumption 3.4. We assume that there exists a nonrandom real univariate function ϕ̃ defined

on Supp(F ) and continuously differentiable on
⋃κ

k=1[ak, bk] such that ϕ̃n(x)
a.s.−→ ϕ̃(x) for all

x ∈ Supp(F ). Furthermore, this convergence is uniform over x ∈
⋃κ

k=1[ak + η, bk − η], for any

small η > 0. Finally, for any small η > 0, there exists a finite nonrandom constant K̃ such that

almost surely, over the set x ∈
⋃κ

k=1[ak − η, bk + η], |ϕ̃n(x)| is uniformly bounded by K̃ , for all

n large enough.

Remark 3.2. The uniform convergence in Assumption 3.4 means that for any small η > 0, there

exists a set of probability one such that on this set, supx∈Aη
|ϕ̃n(x) − ϕ̃(x)| −→ 0, with Aη :=⋃κ

k=1[ak + η, bk − η]. This assumption is used in the proof of Lemma 11.2 in the supplementary

material Ledoit and Wolf [29].

Shrinkage functions need to be as well behaved asymptotically as spectral distribution func-

tions, except possibly on a finite number of arbitrarily small regions near the boundary of the

support. The large-dimensional asymptotic properties of a generic rotation-equivariant estimator

S̃n are fully characterized by its limiting shrinkage function ϕ̃.

Throughout the paper, we call the set of estimators specified by Definition 2.1 and Assump-

tion 3.4 “the class of nonlinear shrinkage estimators”. We argue that this is not a restrictive

definition for two reasons: first, for finite dimension p and sample size n, the shrunk eigenvalues

(ϕ̃n(λn,1) . . . , ϕ̃n(λn,p)) can be anything in Rn; second, all we require is that the shrinkage func-

tion ϕ̃n remains bounded and converges uniformly to some continuously differentiable limit ϕ̃.

It would be very difficult to deal mathematically with shrinkage functions that are unbounded, or

that alternate between vastly different shapes without ever converging to any specific one.
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3.2. Stein’s loss under large-dimensional asymptotics

Instead of minimizing the unbiased estimator of risk �n(�n, S̃n) defined in Equation (2.2), as

Stein [41,42] does, we minimize limp,n→c∞ LS
n(�n, S̃n), where the loss function LS

n comes from

Definition 2.2, and limp,n→c∞ �n(�n, S̃n). Here, we introduce the notation “p,n →c ∞” as

indicating that both p and n go to infinity together, with their ratio p/n converging to a positive

constant c; see Assumption 3.1.

The almost sure existence and equality of these two limits is established below.

Theorem 3.1. Under Assumptions 3.1–3.4,

LS
n(�n, S̃n)

a.s.−→ MS
c (H, ϕ̃)

:=
κ∑

k=1

∫ bk

ak

{
1 − c − 2cx Re[m̆F (x)]

x
ϕ̃(x) − log

[
ϕ̃(x)

]}
dF(x)

+
∫

log(t) dH(t) − 1.

(3.5)

The proof is in Section 11.1 of the supplementary material Ledoit and Wolf [29].

The connection with Stein’s finite sample-analysis is further elucidated by an equivalent result

for the unbiased estimator of risk.

Proposition 3.1. Under Assumptions 3.1–3.4,

�n(�n, S̃n)
a.s.−→ M

S
c (H, ϕ̃). (3.6)

The proof is in Section 11.2 of the supplementary material Ledoit and Wolf [29]. Proposi-

tion 3.1 shows that, under large-dimensional asymptotics, minimizing the unbiased estimator of

risk is asymptotically equivalent to minimizing the loss, with probability one. It also shows that

ignoring the term (2/np)
∑p

j=1 λn,j ψ̃
′
n(λj ) in the unbiased estimator of risk, which was an ad

hoc approximation by Stein in finite samples, is justified under large-dimensional asymptotics,

since this term vanishes in the limit.

Theorem 3.1 enables us to characterize the set of asymptotically optimal estimators under

Stein’s loss in large dimensions.

Corollary 3.1. Suppose Assumptions 3.1–3.4 hold.

a. A covariance matrix estimator S̃n minimizes in the class of rotation-equivariant estimators

described in Definition 2.1 the almost sure limit (3.5) of Stein’s loss if and only if its limiting

shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) = ϕ∗(x), where

∀x ∈ Supp(F ) ϕ∗(x) := x

1 − c − 2cx Re[m̆F (x)] . (3.7)
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The resulting oracle estimator of the covariance matrix is

S∗
n := Un × Diag

(
ϕ∗(λn,1), . . . , ϕ

∗(λn,p)
)
× U ′

n.

b. The minimum of the almost sure limit (3.5) of Stein’s loss is equal to

lim
p,n→c∞

LS
n

(
�n, S

∗
n

)

=
∫

log(t) dH(t) −
κ∑

k=1

∫ bk

ak

log

[
x

1 − c − 2cx Re[m̆F (x)]

]
dF(x).

(3.8)

Equation (3.7) follows immediately from Theorem 3.1 by differentiating the right-hand side

of Equation (3.5) with respect to ϕ̃(x). Equation (3.8) obtains by plugging Equation (3.7) into

Equation (3.5) and simplifying.

The fact that the denominator on the right-hand side of Equation (3.7) is nonzero and that the

optimal limiting shrinkage function ϕ∗ is strictly positive and bounded over the support of F is

established by the following proposition, whose proof is in Section 11.3 of the supplementary

material Ledoit and Wolf [29].

Proposition 3.2. Under Assumptions 3.1–3.3,

∀x ∈ Supp(F ) 1 − c − 2cx Re
[
m̆F (x)

]
≥ a1

h
.

The covariance matrix estimator based on the nonlinear shrinkage function ϕ∗ is an “oracle”

estimator, as it depends on mF , the Stieltjes transform of the limiting spectral distribution of

the sample covariance matrix. mF is unobservable, as it depends on H , the limiting spectral

distribution of the population covariance matrix, which is itself unobservable. Nonetheless, as we

will show in Section 5, this oracle estimator plays a pivotal role because it is the foundation on

which a bona fide estimator enjoying the same asymptotic optimality properties can be erected.

3.3. Comparison with other estimators

The techniques developed above are sufficiently general to enable us to compute the almost sure

limit of Stein’s loss for other covariance matrix estimators as well. Countless estimators of the

covariance matrix have been proposed in the literature and it is well beyond the scope of the

present paper to review them all. We restrict attention to three estimators that will be included in

the Monte Carlo simulations of Section 8 and the in empirical application of Section 9.

3.3.1. Sample covariance matrix

The sample covariance matrix fits in our framework by taking the shrinkage function: ϕS
n (x) := x,

for all x ∈ R. It converges to the limiting shrinkage function ϕS(x) := x uniformly over R.
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Applying Theorem 3.1 yields the almost sure limit of Stein’s loss for the sample covariance

matrix:

L
S
n(�n, Sn)

a.s.−→MS
c

(
H,ϕS

)

=
∫

log(t) dH(t) −
κ∑

k=1

∫ bk

ak

{
c + 2cx Re

[
m̆F (x)

]
+ log(x)

}
dF(x).

(3.9)

Corollary 3.1 implies that the limiting loss of the sample covariance matrix MS
c (H,ϕS) is at

least as high as that of the optimal nonlinear shrinkage function MS
c (H,ϕ∗). However, it may

be possible a priori that the losses are equal for some parameter configurations. By directly

comparing Equations (3.8) and (3.9), we can establish that this is nowhere the case.

Proposition 3.3. For any c ∈ (0,1) and any cumulative distribution function H satisfying As-

sumption 3.2.c, MS
c (H,ϕS) >MS

c (H,ϕ∗).

3.3.2. Minimax estimator

Theorem 3.1 of Dey and Srinivasan [12] presents a covariance matrix estimator that is minimax

with respect to Stein’s loss within the class of rotation-equivariant estimators specified in Def-

inition 2.1. These authors acknowledge that the same estimator was presented by Charles Stein

in a series of lectures given at the University of Washington, Seattle in 1982. Their minimax

estimator is obtained by multiplying the ith sample eigenvalue by the coefficient

�i := n

n + p + 1 − 2(p + 1 − i)
, i = 1, . . . , p. (3.10)

In terms of notation, the term (p + 1 − i) in the denominator appears in the original paper as

i because Dey and Srinivasan [12] sort eigenvalues in descending order, whereas we use the

convention that they are sorted in ascending order. Also, we need to introduce the quantity n in

the denominator because Dey and Srinivasan [12] work with the eigenvalues of n × Sn, whereas

we work with the eigenvalues of Sn.

The coefficient �i from Equation (3.10) has a long history, having been originally introduced

by Stein [40], Equation (4.11), and James and Stein [20], Equation (85), in the context of min-

imax estimators of the covariance matrix that are not rotation-equivariant. We can rewrite �i

as

�i = n

n − p − 1 + 2pFn(λn,i)
, i = 1, . . . , p. (3.11)

Therefore, the minimax shrinkage function is defined in finite samples as

∀x ∈ R ϕM
n (x) := x

1 − p+1
n

+ 2
p
n
Fn(x)

, (3.12)

and converges almost surely to the limiting shrinkage function

∀x ∈ R ϕM(x) := x

1 − c + 2cF (x)
(3.13)



Covariance matrix estimation under Stein’s loss 3803

uniformly over the support of F . Plugging ϕM into Theorem 3.1 yields the almost sure limit of

Stein’s loss for the minimax estimator:

M
S
c

(
H,ϕM

)
:=

∫ {
1 − c − 2cx Re[m̆F (x)]

1 − c + 2cF (x)
− log

[
x

1 − c + 2cF (x)

]}
dF(x)

+
∫

log(t) dH(t) − 1.

(3.14)

As in Section 3.3.1 above, Corollary 3.1 implies that the limiting loss of the minimax estimator

MS
c (H,ϕM) is at least as high as that of the optimal nonlinear shrinkage function MS

c (H,ϕ∗).
However, it may be possible a priori that the losses are equal for some parameter configurations.

By directly comparing Equations (3.8) and (3.14), we can establish that this is nowhere the case.

Proposition 3.4. For any c ∈ (0,1) and any cumulative distribution function H satisfying As-

sumption 3.2.c, MS
c (H,ϕM) >MS

c (H,ϕ∗).

Thus, our estimator strictly improves pointwise upon the minimax estimator according to

Stein’s loss, which implies that the minimax estimator is inadmissible in the large-dimensional

asymptotic limit.

3.3.3. Linear shrinkage

Let ϕL
n denote the linear shrinkage formula of Ledoit and Wolf [26], Equation (14).

Proposition 3.5. The linear shrinkage function ϕL
n converges almost surely to

ϕL : x �−→
∫

λdF(λ) +
∫

t2 dH(t) − [
∫

t dH(t)]2

∫
λ2 dF(λ) − [

∫
λdF(λ)]2

[
x −

∫
λdF(λ)

]
(3.15)

uniformly over the support of F .

Any interested reader can obtain the almost sure limit of Stein’s loss for the optimal linear

shrinkage estimator MS
c (H,ϕL) simply by plugging Equation (3.15) into Theorem 3.1. The re-

sulting formula is cumbersome, so we omit it to save space. By Corollary 3.1, MS
c (H,ϕL) is al-

ways at least as high as the limiting loss of the optimal nonlinear shrinkage function MS
c (H,ϕ∗).

There are some special cases where the two limiting losses may be equal: These are the cases

where the optimal nonlinear shrinkage function ‘happens’ to be exactly linear; one such case

is when all population eigenvalues are equal to one another. However, in the generic case, non-

linear shrinkage is strictly better asymptotically, since linear shrinkage estimators form a two-

dimensional subspace nested inside the p-dimensional space of nonlinear shrinkage estimators

(where p is arbitrarily large).

4. Beyond Stein’s loss

Although the present paper focuses mainly on Stein’s loss and the nonlinear shrinkage func-

tion ϕ∗, a key innovation relative to Ledoit and Wolf [27,28] is the method of Section 3.2 for
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finding an oracle estimator that minimizes the limit of a prespecified loss function under large-

dimensional asymptotics; or, alternatively, for proving that an existing estimator is asymptoti-

cally optimal with respect to some specific loss function. It is important to demonstrate that the

effectiveness of this method extends beyond Stein’s loss. Since Section 4 constitutes a digression

from the central theme of the paper as stated in the title itself, we limit ourselves to loss functions

that either are intimately related to Stein’s loss or have been previously used by Ledoit and Wolf

[27,28].

4.1. Inverse Stein’s loss

The first natural extension is to apply Stein’s loss to the inverse of the covariance matrix, also

called the “precision matrix”. Equation (1.3) of Tsukuma [43] thus defines the loss function

L
SINV
n (�n, S̃n) := LS

n

(
�−1

n , S̃−1
n

)
= 1

p
Tr

(
�nS̃

−1
n

)
− 1

p
log det

(
�nS̃

−1
n

)
− 1.

Its limit is given by the following theorem, whose proof is in Section 12.1 of the supplementary

material Ledoit and Wolf [29].

Theorem 4.1. Under Assumptions 3.1–3.4,

L
SINV
n (�n, S̃n)

a.s.−→
κ∑

k=1

∫ bk

ak

{
x

|1 − c − cxm̆F (x)|2ϕ̃(x)
+ log

[
ϕ̃(x)

]}
dF(x)

−
∫

log(t) dH(t) − 1.

(4.1)

Differentiating the right-hand side of Equation (4.1) with respect to ϕ̃(x) yields an oracle

estimator that is optimal with respect to the Inverse Stein’s loss in large dimensions.

Corollary 4.1. Under Assumptions 3.1–3.4, a covariance matrix estimator S̃n minimizes in the

class of rotation-equivariant estimators described in Definition 2.1 the almost sure limit of the

Inverse Stein’s loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) =
ϕ◦(x), where

∀x ∈ Supp(F ) ϕ◦(x) := x

|1 − c − cxm̆F (x)|2 . (4.2)

4.2. Frobenius loss

Ledoit and Wolf [27,28] use the following loss function based on the squared Frobenius distance:

LF
n (�n, S̃n) := 1

p
Tr

[
(�n − S̃n)

2
]
.
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Its limit is given by the following theorem, whose proof is in Section 12.2 of the supplementary

material Ledoit and Wolf [29].

Theorem 4.2. Under Assumptions 3.1–3.4,

LF
n (�n, S̃n)

a.s.−→
∫

x2 dH(x)

+
κ∑

k=1

{
−2

∫ bk

ak

xϕ̃(x)

|1 − c − cxm̆F (x)|2 dF(x) +
∫ bk

ak

ϕ̃(x)2 dF(x)

}
.

(4.3)

Differentiating the right-hand side of Equation (4.3) with respect to ϕ̃(x) enables us to charac-

terize the set of asymptotically optimal estimators under the Frobenius loss in large dimensions.

Corollary 4.2. Under Assumptions 3.1–3.4, a covariance matrix estimator S̃n minimizes in the

class of rotation-equivariant estimators described in Definition 2.1 the almost sure limit of the

Frobenius loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) =
ϕ◦(x).

To the best of our knowledge, the close relationship between Frobenius loss and Inverse Stein’s

loss had not been observed before.

Both Ledoit and Wolf [27], Section 3.1, and Ledoit and Wolf [28], Section 3, use the Frobenius

loss and the oracle nonlinear shrinkage estimator ϕ◦. But in these two papers the justification

for using this oracle estimator is different (namely, as an approximation to the “finite-sample

optimal” estimator). Therefore, Corollary 4.2 strengthens these two earlier papers by providing

a more formal justification for the oracle estimator they use.

4.3. Inverse Frobenius loss

Ledoit and Wolf [27], Section 3.2, apply the Frobenius loss to the precision matrix:

L
FINV
n (�n, S̃n) := L

F
n

(
�−1

n , S̃−1
n

)
= 1

p
Tr

[(
�−1

n − S̃−1
n

)2]
.

Its limit is given by the following theorem, whose proof is in Section 12.3 of the supplementary

material Ledoit and Wolf [29].

Theorem 4.3. Under Assumptions 3.1–3.4,

L
FINV
n (�n, S̃n)

a.s.−→
∫

dH(x)

x2
+

κ∑

k=1

{
−2

∫ bk

ak

1 − c − 2cx Re[m̆F (x)]
xϕ̃(x)

dF (x)

+
∫ bk

ak

1

ϕ̃(x)2
dF(x)

}
.

(4.4)
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Differentiating the right-hand side of Equation (4.4) with respect to ϕ̃(x) enables us to char-

acterize the set of asymptotically optimal estimators under the Inverse Frobenius loss in large

dimensions.

Corollary 4.3. Under Assumptions 3.1–3.4, a covariance matrix estimator S̃n minimizes in the

class of rotation-equivariant estimators described in Definition 2.1 the almost sure limit of the

Inverse Frobenius loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ),

ϕ̃(x) = ϕ∗(x).

The Inverse Frobenius loss yields the same oracle estimator as Stein’s loss. This surpris-

ing mathematical result shows that a bona fide covariance matrix estimator based on the non-

linear shrinkage function ϕ∗, which we shall obtain in Section 5, can be justified in multiple

ways.

4.4. Symmetrized Stein’s loss

The correspondence between Stein’s loss and Frobenius loss is crossed. The shrinkage func-

tion ϕ∗ should be used to estimate the covariance matrix according to Stein’s loss, and to es-

timate the precision matrix according to Frobenius loss. According to Stein’s loss, the function

ϕ◦ optimally estimates the precision matrix, but according to Frobenius loss, it optimally es-

timates the covariance matrix instead. Thus, if we are interested in estimating the covariance

matrix, but have no strong preference between Stein’s loss and Frobenius loss, should we take

ϕ∗ or ϕ◦? Similarly, if a researcher needs a good estimator of the precision matrix, but has no

opinion on the relative merits of Stein’s loss versus Frobenius loss, should we recommend ϕ◦

or ϕ∗?

In the machine learning literature, loss functions that pay equal attention to the twin problems

of estimating the covariance matrix and estimating its inverse take pride of place. A representative

example is Equation (17.8) of Moakher and Batchelor [33].1 The “Symmetrized Stein’s loss

(function)” is defined as

LSSYM
n (�n, S̃n) := LS

n(�n, S̃n) +LS
n(�−1

n , S̃−1
n )

2
= 1

2p
Tr

(
�−1

n S̃n + �nS̃
−1
n

)
− 1.

This loss function is symmetric in the sense that LSSYM
n (�n, S̃n) = LSSYM

n (�−1
n , S̃−1

n ), and also

in the sense that LSSYM
n (�n, S̃n) = LSSYM

n (S̃n,�n). It is equal to the Jeffreys [21] divergence

between the multivariate normal distribution with zero mean and covariance matrix �n and the

multivariate normal distribution with zero mean and covariance matrix S̃n, rescaled by the factor

1/p. Its limit is given by the following theorem.

1We thank an anonymous referee for bringing this reference to our attention.
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Theorem 4.4. Under Assumptions 3.1–3.4,

L
SSYM
n (�n, S̃n)

a.s.−→ 1

2

κ∑

k=1

∫ bk

ak

1 − c − 2cx Re[m̆F (x)]
x

ϕ̃(x) dF (x)

+ 1

2

κ∑

k=1

∫ bk

ak

x

|1 − c − cxm̆F (x)|2ϕ̃(x)
dF (x) − 1.

(4.5)

The proof follows trivially from Theorems 3.1 and 4.1 and is thus omitted. Differentiating

the right-hand side of Equation (4.5) with respect to ϕ̃(x) enables us to characterize the set of

asymptotically optimal estimators under the Symmetrized Stein’s loss in large dimensions.

Corollary 4.4. Under Assumptions 3.1–3.4, a covariance matrix estimator S̃n minimizes in the

class of rotation-equivariant estimators described in Definition 2.1 the almost sure limit of the

Symmetrized Stein’s loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ),

ϕ̃(x) = ϕ⊛(x), where

∀x ∈ Supp(F ) ϕ⊛(x) :=
√

ϕ∗(x)ϕ◦(x). (4.6)

This nonlinear shrinkage function has not been discovered before. The resulting oracle estima-

tor of the covariance matrix is S⊛
n := Un × Diag(ϕ⊛(λn,1), . . . , ϕ

⊛(λn,p)) × U ′
n. This estimator

is generally attractive because it strikes a balance between the covariance matrix and its inverse,

and also between Stein’s loss and Frobenius loss. Furthermore, Jensen’s inequality guarantees

that ∀x ∈R, ϕ∗(x) < ϕ⊛(x) < ϕ◦(x).

4.5. Synthesis

Section 4 constitutes somewhat of a digression from the central theme of the paper, but we can

take away from it several important points:

1. Given that a key technical innovation of the present paper is the method for obtaining oracle

estimators that are asymptotically optimal with respect to some prespecified loss function,

Section 4 demonstrates that this method can handle a variety of loss functions.

2. This method also strengthens the earlier papers of Ledoit and Wolf [27,28] by providing a

more formal justification for their oracle estimators.

3. The oracle estimator that is optimal with respect to Stein’s loss turns out to be also optimal

with respect to the Inverse Frobenius loss, an unexpected connection. Conversely, the oracle

estimator that is optimal with respect to the Inverse Stein’s loss is also optimal with respect

to the Frobenius loss.

4. The covariance matrix estimator that is optimal with respect to the Symmetrized Stein’s

loss is both new and interesting in that it is equally attentive to both the covariance matrix

and its inverse. Modern analyses such as Moakher and Batchelor’s [33] indicate that this

is a desirable property for loss functions defined on the Riemannian manifold of symmet-

ric positive-definite matrices. To wit, Stein’s loss does not even define a proper notion of
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distance, whereas Stein’s Symmetrized loss is the square of a distance; see Moakher and

Batchelor [33], page 288.

5. Optimal covariance matrix estimation

The procedure for going from an oracle estimator to a bona fide estimator has been developed

by Ledoit and Wolf [27,28]. Here we repeat it for convenience, adapting it to Stein’s loss. The

basic idea is to first obtain a consistent estimator of the eigenvalues of the population covariance

matrix and to then derive from it a consistent estimator of the Stieltjes transform of the limiting

sample spectral distribution.

5.1. The QuEST function

Ledoit and Wolf [28] introduce a nonrandom multivariate function, called the “Quantized Eigen-

values Sampling Transform”, or QuEST for short, which discretizes, or “quantizes”, the relation-

ship between F , H , and c defined in Equations (3.1)–(3.4). For any positive integers n and p,

the QuEST function, denoted by Qn,p , is defined as

Qn,p : [0,∞)p −→ [0,∞)p, (5.1)

t := (t1, . . . , tp)′ �−→ Qn,p(t) :=
(
q1
n,p(t), . . . , q

p
n,p(t)

)′
, (5.2)

where

∀i = 1, . . . , p q i
n,p(t) := p

∫ i/p

(i−1)/p

(
F t

n,p

)−1
(u) du, (5.3)

∀u ∈ [0,1]
(
F t

n,p

)−1
(u) := sup

{
x ∈ R : F t

n,p(x) ≤ u
}
, (5.4)

∀x ∈R F t
n,p(x) := lim

η→0+

1

π

∫ x

−∞
Im

[
mt

n,p(ξ + iη)
]
dξ, (5.5)

and ∀z ∈ C
+ m := mt

n,p(z) is the unique solution in the set

{
m ∈C : −n − p

nz
+ p

n
m ∈ C

+
}

(5.6)

to the equation

m = 1

p

p∑

i=1

1

ti(1 − p
n

− p
n
zm) − z

. (5.7)

It can be seen that Equation (5.5) quantizes Equation (3.4), that Equation (5.6) quantizes Equa-

tion (3.2), and that Equation (5.7) quantizes Equation (3.3). Thus, F t
n,p is the limiting distribution

(function) of sample eigenvalues corresponding to the population spectral distribution (function)



Covariance matrix estimation under Stein’s loss 3809

p−1
∑p

i=1 1[ti ,+∞). Furthermore, by Equation (5.4), (F t
n,p)−1 represents the inverse spectral dis-

tribution function, also known as the “quantile function”. By Equation (5.3), q i
n,p(t) can be in-

terpreted as a ‘smoothed’ version of the (i − 0.5)/p quantile of F t
n,p .

5.2. Consistent estimator of the population eigenvalues

Ledoit and Wolf [28] estimate the eigenvalues of the population covariance matrix by numerically

inverting the QuEST function.

Theorem 5.1. Suppose that Assumptions 3.1–3.3 are satisfied. Define

τ̂n := arg min
t∈(0,∞)p

1

p

p∑

i=1

[
q i
n,p(t) − λn,i

]2
, (5.8)

where λn := (λn,1, . . . , λn,p)′ are the eigenvalues of the sample covariance matrix Sn, and

Qn,p(t) := (q1
n,p(t), . . . , q

p
n,p(t))′ is the nonrandom QuEST function defined in Equations (5.1)–

(5.7); both τ̂n and λn are assumed sorted in nondecreasing order. Let τ̂n,i denote the ith entry

of τ̂n (i = 1, . . . , p), and let τn := (τn,1, . . . , τn,p)′ denote the population covariance matrix

eigenvalues sorted in nondecreasing order. Then

1

p

p∑

i=1

[̂τn,i − τn,i]2 a.s.−→ 0.

The proof is given by Ledoit and Wolf [28], Theorem 2.2. The solution to Equation (5.8)

can be found by standard nonlinear optimization software such as SNOPT™ (Gill, Murray and

Saunders [15]) or the MATLAB™ Optimization Toolbox.

5.3. Asymptotically optimal estimator of the covariance matrix

Recall that, for any t := (t1, . . . , tp)′ ∈ (0,+∞)p , Equations (5.6)–(5.7) define mt
n,p as the Stielt-

jes transform of F t
n,p , the limiting distribution function of sample eigenvalues corresponding to

the population spectral distribution function p−1
∑p

i=1 1[ti ,+∞). The domain of mt
n,p is the strict

upper half of the complex plane, but it can be extended to the real line, since Silverstein and

Choi [39] prove that ∀λ ∈ R, limz∈C+→λ mt
n,p(z) =: m̆t

n,p(λ) exists. An asymptotically optimal

estimator of the covariance matrix can be constructed simply by plugging into Equation (3.7) the

estimator of the population eigenvalues obtained in Equation (5.8). The proof of Theorem 5.2 is

in Section 13 of the supplementary material Ledoit and Wolf [29].
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Theorem 5.2. Under Assumptions 3.1–3.4, the covariance matrix estimator

Ŝ∗
n := UnD̂

∗
nU ′

n where D̂∗
n := Diag

(
ϕ̂∗

n(λn,1), . . . , ϕ̂
∗
n(λn,p)

)

and ∀i = 1, . . . , p ϕ̂∗
n(λn,i) := λn,i

1 − p
n

− 2
p
n
λn,i Re

[
m̆

τ̂n
n,p(λn,i)

]
(5.9)

minimizes in the class of rotation-equivariant estimators described in Definition 2.1 the almost

sure limit (3.5) of Stein’s loss as n and p go to infinity together.

Remark 5.1 (Alternative loss functions). Similarly, plugging the consistent estimator m̆
τ̂n
n,p in

place of the unobservable m̆F in the oracle estimators derived in Section 4 yields bona fide co-

variance matrix estimators that minimize the almost sure limits of their respective loss functions.

In the case of Inverse Stein’s loss and Frobenius loss, the resulting optimal estimator Ŝ◦ is the

same as the estimator defined in Ledoit and Wolf [28]. In the case of Inverse Frobenius loss, the

resulting optimal estimator is Ŝ∗. In the case of Symmetrized Stein’s loss, the resulting optimal

estimator is Ŝ⊛ :=
√

Ŝ∗Ŝ◦. A further study of the estimator Ŝ⊛, involving a comprehensive set

of Monte Carlo simulations to examine finite-sample performance, lies beyond the scope of the

present paper and is left for future research.

Both Stein [41] and the present paper attack the same problem with two very different math-

ematical techniques, so how far apart are the resulting estimators? The answer hinges on the

concept of a “Cauchy principal value” (PV). The convolution of a compactly supported function

g(t) with the Cauchy kernel (t − x)−1 is generally an improper integral due to the singularity at

t = x. However, there is a way to properly define this convolution as

∀x ∈R G(x) := PV

∫ ∞

−∞

g(t)

t − x
dt := lim

εց0

[∫ x−ε

−∞

g(t)

t − x
dt +

∫ ∞

x+ε

g(t)

t − x
dt

]
.

Henrici [18], pages 259–262, is a useful reference for principal values. Stein’s shrinkage function

and ours – Equations (2.3) and (5.9), respectively – can be expressed as

∀i = 1, . . . , p ϕ∗
n(λn,i) = λn,i

1 − p−1
n

+ 2
p
n

× PV
∫ ∞
−∞

λn,i

λn,i−λ
dFn(λ)

and

∀i = 1, . . . , p ϕ̂∗
n(λn,i) = λn,i

1 − p
n

+ 2
p
n

× PV
∫ ∞
−∞

λn,i

λn,i−λ
dF

τ̂n
n,p(λ)

.

The only material difference is that the step function Fn is replaced by the smooth function

F
τ̂n
n,p . It is reassuring that two approaches using such unrelated mathematical techniques generate

concordant results.

Both Fn and F
τ̂n
n,p estimate the limiting sample spectral distribution F , but not in the same

way: the former is the “naïve” estimator, while the latter is the product of cutting-edge research

in random matrix theory. Convolving the Cauchy kernel with a step function such as Fn is dan-

gerously unstable when two consecutive steps happen to be too close to each other. This is why
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Stein’s original estimator needs to be regularized ex post through the isotonizing algorithm. By

contrast, our estimator of the sample spectral distribution is sufficiently regular ex ante to ad-

mit convolution with the Cauchy kernel without creating instability. This is why our approach is

more elegant in theory, and also has the potential to be more accurate in practice, as Monte Carlo

simulations in Section 8 will confirm.

On a more anecdotal note, the shrinkage function of the minimax estimator in Theorem 3.1 of

Dey and Srinivasan [12] can also be expressed in nearly identical format as

∀i = 1, . . . , p ϕM
n (λn,i) = λn,i

1 − p+1
n

+ 2
p
n

× Fn(λn,i)
. (5.10)

We can see that the overall pattern is surprisingly similar, except for the fact that the empirical

sample spectral distribution Fn(x) acts as a substitute for the function x �→ PV
∫

x
x−λ

dF
τ̂n
n,p(x).

The only evident common points are that both functions take the value zero at x = 0, and they

both converge to the limit one as x goes to infinity.

5.4. Comparison with other approaches from decision theory

Given that we claim our estimator is “decision-theoretically optimal” in a sense that is not com-

pletely standard, it is important to compare and constrast our approach with the rest of the liter-

ature on decision-theoretical estimation of the covariance matrix.

5.4.1. Commonalities

The first common point is that our approach is firmly rooted in decision theory in the sense that

the decision (choice of estimator) depends on the loss function: Stein’s Loss, Stein’s Inverse

Loss, and Stein’s Symmetrized Loss all lead to different estimators. This has always been a

central feature of decision-theoretic estimation, and we are no exception. Thus, the estimator

given in Theorem 5.2 is more properly referred to as “decision-theoretically optimal with respect

to Stein’s Loss”.

The second common point is that, in keeping with a long tradition in decision-theoretic estima-

tion of the covariance matrix, we consider only rotation-equivariant estimators that are obtained

by manipulating the sample eigenvalues, while preserving the sample eigenvectors. This manip-

ulation is operated by what we call the shrinkage function ϕ̃n and, for fixed n, is unconstrained.

Up to this point, any reader steeped in decision-theoretic estimation of the covariance matrix

is still in familiar territory.

5.4.2. Key difference

The key difference is that we do not work in finite samples but in the large-dimensional asymp-

totic limit, where the ratio of dimension to sample size converges to some limit c > 0. This

approach has a number of consequences that need to be spelled out.

First, manipulating the covariance matrix itself becomes difficult, since its dimension keeps

changing and goes to infinity. This is why – instead of working directly with the initial object of
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interest, the covariance matrix – we work with its eigenvalues and, more precisely, with limiting

spectral distributions. Doing so requires spectral distributions to have well-defined, nonstochastic

limits. In the standard setup of random matrix theory, which we adopt, the spectral distribution of

the population covariance matrix converges to a well-defined, nonstochastic limit H ; and so does

the spectral distribution of the sample covariance matrix. Here the only restriction is that we limit

ourselves (for mathematical reasons) to population covariance matrices whose condition number

does not explode with the dimension. This point is discussed in depth below Assumption 3.2.

Second, manipulating an estimator of the covariance matrix also becomes difficult, for the

same reasons as above. This is why we introduce in Assumption 3.4 the notion of a limiting

shrinkage function ϕ̃: It guarantees that the spectral distribution of the shrunk covariance matrix

also has a well-defined, nonstochastic limit. It would be hard to see how we could proceed other-

wise. The only restrictions are that the nonlinear shrinkage function must remain bounded, that

the convergence must be uniform, and that the limiting shrinkage function must be continuously

differentiable. Making these relatively reasonable technical assumptions is what enables us to

derive sweeping results.

5.4.3. Relation to minimax

A pervasive concept in decision theory is that of a minimax estimator. This means that the es-

timator ϕ̃ minimizes the worst-case risk supH MS
c (H, ϕ̃) in the class of estimators considered.

Such an approach is justified because in general the risk cannot be directly minimized, since it

depends on the unknown parameter itself (which, in this case, is H ).

Our situation here is completely different: H can be estimated consistently and hence, asymp-

totically, the risk can be directly minimized. Indeed this is precisely what Theorem 5.2 says.

Thus, it would be misleading to describe our estimator as minimax: A more accurate characteri-

zation is that it is pointwise optimal for any H , or uniformly better for all H . This is, obviously, a

stronger notion of decision-theoretic optimality than minimax, and one that is generally unattain-

able in finite samples.

6. Extension to the singular case

So far, we have only considered the case p < n, as does Stein [41,42]. We do not know whether

Stein was uninterested in the singular case p > n or whether he could not solve the problem of

how to then shrink the zero eigenvalues of the sample covariance matrix. Either way, another key

contribution of the present paper is that we can also handle this challenging case. Assumption 3.1

now has to be modified as follows.

Assumption 6.1 (Dimension). Let n denote the sample size and p := p(n) the number of vari-

ables. It is assumed that the ratio p/n converges, as n → ∞, to a limit c ∈ (1,∞) called the

“limiting concentration”. Furthermore, there exists a compact interval included in (1,∞) that

contains p/n for all n large enough.

Under Assumption 6.1, F is a mixture distribution with mass (c−1)/c at zero and a continuous

component whose compact support is bounded away from zero; for example, see Ledoit and Wolf
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[28], Section 2.1. Define

∀x ∈ R F(x) := (1 − c)1[0,∞)(x) + cF (x),

so that F corresponds to the continuous component of F , normalized to be a proper distribution

(function).

Now Assumptions 3.2, 3.3, and 6.1 together with Bai and Silverstein [2], Theorem 1.1, imply

that the support of F , denoted by Supp(F ), is the union of a finite number κ ≥ 1 of compact

intervals: Supp(F ) =
⋃κ

k=1[ak, bk], where 0 < a1 < b1 < · · · < aκ < bκ < ∞. Furthermore,

Supp(F ) = {0} ∪ Supp(F ). Note that with this notation, there is no further need to modify As-

sumption 3.4.

As a first step in deriving the bona fide estimator, we establish the almost sure existence of the

limit of Stein’s loss in the case p > n.

Theorem 6.1. Under Assumptions 3.2–3.4 and 6.1,

LS
n(�n, S̃n)

a.s.−→
κ∑

k=1

∫ bk

ak

{
1 − c − 2cx Re[m̆F (x)]

x
ϕ̃(x) − log

[
ϕ̃(x)

]}
dF(x)

+
∫

log(t) dH(t)

+ c − 1

c

{[
c

c − 1
· m̆H (0) − m̆F (0)

]
ϕ̃(0) − log

[
ϕ̃(0)

]}
− 1.

(6.1)

The proof is in Section 14.1 of the supplementary material Ledoit and Wolf [29]. As a second

step, Theorem 6.1 enables us to characterize the set of asymptotically optimal estimators under

Stein’s loss in large dimensions in the case p > n.

Corollary 6.1. Suppose Assumptions 3.2–3.4 and 6.1 hold.

(i) A covariance matrix estimator S̃n minimizes in the class of rotation-equivariant estimators

described in Definition 2.1 the almost sure limit (6.1) of Stein’s loss if and only if its

limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) = ϕ∗(x), where

ϕ∗(0) :=
(

c

c − 1
· m̆H (0) − m̆F (0)

)−1

,

and ∀x ∈ Supp(F ) ϕ∗(x) := x

1 − c − 2cx Re[m̆F (x)] .
(6.2)

The resulting oracle estimator of the covariance matrix is

S∗
n := Un × Diag

(
ϕ∗(λn,1), . . . , ϕ

∗(λn,p)
)
× U ′

n.
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(ii) The minimum of the almost sure limit (6.1) of Stein’s loss is equal to

lim
p,n→c∞

LS
n

(
�n, S

∗
n

)
=

∫
log(t) dH(t)

−
κ∑

k=1

∫ bk

ak

log

[
x

1 − c − 2cx Re[m̆F (x)]

]
dF(x)

+ c − 1

c
log

[
c

c − 1
· m̆H (0) − m̆F (0)

]
.

(6.3)

Equation (6.2) follows immediately from Theorem 6.1 by differentiating the right-hand side

of Equation (6.1) with respect to ϕ̃(x). Equation (6.3) obtains by plugging Equation (6.2) into

Equation (6.1) and simplifying.

As a third step, the procedure for going from the oracle estimator to the bona fide estimator is

similar to the case p < n. But we also have to find strongly consistent estimators of the quantities

m̆H (0) and m̆F (0) which did not appear in the oracle shrinkage function in the case p < n.

Let τ̂n := (̂τn,1, . . . , τ̂n,p)′ denote the vector of estimated population eigenvalues defined as in

Theorem 5.1. A strongly consistent estimator of m̆H (0) is given by

̂̆mH (0) := 1

p

p∑

i=1

1

τ̂n,i

. (6.4)

As explained in Ledoit and Wolf [28], Section 3.2.2, a strongly consistent estimator of the

quantity m̆F (0) is the unique solution m =: ̂̆mF (0) in (0,∞) to the equation

m =
[

1

n

p∑

i=1

τ̂n,i

1 + τ̂n,im

]−1

. (6.5)

Theorem 6.2. Under Assumptions 3.2–3.4 and 6.1, the covariance matrix estimator

Ŝ∗
n := UnD̂

∗
nU ′

n where D̂∗
n := Diag

(
ϕ̂∗

n(λn,1), . . . , ϕ̂
∗
n(λn,p)

)
,

∀i = 1, . . . , p − n ϕ̂∗
n(λn,i) :=

(
p/n

p/n − 1
· ̂̆mH (0) − ̂̆mF (0)

)−1

, (6.6)

and ∀i = p − n + 1, . . . , p ϕ̂∗
n(λn,i) := λn,i

1 − p
n

− 2
p
n
λn,i Re

[
m̆

τ̂n
n,p(λn,i)

] (6.7)

minimizes in the class of rotation-equivariant estimators described in Definition 2.1 the almost

sure limit (6.1) of Stein’s loss.

The proof is in Section 14.2 of the supplementary material Ledoit and Wolf [29].
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Remark 6.1 (Case p = n). We have treated the cases p < n and p > n. The remaining case

p = n cannot be treated theoretically, since a large number of fundamental results from the

RMT literature used in our proofs rule out the case c = 1, where c is recalled to be the limiting

concentration; see Assumptions 3.1 and 6.1. Nevertheless, we can address the case p = n in

Monte Carlo simulations; see Figure 2.

7. The arrow model

In common with a large portion of the existing literature, Assumption 3.1 requires the largest

population eigenvalue to remain bounded. There are some applications where this may be unre-

alistic. In this section, we investigate what happens when the largest eigenvalue goes to infinity

at the same rate as the dimension and the sample size, while the bulk of the eigenvalues remain

bounded.

7.1. Specification

In keeping with standard nomenclature, we call the eigenvalues that remain bounded the “bulk”.

To distinguish our model from Johnstone’s [22] “spike” model, where the largest eigenvalues

remains bounded, we call the eigenvalues that shoot up to infinity “arrows”. Therefore, Assump-

tion 3.2.d becomes:

Assumption 3.2.e (Arrow model). There exists a compact interval [h,h] ⊂ (0,∞) that contains

the set {τn,1, . . . , τn,p−k} for all n large enough, where k is a fixed integer. There exist k constants

(βj )j=1,...,k with 0 < β1 < · · · < βk s.t. ∀j = 1, . . . , k, τn,p−k+j ∼ βjp.

We consider only values of n and p large enough so that the ordering of the arrow eigenvalues

(τn,p−k+j )j=1,...,k matches the ordering of the slopes (βj )j=1,...,k .

This is challenging because the papers by Yin, Bai and Krishnaiah [45], Bai, Silverstein and

Yin [5], Johnstone [22], Baik, Ben Arous and Péché [6], and Baik and Silverstein [7] that study

the asymptotic behavior of the largest sample eigenvalue all assume it to be bounded. Given

the dearth of background results applicable to the arrow model, this section is (by necessity)

exploratory in nature. Until the underlying probability theory literature has caught up, the ro-

bustness of Theorem 5.2 against Assumption 3.2.e must remain a conjecture.

Nevertheless, we can make some significant inroads by resorting to alternative methods such

as the Weyl inequalities and perturbation theory. Given that this investigation plays only a sup-

porting role relative to the main contributions of the paper, and that even the most basic properties

have to be established from scratch, we restrict ourselves to the single-arrow case: k = 1.

Assumption 3.2.f (Single-arrow model). There exist a compact interval [h,h] ⊂ (0,∞) that

contains the set {τn,1, . . . , τn,p−1} for all n large enough, and a constant β1 > 0 s.t. τn,p ∼ β1p.

This section presents a collection of propositions that, together, indicate that the single-arrow

model is no particular cause for concern. The basic intuition is that the arrow sticks out like a
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sore thumb in any data set of sufficient size. Therefore, it is easy to detect its presence, separate

it from the bulk, measure its variability (eigenvalue), find its orientation (eigenvector), apply an

appropriate amount of shrinkage to it, partial it out, and then deal with the bulk as usual. We

present preliminary evidence suggesting that our proposed estimator Ŝ∗
n does all of the above

automatically.

7.2. Spectral separation

All the proofs from this section are in Section 15 of the supplementary material Ledoit and Wolf

[29]. Our first proposition shows that the bulk sample eigenvalues (λn,1, . . . , λn,p−1) remain

bounded, while the arrow sample eigenvalue λn,p goes to infinity.

Proposition 7.1. Under Assumptions 3.1, 3.2.a–c, 3.2.f and 3.3, λn,p−1 remains bounded a.s.

for large n, and λn,p
a.s.−→ ∞.

It means that we observe what RMT calls “spectral separation” between the bulk and the

arrow. The size of the gap grows arbitrarily large. The good news is that the QuEST function

automatically follows the same pattern of spectral separation.

Proposition 7.2. Under Assumptions 3.1, 3.2.a–c and 3.2.f, q
p−1
n,p (τn) remains bounded and

q
p
n,p(τn) → ∞.

The similarity between Proposition 7.1 and Proposition 7.2 gives reassurance about the ability

of the QuEST function (5.2) to separate the arrow from the bulk.

7.3. Sample arrow eigenvalue

Our next proposition shows that the arrow sample eigenvalue is asymptotically equivalent to its

population counterpart.

Proposition 7.3. Under Assumptions 3.1, 3.2.a–c, 3.2.f and 3.3, λn,p
a.s.∼ τn,p .

It is surprising that the sample arrow eigenvalue is asymptotically equivalent to its population

counterpart because it is so different from what happens in the bulk, where there is a considerable

amount of deformation between sample and population eigenvalues. As it turns out, the QuEST

function automatically refrains from deforming the arrow eigenvalue, as demonstrated by the

following proposition.

Proposition 7.4. Under Assumptions 3.1, 3.2.a–c and 3.2.f, q
p
n,p(τn) ∼ τn,p .

The similarity between Proposition 7.3 and Proposition 7.4 gives reassurance about the ability

of the QuEST function to detect the location of the arrow.
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7.4. Shrinking the arrow eigenvalue

Next, we turn to the optimal shrinkage formula. It is not trivial to define what “optimal” means

for the arrow because Theorem 3.1 does not take into account finite-rank perturbations. It is

necessary to go back to the finite-sample framework of Section 2. In finite samples, the optimal

nonlinear shrinkage formula is given by the following lemma.

Lemma 7.1. Under Assumptions 2.1–2.3, the covariance matrix estimator in the rotation-

equivariant class of Definition 2.1 that minimizes Stein’s loss in finite samples is

SFS
n := UnD

FS
n U ′

n, where DFS
n := Diag

(
1

u′
n,1�

−1
n un,1

, . . . ,
1

u′
n,p�−1

n un,p

)
. (7.1)

This finite-sample optimal estimator cannot be constructed in practice because it depends on

the inverse of the population covariance matrix. But it shows that the optimal nonlinear shrinkage

of the sample eigenvalues transforms λn,p into 1/u′
n,p�−1

n un,p . The limit of this quantity in an

arrow model under large-dimensional asymptotics is given by the following proposition.

Proposition 7.5. Under Assumptions 3.1, 3.2.a–c, 3.2.f and 3.3,

1

u′
n,p�−1

n un,p

a.s.∼ τn,p

1 + c
. (7.2)

This is also a surprising result: given that the sample arrow eigenvalue is close to the population

arrow eigenvalue, one might have expected that the optimally shrunk arrow eigenvalue would be

close to it also. But it is in fact smaller by a factor 1 + c. This poses a stern test for our proposed

covariance matrix estimator: will the optimal nonlinear shrinkage formula recognize the need to

apply a divisor, and if so will it find the correct arrow shrinkage coefficient of 1 + c? The next

proposition answers both questions in the affirmative.

Proposition 7.6. Under Assumptions 3.1, 3.2.a–c, 3.2.f and 3.3,

λn,p

1 − p
n

− 2
p
n
λn,p Re

[
m̆

τn
n,p(λn,p)

] a.s.∼ τn,p

1 + c
. (7.3)

The similarity between Proposition 7.5 and Proposition 7.6 gives reassurance about the ability

of the nonlinear shrinkage formula in Corollary 3.1.a to shrink the arrow optimally.

7.5. Wrap-up

What happens at the arrow level has vanishingly small impact on what happens in the bulk

because: (i) the gap between the group of bulk eigenvalues and the arrow eigenvalue widens
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up to infinity; (ii) the magnitude of the influence between eigenvalues is controlled by the

mathematical structure of the Stieltjes transform, making it inversely proportional to the

distance between them; and (iii) the proportion of eigenvalues in the bulk converges to

one.

The bottom line is that the presence of an arrow should not pose any special challenge to our

approach for the following reasons:

• spectral decomposition separates the arrow from the bulk due to its signature variability;

• the QuEST function recognizes that sample and population arrow eigenvalues are close;

• our nonlinear shrinkage formula correctly divides the arrow sample eigenvalue by 1 + c;

• and nonlinear shrinkage of bulk sample eigenvalues remains largely unaffected.

This analysis does not pretend to tie up all the loose ends, but we believe that the accumulated

mathematical evidence is sufficient to alleviate potential concerns on this front. To get to the

bottom of this matter would require a comprehensive overhaul of the underlying probability

theory literature, which obviously lies beyond the scope of the present paper. The theoretical

results presented in this section lay the foundation for more in-depth studies of the arrow model,

and go a long way towards explaining why our nonlinear shrinkage estimator performs well

numerically in the arrow model simulated in Section 8.

8. Monte Carlo simulations

For compactness of notation, in this section, “Stein’s estimator” stands for “Stein’s isotonized

estimator” always.

The isotonized shrinkage estimator of Stein [42] is widely acknowledged to have very good

performance in Monte Carlo simulations, which compensates for theoretical limitations such

as the recourse to an ad hoc isotonizing algorithm, minimizing an unbiased estimator of risk

instead of the risk itself, and neglecting the derivatives term in Equation (2.2). The article by

Lin and Perlman [30] is a prime example of the success of Stein’s estimator in Monte Carlo

simulations.

We report a set of Monte Carlo simulations comparing the nonlinear shrinkage estimator devel-

oped in Theorem 5.2 with Stein’s estimator. There exist a host of alternative rotation-equivariant

shrinkage estimators of a covariance matrix; see the literature review in the introduction. In-

cluding all of them in the Monte Carlo simulations is certainly beyond the scope of the paper.

Nonetheless, we do include the sample covariance matrix and the linear shrinkage estimator of

Ledoit and Wolf [26]; we also include the minimax estimator of Dey and Srinivasan [12], Theo-

rem 3.1.

The chosen metric is the Percentage Relative Improvement in Average Loss (PRIAL) relative

to Stein’s estimator. For a generic estimator �̂n, define

PRIAL
(
SST

n , �̂n

)
:=

[
1 − RS

n(�n, �̂n)

RS
n(�n, S

ST
n )

]
× 100%.
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Thus PRIAL(SST
n , SST

n ) = 0% and PRIAL(SST
n ,�n) = 100% by construction. The quantity that

we report is PRIAL(SST
n , �̂n), where the empirical risks of SST

n and �̂n are computed as averages

across 1000 Monte Carlo simulations.

Unless stated otherwise, the ith population eigenvalue is equal to τn,i := H−1((i − 0.5)/p)

(i = 1, . . . , p), where H is the limiting population spectral distribution, and the distribution of

the random variates comprising the n × p data matrix Xn is Gaussian.

Our numerical experiments are built around a ‘baseline’ scenario and we vary different design

elements in turn. In the baseline case, p = 100, n = 200, and H is the distribution of 1 + W ,

where W ∼ Beta(2,5). This distribution is right-skewed, meaning that there are a lot of small

eigenvalues and a few large ones, which is representative of many practically relevant situations;

see the solid line in Figure 4 below. In this scenario, the PRIAL of our new nonlinear shrinkage

estimator relative to Stein’s is 43%.

Convergence

First, we vary the matrix dimension p from p = 30 to p = 200 while keeping the concentration

ratio p/n fixed at the value 1/2. The results are displayed in Figure 1. The minimax estimator and

the sample covariance matrix fail to beat Stein’s estimator. Both linear and nonlinear shrinkage

improve over Stein; the improvement is strong across the board, and stronger in small-to-medium

dimensions.

Figure 1. Evolution of the PRIAL of various estimators relative to Stein’s estimator as matrix dimension

and sample size go to infinity together. The left panel shows all the results, whereas the right panel zooms

in on positive improvements for better visual clarity.
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Figure 2. PRIAL of four different estimators relative to Stein’s estimator as a function of the concentration

ratio p/n. The left panel shows all the results, whereas the right panel zooms in on positive improvements

for better visual clarity.

Concentration

Second, we vary the concentration (ratio) from p/n = 0.05 to p/n = 1.0 while keeping the

product p × n constant at the value 20 000. The results are displayed in Figure 2. Once again,

minimax performs better than the sample covariance matrix, yet worse than Stein’s estimator.

Both linear and nonlinear shrinkage improve over Stein; the improvement is good across the

board and stronger when the matrix dimension is close to the sample size. In particular, nonlin-

ear shrinkage can handle the case p/n = 1 even though it is not covered by the mathematical

treatment; see Remark 6.1.

Condition number

Third, we vary the condition number of the population covariance matrix. We do this by taking H

to be the distribution of a + (2 − a)W , where W ∼ Beta(2,5). Across all values of a ∈ [0.01,2],
the upper bound of the support of H remains constant at the value 2 while the lower bound of

the support is equal to a. Consequently, the condition number decreases in a from 32 to 1. The

results are displayed in Figure 3. The minimax estimator and the sample covariance matrix again

fail to beat Stein’s estimator. The improvement delivered by nonlinear shrinkage is always strictly

positive and increases as the population covariance matrix becomes better conditioned. Linear

shrinkage always beats the sample covariance matrix but has otherwise mixed results, possibly

due to the fact that it is optimized with respect to the Frobenius loss instead of Stein’s loss.
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Figure 3. PRIAL of four estimators relative to Stein’s estimator across various condition numbers. The left

panel shows all the results, whereas the right panel zooms in on the range of PRIALs between ±100% for

better visual clarity.

Shape

Fourth, we vary the shape of the distribution of the population eigenvalues. We take H to be

the distribution of 1 + W , where W ∼ Beta(α,β) for various pairs of parameters (α,β). The

corresponding densities are displayed in Figure 4. The results are presented in Figure 5. To

preserve the clarity of the picture, we only report the PRIAL of the nonlinear shrinkage estimator;

but the other results are in line with Figure 1. There is no obvious pattern; the improvement is

good across all distribution shapes and the baseline case (α,β) = (2,5) is neither the best nor

the worst.

Clustered eigenvalues

Fifth, we consider a different type of distribution for the population eigenvalues: a discrete dis-

tribution. More specifically, we assume that the population covariance matrix has 20% of its

eigenvalues equal to 1, 40% equal to 3 and 40% equal to 10. This is a particularly interesting

and difficult example introduced and analyzed in detail by Bai and Silverstein [2]; in particular,

it produces highly nonlinear patterns. As in Figures 1 and 4, we vary the matrix dimension p

from p = 30 to p = 200 while keeping the concentration ratio p/n fixed at the value 1/2. The

results are displayed in Figure 6. Nonlinear shrinkage improves over Stein for all dimensions,

though not by much. The other estimators are worse than Stein for all dimensions. Linear shrink-

age is at a disadvantage in this setup due to the highly nonlinear nature of the optimal shrinkage

transformation.
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Figure 4. Densities of various shifted Beta distributions. Note that the density of Beta(β,α) is just the

mirror image (around the mid point of the support) of the density of Beta(α,β).

Figure 5. PRIAL of the nonlinear shrinkage estimator relative to Stein’s estimator for various shapes of

the population spectral distribution.
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Figure 6. Evolution of the PRIAL of various estimators relative to Stein’s estimator as matrix dimension

and sample size go to infinity together. The limiting population spectral distribution is discrete.

Non-normality

Sixth, we vary the distribution of the variates Xn. Beyond the (standard) normal distribution with

kurtosis 0, we also consider the coin-toss Bernoulli distribution, which is platykurtic with kurto-

sis −2, and the (standard) Laplace distribution, which is leptokurtic with kurtosis 3. The results

are presented in Table 1. One can see that the results in the normal case carry over qualitatively

to the non-normal cases.

Singular case with fixed concentration ratio

Seventh, we study the challenging case p > n where the sample covariance matrix is singular and

Stein’s estimator is not defined. We set the concentration ratio c = p/n equal to two, take the

same distribution for H as in the baseline case, and simulate Gaussian variates. The dimension

ranges from p = 30 to p = 400. The benchmark is the minimum of the almost sure limit of

Table 1. PRIAL for different distributions of the variates

Distribution Nonlinear Linear Minimax Sample

Normal 43% 46% −983% −2210%

Bernoulli 42% 43% −1020% −2307%

Laplace 44% 52% −889% −1980%
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Figure 7. Stein’s loss for the linear and nonlinear shrinkage estimators when dimension exceeds sample

size. The benchmark is the minimum of the limit of Stein’s loss among rotation-equivariant estimators.

Stein’s loss in the class of nonlinear shrinkage estimators; see Equation (6.3). For this choice of

H and c, the minimum is equal to 0.007232385 (evaluated numerically). The average loss across

1000 Monte Carlo simulations for our nonlinear shrinkage estimator and for linear shrinkage is

displayed in Figure 7. These results confirm that our nonlinear shrinkage estimator minimizes

Stein’s loss asymptotically even in the difficult case where variables outnumber observations.

The loss of the linear shrinkage estimator is slightly higher. Due to the fact that p > n, Stein’s

and the minimax estimator are not defined, and the loss of the sample covariance matrix is not

defined either.

Singular case with fixed matrix dimension

In order to further study the singular case, we fix the matrix dimension p at a high number, in

this case p = 1000, and let the sample size n vary from n = 100 to n = 1000.2 We take the same

distribution for H as in the baseline scenario and simulate Gaussian variates. The concentration

ratio varies from c = 10 to c = 1. The average loss across 1000 Monte Carlo simulations for

our nonlinear shrinkage estimator and for linear shrinkage is displayed in Figure 8. The loss

of the linear shrinkage estimator is higher than the loss of our nonlinear shrinkage estimator,

especially for large concentrations. Since p ≥ n, Stein’s estimator and the minimax estimator are

not defined, and the loss of the sample covariance matrix is not defined either.

2We thank an anonymous referee for suggesting this numerical experiment.
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Figure 8. Stein’s loss for the linear and nonlinear shrinkage estimators in the singular case with fixed di-

mension. The benchmark is the minimum of the limit of Stein’s loss among rotation-equivariant estimators.

Arrow model

Finally, we study the performance of our nonlinear shrinkage estimator in the case where

the largest population eigenvalue is of order n, in violation of Assumption 3.2.d. Inspired

by a factor model where all pairs of variables have 50% correlation and all variables have

unit standard deviation, and by the arrow model defined by Assumption 3.2.f, we set τn,p

equal to 1 + 0.5(p − 1). The other eigenvalues are set as per the baseline scenario. Thus,

τn := (H−1(0.5/(p − 1)), . . . ,H−1((p − 1.5)/(p − 1)),1 + 0.5(p − 1))′, where H is the dis-

tribution of 1 + W , and W ∼ Beta(2,5). The dimension ranges from p = 30 to p = 200, and

the concentration ratio p/n is fixed at the value 1/2. The results are displayed in Figure 9. Our

nonlinear shrinkage estimator still convincingly dominates Stein’s estimator, although Assump-

tion 3.2.d is violated; none of the other estimators can beat Stein.

Overall assessment

We have conducted an extensive set of Monte Carlo simulatons. To start with the obvious, both

the sample covariance matrix and the minimax estimator perform universally worse than the

reference estimator of Stein [41,42], often with PRIALs in the −1000% zone.

More intriguing is the competition between Stein’s estimator and linear shrinkage. In theory,

this setup should favor Stein because linear shrinkage is so much simpler (by glancing over non-

linearities) and minimizes the Frobenius loss instead of Stein’s loss. In practice, linear shrinkage
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Figure 9. PRIAL of the new nonlinear shrinkage estimator relative to Stein’s estimator when the top eigen-

value goes to infinity. The left panel shows all the results above −20 000%, whereas the right panel zooms

in on the results above 0% for better visual clarity.

still beats Stein across a wide variety of situations, often by a substantial margin; for example, see

Figures 1 and 2. Conversely, Stein’s estimator improves over linear shrinkage in other situations

where nonlinear effects are more prominent; for example, see Figures 6 and 9. Thus, we witness

the emergence of two different regimes.

How does nonlinear shrinkage perform? In the regime where linear shrinkage soundly beats

Stein, nonlinear shrinkage also improves over Stein by a similarly substantial margin. In

the other regime where Stein beats linear shrinkage, nonlinear shrinkage always dominates

Stein. Thus, nonlinear shrinkage can be said to combine the best of Stein and linear shrink-

age.

9. Empirical application

The goal of this section is to examine the out-of-sample properties of Markowitz portfolios based

on various covariance matrix estimators.

9.1. Data and general portfolio-formation rules

We download daily data from the Center for Research in Security Prices (CRSP) starting in

01/01/1980 and ending in 12/31/2015. For simplicity, we adopt the common convention that

21 consecutive trading days constitute one ‘month’. The out-of-sample period ranges from
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01/08/1986 through 12/31/2015, resulting in a total of 360 months (or 7560 days). All portfo-

lios are updated monthly.3 We denote the investment dates by h = 1, . . . ,360. At any investment

date h, a covariance matrix is estimated using the most recent n = 252 daily returns, which

roughly corresponds to using one year of past data.

We consider the following portfolio sizes: p ∈ {50,100,150,200,250}. For a given combina-

tion (h,p), the investment universe is obtained as follows. We find the set of stocks that have a

complete return history over the most recent n = 252 days as well as a complete return ‘future’

over the next 21 days.4 We then look for possible pairs of highly correlated stocks, that is, pairs

of stocks that returns with a sample correlation exceeding 0.95 over the past 252 days. With

such pairs, if they should exist, we remove the stock with the lower volume of the two on in-

vestment date h.5 Of the remaining set of stocks, we then pick the largest p stocks (as measured

by their market capitalization on investment date h) as our investment universe. In this way, the

investment universe changes slowly from one investment date to the next.

9.2. Global minimum variance portfolio

We consider the problem of estimating the global minimum variance (GMV) portfolio, in the

absence of short-sales constraints. The problem is formulated as

min
w

w′�w (9.1)

subject to w′
1 = 1, (9.2)

where 1 denotes a vector of ones of dimension p × 1. It has the analytical solution

w = �−1
1

1′�−11
. (9.3)

The natural strategy in practice is to replace the unknown � by an estimator �̂ in formula (9.3),

yielding a feasible portfolio

ŵ := �̂−1
1

1′�̂−11
. (9.4)

Estimating the GMV portfolio is a clean problem in terms of evaluating the quality of a covari-

ance matrix estimator, since it abstracts from having to estimate the vector of expected returns

at the same time. In addition, researchers have established that estimated GMV portfolios have

3Monthly updating is common practice to avoid an unreasonable amount of turnover and thus transaction costs. During

a month, from one day to the next, we hold number of shares fixed rather than portfolio weights; in this way, there are no

transactions at all during a month.
4The latter, forward-looking restriction is not a feasible one in real life but is commonly applied in the related finance

literature on the out-of-sample evaluation of portfolios.
5The reason is that we do not want to include highly similar stocks.
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desirable out-of-sample properties not only in terms of risk but also in terms of reward-to-risk

(that is, in terms of the information ratio); for example, see Haugen and Baker [17], Jagannathan

and Ma [19], and Nielsen and Aylursubramanian [35]. As a result, such portfolios have become

an addition to the large array of products sold by the mutual-fund industry. The following six

portfolios are included in the study.

1/N : the equal-weighted portfolio. This portfolio is a standard benchmark and has been pro-

moted by DeMiguel, Garlappi and Uppal [11], among others. This portfolio can actually seen

as a special case of portfolio (9.4), where the ‘estimator’ �̂ is simply the identity matrix.

Sample: the portfolio (9.4), where the estimator �̂ is the sample covariance matrix.

Stein: the portfolio (9.4), where the estimator �̂ is Stein’s estimator.

Minimax: the portfolio (9.4), where the estimator �̂ is from Dey and Srinivasan [12].

Lin: the portfolio (9.4), where the estimator �̂ is the estimator of Ledoit and Wolf [26].

NonLin: the portfolio (9.4), where the estimator �̂ is the estimator of Theorem 5.2.

We report the following three out-of-sample performance measures for each scenario.

AV: We compute the average of the 7560 out-of-sample log returns and then multiply by 252 in

order to annualize.

SD: We compute the standard deviation of the 7560 out-of-sample log returns and then multiply

by
√

252 in order to annualize.

IR: We compute the (annualized) information ratio as the ratio AV/SD.6

Our stance is that in the context of the GMV portfolio, the most important performance mea-

sure is the out-of-sample standard deviation, SD. The true (but unfeasible) GMV portfolio is

given by (9.3). It is designed to minimize the variance (and thus the standard deviation) rather

than to maximize the expected return or the information ratio. Therefore, any portfolio that im-

plements the GMV portfolio should be primarily evaluated by how successfully it achieves this

goal. A high out-of-sample average return, AV, and a high out-of-sample information ratio, IR,

are naturally also desirable, but should be considered of secondary importance from the point of

view of evaluating the quality of a covariance matrix estimator.

The results are presented in Table 2 and can be summarized as follows; unless stated otherwise,

the findings are with respect to the standard deviation as performance measure.

• All ‘sophisticated’ portfolios outperform the ‘naïve’ 1/N portfolio for p ≤ 200. But for

p = 250, Sample, Stein, and Minimax break down and underperform 1/N ; on the other

hand, Lin and NonLin continue to outperform 1/N .

• NonLin is uniformly best. For p ≤ 200, Stein is second-best and Lin is third-best; on the

other hand, for p = 250, Lin is second-best.

• In terms of the information ratio, NonLin is best followed by Lin and Stein.

6This version of the information ratio, which simply uses zero as the benchmark, is widely used in the mutual fund

industry.
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Table 2. Annualized performance measures (in percent) for various estimators of the GMV portfolio. AV

stands for average; SD stands for standard deviation; and IR stands for information ratio. All measures are

based on 7560 daily out-of-sample returns from 01/08/1986 through 12/31/2015. In the rows labeled SD,

the lowest number appears in bold face

Period: 01/08/1986–12/31/2015

1/N Sample Stein Minimax Lin NonLin

p = 50

AV 11.87 9.16 9.32 9.32 9.34 9.28

SD 22.78 15.06 14.61 14.71 14.63 14.58

IR 0.52 0.61 0.64 0.64 0.64 0.64

p = 100

AV 12.10 8.52 9.38 9.08 9.20 9.39

SD 21.56 14.69 13.06 13.46 13.33 13.01

IR 0.56 0.58 0.72 0.67 0.69 0.72

p = 150

AV 12.57 9.84 9.29 9.49 9.41 9.36

SD 21.00 15.64 12.27 12.98 12.67 12.16

IR 0.60 0.63 0.76 0.73 0.74 0.77

p = 200

AV 12.67 9.71 9.56 9.91 10.13 9.70

SD 20.57 19.56 11.80 13.27 12.12 11.49

IR 0.61 0.49 0.81 0.75 0.84 0.84

p = 250

AV 13.15 43.24 25.52 20.03 10.63 9.57

SD 20.24 245.50 82.91 52.49 11.72 11.00

IR 0.65 0.18 0.31 0.38 0.91 0.88

10. Concluding remarks

Estimating a covariance matrix is one of the two most fundamental problems in statistics, with a

host of important applications. But in a large-dimensional setting, when the number of variables

is not small compared to the sample size, the traditional estimator (that is, the sample covariance

matrix) is ill-conditioned and performs poorly.

This paper revisits the pioneering work of Stein [41,42] to construct an improved estimator of

a covariance matrix, based on the scale-invariant loss function commonly known as Stein’s loss.

The estimator originally proposed by Stein suffers from a certain number of limitations, among

which the two most visible ones are: first, the possibility of violation of eigenvalue ordering; and

second, the possibility of negative eigenvalues (that is, a covariance matrix estimator that is not

positive-semidefinite). As a dual remedy, Stein proposed an ad hoc isotonizing algorithm to be

applied to the eigenvalues of his original estimator.
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Stein’s estimator minimizes an unbiased estimator of risk in finite samples, within a certain

class of rotation-equivariant estimators (and assuming multivariate normality). In contrast, we

have opted for large-dimensional asymptotic analysis, considering the same class of rotation-

equivariant estimators. We show that the unbiased estimator of risk for such an estimator, under

mild regularity conditions (where even the assumption of multivariate normality can be dropped),

almost surely converges to a nonrandom limit; and that this limit is actually equal to the almost

sure limit of the value of the loss. Our alternative estimator is then based on minimizing this

limiting expression of the loss. Unlike Stein’s estimator, ours also works when the dimension

exceeds the sample size.

Our paper represents an original contribution not only with respect to Stein’s papers but also

with respect to the recent literature on large-dimensional asymptotics. Indeed, our asymptotic

optimality results – made possible by the introduction of the new concept of a ‘limiting shrinkage

function’ – provide a more formal justification to estimators based on the Frobenius loss proposed

by Ledoit and Wolf [27,28].

We use a two-step method, whereby we first derive an optimal oracle estimator using our

new technique, and then find an equivalent bona fide estimator using methodology developed by

Ledoit and Wolf [27,28]. The end product is a covariance matrix estimator that minimizes the

almost sure limit of the loss function in the class of nonlinear shrinkage estimators, as sample

size and dimension go to infinity together.

When applied to Stein’s loss, our method delivers an estimator that both circumvents the the-

oretical difficulties that beset Stein’s estimator and also enjoys improved finite-sample perfor-

mance, as evidenced by extensive Monte Carlo simulations.

An in-depth study of linear shrinkage estimators that are asymptotically optimal with respect

to other loss functions, such as the Symmetrized Stein’s loss, is beyond the scope of this paper

but points to promising avenues for future research.

An in-depth exploration of what we call the “arrow model” – where the largest population

eigenvalue goes to infinity at the same rate as the matrix dimension – and of its implications for

covariance matrix estimation are also left as a fruitful avenue for future research.
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