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We construct the optimal strategy for the estimation of an unknown unitary transformation UPSU(d). This

includes, in addition to a convenient measurement on a probe system, finding which is the best initial state on

which U is to act. When UPSU(2), such an optimal strategy can be applied to simultaneously estimate both

the direction and the strength of a magnetic field, and shows how to use a spin 1/2 particle to transmit

information about a whole coordinate system instead of only a direction in space.

DOI: 10.1103/PhysRevA.64.050302 PACS number~s!: 03.67.Hk, 03.65.Fd

Consider an experimental device D that implements an

unknown unitary operation UPSU(d). A probe subsystem

A, which can be entangled with a second subsystem B, is

introduced in D and analyzed at its releasing. Suppose that

arbitrary manipulation is allowed on the global composite

system both at the preparation and analysis stages, while D is

regarded as a black box. This paper addresses the question:

‘‘Which is the best way of estimating the operation U?’’

The optimal estimation of the state of a quantum system

has received a lot of attention in recent years @1–3#. A situ-

ation repeatedly considered in the literature is that of a spin

1/2 system prepared in an unknown pure state uc&PC
2. By

means of an optimal measurement on the system, the maxi-

mal amount of information about uc& is retrieved. Here we

focus, instead, on the estimation of the dynamics of a quan-

tum system ~see also @4#!. This is done by analyzing, again

through an adequate measurement, the changes that the ini-

tial state uc0&PC
d

^ C
d of the system undergoes under the

unknown evolution, UPSU(d). But contrary to what hap-
pens in state estimation, where only optimal measurements
need to be constructed, the optimal estimation of transforma-
tions requires a double maximization: first, we need to find
the state uc0& of the composite system that best captures the
information of the transformation ~unitary evolution U); and
second, a measuring strategy that optimally retrieves such
information from U ^ IBuc0& , where I stands for the identity
operator.

Not surprisingly, the optimal estimation of quantum
transformations—necessarily based on the possibility of en-
coding them on, and analyzing them from, a quantum
system—is closely related to the capacity of quantum sys-
tems to carry information. Our results also give insight into
the role entanglement plays at enhancing the capabilities of a
quantum channel: it turns out that unitary transformations are
optimally encoded in the quantum correlations between the
two subsystems, A and B, and that, for instance, information

about a whole coordinate system $ êx , êy , êz% can be trans-
mited by sending only one spin 1/2 system, provided that an
ebit of entanglement between the sender and the receiver is
also available. The simultaneous determination of both the
direction and the strength of a magnetic field, the tuning of a
quantum channel, and the limits to espionage in a two-party

protocol are other issues that can be addressed with the op-
timal scheme for the estimation of unitary operations, as we
shall discuss. Let us mention here that our aim is not to find
the optimal quantum program specifying a unitary operation
to be performed on some quantum data @5#, but the optimal
way ~initial state and measurememt! of obtaining informa-
tion about an unknown gate.

It is easy to come up with strategies that determine U with
an arbitrary accuracy provided that the black-box device D

can be used without restrictions. Here we are interested in
the opposite situation, namely when D is used to perform the
transformation U only a reduced number of times N. We will
first present an exhaustive analysis, comprising the optimal
initial state uc0& and the optimal measurement, for the case
when D can only be used once, N51. For the general N

case, and assuming that D performs the transformations in
the form U ^ N, we are able to derive the generic form of the
optimal initial state of the system, up to some constants that
depend on the chosen figure of merits ~see Lemma 2!, and to
report the optimal POVM for N52, UPSU(2).

We start by shortly reviewing some of the elements in-
volved in quantum estimation strategies. First, a prior prob-
ability distribution uniform with respect to the Haar measure
@6# expresses the fact that nothing is known about U before
resorting to D, except that it corresponds to a unitary evolu-
tion. Second, once the device D has performed U on the
probe A, a positive operator-valued measure ~POVM! on A

and the ~possibly! entangled system B will extract the infor-
mation about U. Such POVM is a set $Gr% of positive op-
erators satisfying (rGr5IAB . And third, we need a notion of
how efficient a particular strategy—that is, an initial probe
state uc0& and a POVM $Gr%—is, so that we can search for
the best one. There are several ways of evaluating the strat-
egies, and the optimal solution may depend on the particular
election we make. One of the main results of this paper is to
present the optimal probe state uc0& and to show that it is the
same for a large class of figures of merits. Nevertheless, in
order to optimize the POVM, we will consider a specific,
fidelity-guided figure of merits, in which the outcome r of
the POVM, corresponding to the operator Gr , is followed by
a guess Ur for the unknown U. We have chosen the function

F~U ,Ur![UE
c
^fuUr

†Uuf&U2

5
1

d2
uTr~UUr

†!u2 ~1!
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to evaluate the guess Ur . It quantifies, on average over all
states uf& , how well Ur compares to U when transforming
uf&. Below we will give another interpretation to this fidel-
ity, whose average over outcomes and unknown operations
reads

F̄[(
r
E

SU(d)
dUPr~U !F~U ,Ur!, ~2!

where Pr(U) is the probability that the POVM produces the
outcome r when the device D has implemented the operation
U.

Let us suppose, then, that D is to be used only once.
Lemma 1 presents the optimal initial state of the probe for
this case. It only assumes a covariantly averaged figure of
merits as in Eq. ~2!, but where F(U ,Ur) is any function

h(UUr
†) depending on U and Ur through UUr

† . Notice that

only pure states need to be considered for the probe system,
due to the linearity of Pr(U) in the initial state @see Eq. ~4!#.
Therefore we take, without loss of generality, a composite
probe AB, where A is the d—level system on which U will
be performed and B is a second d—level system, possibly
entangled with A.

Lemma 1. The optimal initial state for estimating U after a
single performance can be chosen to be a maximally en-
tangled state, such as

uF&[
1

Ad
(
i51

d

uiAiB&. ~3!

The reason is that, as we next show, the state U ^ IBuF&
can be subsequently manipulated, independently of U, into
any other state U ^ IBuc0& by just manipulating system B.
Then, given any estimation strategy, specified by the POVM
elements, $Gr%, and the corresponding guesses, $Ur%, for the

state uc0& with a fidelity h̄ , we can design another estimation
procedure for the state uF& attaining the same fidelity.

Proof. Let us consider the Schmidt decomposition of the

most general initial state uc0&[( i51
d l ium in i&, l i>l i11

>0, ( il i
2
51. We first show that the Schmidt basis $um in i&%

is irrelevant as far as the average fidelity

h̄[(
r

trS GrE dUU ^ IBuc0&^c0uU†
^ IBh~UUr

†! D ~4!

is concerned @here tr(GrU ^ IBuc0&^c0uU†
^ IB) is the prob-

ability Pr(U)#. This is so because for any X and YPSU(d),

the state XA ^ Y Buc0& leads to the same maximal h̄ , as can be
seen by noting that ~i! any unitary transformation Y in the
local basis of B can be reabsorbed in the POVM elements
Gr , whereas ~ii! if we prepare AB in state X ^ IBuc0& instead
of uc0&, then the shift U→UX in the integration variables U

of Eq. ~4!, simultaneous to a shift Ur→UrX for the guesses

leads again to the same h̄ . Therefore we can take

uc0&5(
i51

d

l iuiAiB&5IA ^ M uF&, ~5!

where M is a diagonal operator with entries M ii[Adl i .
Suppose now that the initial state is uF&. Then D transforms
it into U ^ IBuF&. Let us consider a covariant POVM @2# on
B given by operators $M Y[MY %, where Y runs isotropically

over SU(d) and *dY M Y
† M Y5IB . It transforms U ^ IBuF&

into U ^ MY uF&5UY T
^ M uF&5UY T

^ IBuc0& for some
known Y @here we have used that, ;YPSU(d), IA ^ Y uF&
5Y T

^ IBuF&#. But this is as if we would have started with
state Y T

^ IBuc0&, which leads to the same average fidelity as
uc0&. j

Let us now notice that our particular choice of fidelity, Eq.

~1!, corresponds precisely to the probability u^FuUr
†U

^ IBuF&u2 that the state Ur ^ IBuF& behaves as if it were U

^ IBuF&. Therefore F(U ,Ur) measures how similar the two
operations U and Ur are by comparing two related states:
those that best capture the information of both transforma-
tions after a single run of D.

Suppose finally that system A, in the entangled state uF&
with system B, has already been introduced in D, which
produces the state U ^ IBuF&—denoted by UuF& from now
on. Which is the best POVM that can be performed in order
to learn about U from this state? We can rewrite the average
fidelity of Eq. ~2! as

F̄15
1

d2 (
r

trFGrE dUUuF&^FuU†utr~UUr
†!u2G . ~6!

By means of a shift U→V5Ur
†U in the integration vari-

ables, each of the integrals inside the trace has the form

Ur f 1Ur
† , where

f 1[E dVVuF&^FuV†uTrVu2

5d2^FuE dVV ^ 2~ uF&^Fu! ^ 2V† ^ 2uF& . ~7!

We can now expand (uF&^Fu) ^ 2 using Eq. ~3!, and apply
Schur’s lemma @6# to compute each term in the expansion,
noticing the last integral involves two irreducibles represen-
tations of SU(d), namely the symmetric and the antisymmet-
ric ones. A careful analysis ~recalling that each V is acting
only on the first half of the corresponding uF&) and patient
simple algebra leads to

f 15
1

d2
21

S d2
22

d2
IA ^ IB1uF&^Fu D . ~8!

Thus uF& is the eigenvector of f 1 with greatest eigenvalue,

lm[2/d2, and Tr( Ur
†GrUr f 1 )<lmTr Gr in Eq. ~6!. Since

(rTrGr5d2, the maximal fidelity can be 2/d2 at most. A
covariant POVM @2# with operators and guesses given by

$WuF&^FuW†,W%WPSU(d) reaches F̄152/d2, which is con-
sequently the optimal one.

This result is to be compared with the optimal fidelity

F̄051/d2 made by blindly proposing a unitary transforma-
tion, say I ~or any other!:
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A. ACÍN, E. JANÉ, AND G. VIDAL PHYSICAL REVIEW A 64 050302~R!

050302-2



E dU
uTrUu2

d2
5^FuE dUUuF&^FuU†uF& ~9!

~the last integral is simply I/d2 because of the Schur’s

lemma! and also with the separable fidelity F1
sep

5(d

12)/@(d11)d2# , which is the best fidelity that can be
achieved without entangling A and B, and can be computed
using Eq. ~7! and the fact that a pure state of A, say u0&, is
Ad^0BuF& . Finally, we note that a finite ~and thus physical!
optimal measurement, actually one with the minimal number
of outcomes, consists in a von Neumann measurement on a
basis of d2 maximally entangled states. For instance, on the
Bell basis, with guesses I ,isx ,isy , and isz , for the SU(2)
case @4#. This completes the analysis of N51 @7#.

Let us discuss some applications of the previous results.
Consider first the group SU~2!. Our optimal strategy can be

readily applied to determine a constant magnetic field BW

5Bm̂ by using the magnetic moment of a spin 1/2 particle,

say an electron. Let H int5mW •BW be the interaction Hamil-

tonian, where mW 5m(sx ,sy ,sz) and all physical constants
have been absorbed in m . Then after a time T the spin has

evolved according to exp(2imBTm̂•sW ), and therefore we can

identify the direction m̂ of the magnetic field and its intensity
B ~actually mBT). Our results show how to optimally extract

information about BW by means of an electron if this interacts
once with the magnetic field ~see also @4#!.

In the discussion above the information about the mag-

netic field BW is not contained in the state of the spin alone,
but in the correlations between this spin and a second one.
Similarly, if two distant parties, Alice and Bob, want to use a
recently established d-dimensional quantum channel,

(
i51

d

c iuiA&→(
i51

d

c iuiB&, ~10!

but Bob does not know the correspondence between states—
that is, he ignores the states $uiB&%—, they can benefit from a
maximally entangled state uF& in order to tune the channel.
Indeed, by Alice sending her half of uF& down the channel,
Bob can estimate the whole unknown basis $uiB&%, or equiva-
lently, the transformation U5( iuiB&^iAu, with a fidelity 2/d2,
which is 2(d11)/(d12) times greater than the fidelity he
could have obtained also after a single use of the channel if
no entanglement would have been available. In a sense, this
is a general manifestation of how entanglement enhances the
capacity of a quantum channel, with traditional quantum su-
perdense coding @8# appearing as a particular case, namely
when the channel is used to transmit classical information
only.

Let us further see this in the SU(2) case, by assuming that
a spin 1/2 particle is used as a channel. Here an ebit of
entanglement allows to transmit, by sending a single spin 1/2

particle, information about a whole transformation U( n̂ ,v)

PSU(2), or equivalently, a rotation R( n̂ ,v)PSO(3). In
other words, instead of using the spin of the particle to try to

establish a common direction n̂ in space @that of the one-

qubit pure state uc&^cu51/2(I1 n̂•sW )#, Alice can now send

information about a whole coordinate system $ êx , êy , êz% to
Bob in order to establish a common reference frame. This
works as follows. The parties share the state uF&5(u1A1B&
1u2A2B&)/A2, where $uiA&% and $uiB&% are given with re-
spect to reference frames of Alice and Bob, respectively.
Each party knows its own reference frame, but ignores the
other one. If Alice sends her half of uF& to Bob, then Bob

can estimate the rotation R( n̂ ,v) ~or corresponding unitary
U5u1B&^1Au1u2B&^2Au) that relates the two coordinate
frames.

Another scenario in which these results are relevant is that
of two parties that are to collaborate in some task but do not
trust each other. For instance, Bob needs to apply on a given
input state uc& a unitary U that Alice’s computer can per-
form, but he ignores U. She is willing to assist Bob by com-
puting Uuc&, but without letting him find out which transfor-
mation U is. Alice knows that Bob can estimate U at most
with a fidelity 2/d2.

So far we have analyzed a single run of the device D. In
practice, one would like to determine U with arbitrary preci-
sion, and this is only possible if D is used many times. Sup-
pose U is performed twice. A most general strategy consists
on sequentially introducing two probes, A1 and A2, on D,
but allowing for an arbitrary manipulation of the proofs in
between. We do not know how to tackle the problem in its
full generality. We will suppose ad hoc that the device D

takes N probes, A1•••AN , and transforms them according to
U ^ N. This could correspond, in the SU(2) case, to letting the
spin of N electrons interact with the constant magnetic field

BW during some time interval T.
The first step towards an optimal strategy for estimating U

is again to find an optimal initial state uc0
N& for the N d-level

systems A[A1•••AN and N auxiliary d-level systems B

[B1•••BN , that Lemma 2 presents. The U ^ N representation
of SU(d) contains ~several copies of! q inequivalent irreduc-
ible representations ~irrep’s!, labeled by a51,••• ,q . For
each a there are na equivalent irrep’s, labeled by ab , b
51,••• ,na , each one having dimension da . The set

$uabk&%k51

da denotes an orthonormal basis for the irrep’s ab ,

Pab[(kuabk&^abku and Pa[(b51
naPab . The ab and

ab8 irrep’s being equivalent, there exists a unitary Pbb8

a

such that U ^ Nuabk&5Pbb8

a
U ^ Nuab8k& for any U and k @6#.

Lemma 2. The optimal state for estimating U ^ N is

uFN&[ (
a51

q

aauFa
N&, (

a
aa

2
51, ~11!

where the value of aa>0 depends on the figure of merits
under consideration, and where

uFa
N&[

1

Anada
(
b51

na

(
k51

da

uabk&Auabk&B ~12!

is a maximally entangled state between the subspace of A

that carries the na irrep’s ab ~i.e., between the support of
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Pa) and an equivalent subspace of B. For instance, for the

N5d52 case, the optimal initial state is

uFa
2&[a

1

A3
(
k51

3

utk&Auk&B1A12a2us&Au4&B , ~13!

where utk&P$u00&,(u01&1u10&)/A2,u11&% are the triplet

states and us&[(u01&2u10&)/A2 is the singlet state.
Proof. Being a generalization of that of lemma 1, here we

will only sketch the proof. Notice that any state uc0
N& of the

probes can be writen as uc0
N&5(a51

q uca
N&, where

uca
N&[ (

b51

na

(
k51

da

uabk&Aufabk&B ~14!

is the projection Pa ^ IBuc0
N& and ufabk& are arbitrary states

of B. Since U ^ N does not mix irrep’s, we can perform a
global unitary transformation VAB that commutes with U ^ N

and such that we achieve ^fabkufa8b8k8&5da ,a8
db ,b8

c
kk8

ab
,

that is, the supports of Pab ^ IBuc0
N& on B for different irrep’s

ab and a8b8 are orthogonal. For instance, in the d5N52

case, where uc t
2&5(kutk&Aufk&B and ucs

2&5us&uf&, we can

take, without loss of generality, ^fuf l&50. We will now
show that uFN& can be transformed into a state as efficient as

uc0
N& as far as the fidelity

h̄[(
r

trFGrE dUU ^ Nuc0
N&^c0

NuU† ^ Nh~UUr
†!G ~15!

is concerned. This is made in two steps. First, the POVM in

A defined in each a by $Q i
a[(b

na(aab /aa)

3Pb,b1i
a Pa,b1i%i51

na , where ( iQ i
a†Q i

a
5Pa and the sum b1i

is modulus na , takes with certainty the state U ^ NuFN& into
U ^ NuF’&, which is still maximally entangled in each irrep’s
ab , but with different weights aab /aa in each irrep, where

(b(aab)2
5aa

2 . And second, a covariant POVM in B, given

by the set of operators $QY[(a(baab(kufabk&
3^abkuY ^ N%, where *dYQY

† QY5IB and aab

[((kckk
ab)21/2, will produce, when applied on UA

^ NuF’&,

the state (UY T)A
^ Nuc0

N&. This state corresponds to starting

with Y A
T ^ Nuc0

N&, which leads to the same h̄ as uc0
N& ~see

Lemma 1!. j

For N5d52, and by using the techniques developed in

this paper, we have found that the optimal fidelity is F̄2

5(31A5)/8'0.6545, which corresponds to the initial state

uFa
2& of Eq. ~13! with a2

5(51A5)/10 and to a covariant

POVM and guesses given by $W ^ 2uFa’
2 &^Fa’

2 uW† ^ 2,W%,

a8
2
59/10.
To conclude, in this Rapid Communication we have stud-

ied the optimal estimation of an unknown unitary operation,
UPSU(d), when this transformation can be performed a re-
duced number of times, N. For any N, the best initial state
has been essentially found for a large class of figures of
merits. In the case of the fidelity defined in Eq. ~1!, its opti-
mal value and the measurement that attains it are given for
any dimension when N51, and for d52 when N52.
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