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Summary. For any seismic source specified by a frequency- dependent 
moment-rate tensor M(w), we define the total moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMT(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= II M 111d2 
and the isotropic moment Ml(w) = 1 tr M I/&. A method is presented for 
estimating these scalar seismic moments from noisy seismic data when the 
source mechanism is uncertain or completely unknown. Our formulation 
exploits the linear relation between squared moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 2  (total or isotropic) 
and the product of two seismic spectra; in a particular frequency band, an 
estimate B2 is constructed as a linear combination of power and cross-spectra 
integrated across the band. The coefficients yielding an exact estimate from 
perfect data are the solution to  a linear system of equations involving spectral 
integrals of the transfer functions that relate M to  the seismograms. The 
failure to  solve this system exactly induces an error in A2 whose statistics can 
be calculated from a likelihood function for the source mechanism, which we 
model using the hyperspherical normal distribution and its Gaussian approxi- 
mation and generalizations. We also develop expressions for the bias and 
variance induced in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI@’ by ambient seismic noise and by transfer-function 
errors due to aspherical heterogeneity. To optimize the estimate, the coeffi- 
cients specifying B2 are computed by minimizing a non-negative-definite 
quadratic form constructed from these statistics. We have applied the method 
to  IDA records of the deep-focus Honshu earthquake of 1978 March 7 and 
the shallow-focus Oaxaca earthquake of 1978 November 29. For each event, 
estimates of MT have been obtained with good precision over disjunct 1-mHz 
bands spanning the frequency interval 1-1 1 mHz; their relative standard 
deviations range from 10 to 22 per cent. Our best estimate of MT averaged 
over the entire 1-1 1 mHz interval is 0.43 x 1027dyne cm for Honshu and 
2.8 x 1027dyne cm for Oaxaca. The isotropic component of the Oaxaca event, 
as measured by the ratio @/fi+, is negligibly small (< 0.1). In the case of 
Honshu, however, this ratio averages about 0.34; all six estimates at frequencies 
greater than 5 mHz are significantly greater than zero at the 90 per cent confi- 
dence level, and four of the six are significant at the 95 per cent level. This 
observation lends credence to  the conjecture made previously by seismol- 
ogists that isotropic compression accompanies some deep-focus earthquakes. 
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756 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction 

The concept of seismic moment as an appropriate measure of earthquake size arises from the 
dynamical equivalence of a dislocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the idealization of slip on a fault - and a double 
couple (Burridge & Knopoff 1964). Aki (1 966) was the first to estimate seismic moment by 
a systematic analysis of seismic data, and he exploited the equivalence of these two source 
descriptions to infer the average fault displacement for the 1964 Niigata Earthquake. The 
success of Aki’s procedure, in which the data are fit by assuming exact prior knowledge of 
the source mechanism, has led to its wide application in other earthquake studies (e.g. 
Kanamori 1970a, b). 

This paper presents a much different algorithm for estimating seismic moment. The 
procedure is optimized for the inversion of noisy seismic data in the realistic situation when 
some information about the source mechanism may (or may not) be available, but when this 
prior information does not specify the mechanism exactly. 

The problem of moment estimation will be formulated in the general context of a 
moment-tensor description of the seismic source, of which the double couple is an important 
special case. Source mechanisms more general than a double couple but with radiation 
patterns that can be expanded in harmonics of zeroth and second degree were discussed by 
Knopoff & Randall (1 970) and applied to deep-focus events by Randall & Knopoff (1 970). 
Randall (1971) and Gilbert (1971a, 1973a) recognized that any such mechanism can be 
specified by a symmetric, second-order moment tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA representing a torque-free linear 
combination of couples at a point. The general theory of moment-tensor densities for 
extended seismic sources was developed by Backus & Mulcahy (1976a, b). These authors 
demonstrated that all indigenous sources can be described by an excess stress, or stress glut, 
and that the ordinary time-dependent moment tensor A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t )  is the zeroth-degree spatial 
moment in a polynomial expansion of the stress glut; that is, A ( f )  is the volume integral of 
the stress glut over the physical source region. 

Attention in this paper is confined to localized seismic sources. For our purposes a source 
is ‘localized’ if the stress glut is sufficiently concentrated around its centroid (ro, to)  so that: 
(1) the truncation of higher-degree spatial moments is justified for the wavelengths of 
interest, and (2) the Fourier spectrum of the moment-rate tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd A / d t  is slowly 
varying across the frequency band of interest. A discussion of these conditions, including the 
precise definitions of spatial and temporal centroids, is provided by Backus (1977). 

The displacement field produced by a localized seismic source is linearly related to the 
seismic moment tensor, a fact first recognized by Gilbert (1971a, 1973a) and exploited by 
Dziewonski & Gilbert (1974) and Gilbert & Dziewonski (1975). The complex Fourier 
spectrum of the seismogram u at an observation point r admits the normal-mode expansion 

P. G. Silver and T. H. Jordan 

where C k ( 0 )  is the resonance spectrum of the k th  mode and d k  is its tensor-valued exci- 
tation function (Gilbert & Dziewonski 1975). Definition of the second-order tensor 

allows equation (1.1) to be succinctly expressed as 

u(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) = C(r, ro, a) : M(a). (1.3) 

If convenient, the standing-wave sum (1.2) can be recast as a superposition of travelling 
modes or generalized rays, or directly in terms of the impulse response (Gilbert 1976; 
Backus & Mulcahy 1976a; Stump & Johnson 1977; Aki & Richards 1980). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
0
/3

/7
5
5
/6

2
3
7
5
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2
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The problem of estimating the moment-rate tensor by the direct inversion of equation 
(1.3) has been formulated for various types of seismic signals, including free oscillations 
(Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dziewonski 1975; Buland & Gilbert 1976), surface waves (McCowan 1976; 
Mendiguren 1977), and body waves (Strelitz 1980; Ward 1980a, b). The application of these 
linear inversion techniques to digitally recorded data is yielding important new information 
about the nature of the seismic source (Dziewonski, Chou & Woodhouse 1981; Masters & 
Gilbert 1981, private communication). 

Additional work on the methodology of source recovery is justified, however. Recent 
studies have demonstrated that significant bias can be introduced into moment-tensor 
estimates by the use of incorrect transfer functions (Patton & Aki 1979). Variations in the 
transfer functions caused by the Earth's lateral heterogeneity are a particularly serious 
source of bias, especially at low frequencies where the moment-rate tensor must be estimated 
from long time series and sparse networks of stations. In lieu of transfer functions that 
explicitly account for aspherical heterogeneity, more complicated schemes than the direct 
inversion of (1.3) may be required to reduce this bias. 

This paper does not address the general inverse problem for the moment-rate tensor; 
rather, it attacks the restricted problem of estimating scalar seismic moment from low- 
frequency seismic data. In constructing an optimized inversion procedure for scalar moment 
explicit consideration is given to the effects of seismic noise and errors in the transfer 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG .  In particular, we consider the case where estimates of G are biased by ignoring 
lateral heterogeneity. The normal mode representation (1.2) is used throughout our analysis. 

The total (scalar) seismic moment is here defined to be the positive, real function of 
frequency whose square is one-half the squared Euclidian length of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, 

M; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY2 M*(w) : M(w). (1.4) 

The asterisk 'indicates complex-conjugate (Hermitian) transpose. A point dislocation, or 
double couple, is specified by a unit vector f normal to the fault plane, a unit slip vector 
i, and a step-function time history H(t) .  In this special case the moment-rate tensor is 
independent of frequency, 

M(o)  =Mo [ t i  t B f ]  (double couple), (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMT reduces to the ordinary scalar moment Mo. Requiring this correspondence imposes 
the factor of '/2 in equation (1.4). This definition of total moment allows any moment-rate 
tensor to be written 

M ( w )  = fiw4 w4, (1.6) 

where M is a symmetric tensor of unit length: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M*(w) : M(w) = 1. 

Generalizing the terminology commonly applied to the bracketed expression in equation 
(1 S), we shall refer to the normalized moment-rate tensor M as the source mechanism. Let 
MD be the deviatoric part of M,  so that tr MD = 0 and 

M(w) = MD t '/3 (tr M) I. 

M i  (0) = '/2 M;(W) : M D ( o )  (1.9) 

M:(u)= 1/61trM(w)12= !/~li:M(~)l~. (1.10) 

(1.8) 

Then, a deviatoric moment MD and an isotropic moment MI are defined by the equations 
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The three types of scalar moment satisfy the simple relation 

M;(w) =M,:(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt M,2(w). (1.11) 

MT is a rotational invariant and can be written in terms of the three eigenvalues of M;i.e. 

Of course, other satisfactory generalizations of scalar seismic moment exist. Total moment 
could instead be defined as the maximum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI hi 1 ,  the so-called spectral norm of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, which 
also reduces to  M,, in the special case of a double couple. Such a definition does not lend 
itself to the computational procedures proposed in this paper, however. 

At zero frequency the values of total moment given by equation (1.4) is simply related to 
what Backus (1977, equation 5.4) calls the total ‘charge’ of the moment(g1ut)-rate density, 
denoted cg)  and defined to  be the squared Euclidian norm of M(0): cfi) = II M(0) 11’ = 2M;(O). 
Both MT(O) and c$) measure the total ‘size’ of a seismic event. Randall’s (1971) ‘shear 
invariant’ L is linearly related to the deviatoric moment by L = p-’MD (0), where y is the 
shear modulus. Both M D  (0) and L measure the size of an event’s deviatoric part. 

Much can be learned about earthquakes by studying the scalar moments M T ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMD and 
MI. The accurate determination of MT at low frequencies provides the most useful infor- 
mation about earthquake size, radiated energy and fault slippage, especially for the very 
large events that dominate global strain release and saturate standard magnitude scales 
(Kanamori 1977; Hanks & Kanamori 1979). The variation of MT with frequency places 
constraints on the temporal behaviour of the seismic source and should be diagnostic of the 
anomalous time functions associated with so-called ‘slow earthquakes’ (Kanamori & Cipar 
1974; Kanamori & Stewart 1979; Sacks et al. 1978, 1981). The existence of a non-zeroM1 
is indicative of an apparent isotropic component of strain release, a phenomenon observed 
for some deep-focus events (Dziewonski & Gilbert 1974; Gilbert & Dziewonski 1975) and 
perhaps diagnostic of the volume contraction due to  a phase change (Evison 1963; Benioff 
1963; Randall 1972). 

To resolve anomalous temporal behaviour or prove the existence of an isotropic compo- 
nent using these methods requires that we be able to test various hypotheses regarding the 
numerical values of the scalar moments. Careful attention must therefore be given to the 
statistical properties of the estimates and to schemes for reducing the estimation errors. 

The problems encountered in dealing with the errors in scalar moment are illustrated 
by a simple example: suppose an estimate M of the moment-rate tensor is available at some 
particular frequency, so that the error in this estimate is represented by the tensor A M =  
- M, considered to be a sample of a stochastic process. Then, the expected value of the 

estimated squared moment ill; = % II M 11’ is 

( f i ; ) = M +  + Re[M* :<AM) ]  + ‘/2(11AM11’). (1.12) 

Thus, even if M is unbiased ((AM) = 0), the estimate &+, and hence its square root &T, is 
not: random errors in M introduce bias into in proportion to their variance (second 
statistical moment). Furthermore, the expression for the variance of generally involves 
the first four statistical moments of AM. It is clear, therefore, that procedures designed to 
yield unbiased, minimum-variance estimates of the moment-rate tensor do not necessarily 
provide similarly optimal estimates of scalar moment. 

2 A linear inverse problem for squared moments 

Our method of moment retrieval rests on the demonstration that the squared scalar 
moments M:, and Mi can be specified by certain linear combinations of the power and 
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cross-spectra from a sparse network of seismic stations. We show in this section that the 
coefficients of these linear combinations are themselves the solutions to linear systems of 
equations. Hence, the retrieval of the squared moments can be formulated as a linear 
problem, fully amenable to the rigorous methods of linear estimation theory. 

The basic data function used in our formulation is the cross-spectrum for the record pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( p ,  4 )  selected from a set of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP seismograms and integrated over the positive frequency 
interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ma, wb): 

up, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= J; u,*(o) uq(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo. 

The frequency interval (aa, W b )  is assumed to be small enough and the spectrum of the 
moment-rate tensor smooth enough so that any variation of M(w) across this band can be 
ignored. Equation (2.1) can thus be written 

U p ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM* : Zp4 : M, (2.2) 

where Z p q  is the fourth-order outer-product tensor 

X p q  = s:," C,* (W)  Gq(o)  d o .  (2.3) 

To relate these data functionals to the scalar seismic moments we consider the sym- 
metrized fourth-order isotropic tensor 

% y k I ( h y p ) =  hhijhki + p ( h i k h j l  ' S i f h j k )  (2.4) 

and its associated quadratic form 

M 2  ( A ,  p)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM* : %'(A, p) : M. (2.5) 

It is easily verified that the squared moments defined in the previous section correspond to 
values of (2.5) for particular choices of the scalar coefficients X and p ;  namely 

M+ =M2(0,1 /4)  (2.6a) 

The similarity between equations (2 .2)  and (2.5) suggests seeking estimates of the squared 
moments that are linear combinations of the Upqs. For some set of complex-valued coeffi- 
cients { apq ) we define the scalar quantity 

P4 

The index pairs ( p ,  q )  included in the summation are permitted to range over the entire set 
of P2 record pairs or can be limited to some subset; for example, the summation can be 
restricted to include only power spectra ( p  = q). We require, however, that f i 2  be strictly 
real. Since the U s have Hermitian symmetry (Uqp = UJq) ,  this is assured if the apqs are 
Hermitian (apq - a P q )  and if the summation is always taken over both permutations of any 
record pair. 

- p  q* 
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Substituting (2.2) into (2.7) yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(2.8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM*.  @. M . .  

where 

- 
If the coefficients {a,, j can be constructed such that 69 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= % ( A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp )  for any particular pair 
( A ,  p) ,  then M Z  = M Z ( A ,  p) .  Estimating squared moment is thus reduced to  solving the linear 
system 

c a p q  x p q  = V ( L P ) .  
P 4  

The components of the complex-valued tensor XP4 satisfy 

Because a,, = a,*,, @has the symmetries 

(2.10) 

(2.11) 

(2.12) 

The tensor defined by (2.4) is real-valued and shares the same symmetries as the real part of 
@. Hence, the 81 complex equations in the linear system (2.10) can be reduced to 36 real 
equations, 21 requiring Re[@] = 69 and 15 requiring Im[@] = 0. 

Suppose the summation in (2.7) comprises all P2 integrals of power and cross-spectra 
available from a network of P seismographs, so that the set of coefficients { a p q }  has Pz 
degrees of freedom. Then, for buried sources, P >  6 is sufficient to ensure that the system 
(2.10) has at Ieast one solution, barring accidental degeneracies. Sparse global arrays such as 
the International Deployment of Accelerometers (IDA) and Seismic Research Observatory 
(SRO) networks should therefore be adequate for the inversion of (2.10) in individual 
frequency bands. 

Of course, even fewer records are required if the moment-rate tensor is a smooth enough 
function of frequency to permit the mixing of Up4s  from more than one frequency band. 
Under the assumption of frequency independence, as few as two vertical-component seismo- 
grams or one horizontal-component seismogram are sufficient to constrain the entire 
moment-rate tensor (Gilbert & Buland 1976). 

The number of records needed to solve (2.10) exactly can also be reduced by assuming a 
special form for the moment-rate tensor. In general, the six independent components of Mat 
any particular frequency are complex with differing amplitudes and phases. Suppose, how- 
ever, that the phases of these components are in fact equal, so that the moment-rate tensor 
can be written 

M ( w )  = I M(u) I exp[i@(w)l, (2.13) 

where I M I is the modulus of M and $J is a real-valued function of frequency. Then, any two 
components of M are related by a zero-phase filter, and their time-domain cross-correlation 
functions are symmetric about zero lag. Such a moment-rate tensor describes what we shall 
call a synchronous source. This terminology conforms to the fact that the six time functions 
of a general synchronous source all have the same temporal centroid, as defined by Backus 
(1977, equation 5.5e). Clearly, any moment-rate tensor whose components share the same 
time history is a special case of a synchronous source. 
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For a synchronous source the symmetries expressed in (2.12) imply 

M* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Im['%'] : M 0 (synchronous source). (2.14) 

Hence, the imaginary part of @' need not be constrained to  vanish, and only the 21 real, 
scalar equations that guarantee Re [@'I = V are sufficient to yield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 2  = M2. If no degener- 
acies occur, then five or more records are adequate to construct the squared moments of a 
synchronous source in a single frequency band. 

Assuming there exists at least one solution to  (2.10), or, in the case of a synchronous 
source, the real part of (2.10), it can be found by applying an appropriate generalized 
inverse to this linear system. Scalar moments can then be derived from equation (2.7) with- 
out the need for any prior information about the source mechanism. 

To translate this theoretical procedure into a viable algorithm some accounting must be 
made for the presence of noise in the observed values of the integrated power and cross- 
spectra. Furthermore, if any information about the source mechanism does exist, as is often 
the case, it should be used in constructing the moment estimates, The development of an 
algorithm optimized for noisy data and capable of incorporating prior information about the 
source mechanism is the subject of the remainder of this paper. 

3 Convenient isomorphisms 

The analysis of the moment-retrieval problem is simplified considerably by introducing an 
isomorphism between symmetric, second-order tensors of dimension three and vectors of 
dimension six. By fixing an appropriate Cartesian reference frame in three-space (usually a 
local geographic frame at the source) we define for every symmetric tensor M a six-vector 
m: 

mt=M1,, m,=M22, m3=M33 

rn4=.\/ZMl2, m 5 = 4 M I 3 ,  m 6 = f i M 2 3 .  

This isomorphism, written M * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, has the advantage of preserving the Euclidian norm: 

(3.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
( (m  / I 2  2 m* .m  = M* : M = 1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM / I 2  (3 4 
A similar isomorphism was employed by Gilbert & Dziewonski (1975, equation 17), but 
they omit the factors of 4 2 ,  and their isomorphism is not norm-preserving. 

Analogous to (3.1) is an isomorphism between fourth-order tensors of dimension three 
satisfying the symmetry conditions (2.1 2) and Hermitian matrices of _dimension six, con- 
structed to preserve the quadratic form (2.8). The correspondence % * e is expressed 
by the equations 

c m n  = Y m n @ i j k l ,  (3.3) 

where m and n are specified by the index pairs ij and kl according to (3.1), respectively, and 
the coefficients { Y~~ 1 form the symmetric array 

1 1 1 4 t / z . \ / Z  

1 1 t / z \ / z \ / z  

l & f i t / Z  

2 2 2  

2 2  

2 ... 

(3.4) 
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762 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAparticular, the isotropic tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%'(A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp )  is isomorphic to the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. G. Silver and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. H. Jordan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h + 2 p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx h 0 0 0  

h + 2 p  x 0 0 0  

C ( L  Y) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx + 2 p  0 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2p 0 0 

21.1 0 

... 2Y - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(3.5) 

where Gp * g p  , so that equation (2.2) can be expressed 

Up,  = m* . H p 9 .  m. 

These isomorphisms will be employed throughout the remaining analysis 

4 Statistics of squared-moment estimates 

For any seismic source described by a moment-rate vector m,  the observed cross-spectra 
integrals up, differ from their theoretical values Up,  given by (3.7) because the former are 
contaminated by ambient seismic noise and the latter are computed using incorrect transfer 
functions. We seek an estimate of the squared moment M 2  = M 2 ( h ,  p )  of the form 

jp= c a,, %?. (4.1) 
P 9  

To optimize a scheme for choosing the coefficients { a p q  ) and to  assess the uncertainty of 
the estimate requires that we formulate the estimation error induced by inexact data and 
faulty seismological assumptions. 

Let A U Z )  be the error in up, due to ambient noise and AUZ)  be the error due to 
incorrect transfer functions, so that to first order 

l i7i2= C ap9(up9 + A U ; " , + A U ~ ) ) .  (4.2) 
P 9  

The estimate M 2  differs from its true value @ by an amount e that is a sum over these 
errors plus a term proportional to the difference matrix 

E = C - C =  c U P 4  H P 9  - c,  
P 4  

e r f i 2  - ~ 2  

= ap9AUJ:)t 1 a , ,AUf i )+m* .E ,m 

=en + e g  + e m .  

P 4  P 9  

(4.3) 
- 

The quantities en and eg are referred to as the 'ambient-noise error' and 'transfer-function 
error,' respectively, whereas em represents the error caused by the failure to  solve equation 
(2.10) exactly and is termed the 'modelling error.' 
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Estimation of seismic moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA763 

We shall treat en,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeg and em as stochastic variables and derive their statistics from simple 
models of the error processes. The standard statistical treatments of ambient seismic noise 
are, of course, easily adapted to  this problem. Errors in the transfer functions can also be 
handled by statistical methods if the perturbations due to, say, aspherical heterogeneity are 
sufficiently randomized over the station network. 

The modelling error em derives its statistical properties from an incomplete knowledge of 
the source mechanism. Equation (1.6) allows us to  write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
em =2M+m*.E.m=2M2k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT m ?  (4.4) 

where m is the unit vector describing the mechanism. If m were exactly known, the normal- 
ized modelling error & could be calculated directly from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAupqs ,  and the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf12 
could be corrected accordingly. In practice, however, either m is unknown or only an 
estimate is available, so that em must also be treated as a stochastic variable. 

Our error analysis is simplified by assuming that the total error e is sufficiently well 
characterized by its first two statistical moments; namely a bias /3 ( e )  and a variance 
u’ Var[e] ((e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0)’). The bias obtained by taking the expected value of equation (4.3) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P =  c apq(Bpq  ( n )  + BPJ) t 2M; ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, >, (4.5) 

P4 

where Bi“&) ( A Ui? g) ) .  The variance is calculated by assuming the error processes 
in (4.3) are uncorrelated; its expre:,ion in terms of the covariance matrices Vi,z)G 
Cov[A U$g)*AU(n9g) ]  st is 

4.1 A M B I E N T - N O I S E  E R R O R  

We assume the ambient noise np( t )  contaminating the pth seismogram is Gaussian and white 
with a zero mean and a variance (power-spectral density) of$ and is uncorrelated with the 
noise at other stations: 

(n,(t)) = 0 ,  (4.7) 

<n,(t)n,(t’)) = $6,,6(t - t ’ ) .  (4.8) 

The cross-spectral integrals U p ,  are estimated from transient signals on a finite time interval, 
taken to be [0, TI.  The Fourier transform of np(t)  over this window, 

,T 

iip(w) = np(t)  exp(-iwt) d t ,  

defines a random variable for which 

10- 

(i ip(w)) = 0, 

[exp [i(w - w’) T ]  - 1 ] 

i (w -a’) 
(5,*(w)iiq (w’)) = u p  2 6  P 4 ’  

In terms of this random variable the error in the cross-spectral integral is 

AU;:) = ~ ~ ~ b [ ~ ~ ( ~ ) A q ( ~ ) t l i p l ( ~ ) U q ( ~ )  +i$(w)5,(w)]dw. 

(4.9) 

(4.10) 

(4.1 1) 

(4.12) 
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764 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Defining the bandwidth A o  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-a, and taking the expected value of (4.12) we obtain 
for the bias 

B ~ ) ~ - A U J ~ ) ) = A ~ T V ~ ~ , , .  (4.13) 

It is convenient to introduce the signal-to-noise ratio (snr) for the pth power-spectral 
integral , defined by 

R ,  = (Am Tug)-' U p p  , 

so that the bias becomes 

B g )  = Rp' U p ,  S,, . (4.15) 

The power-spectral integrals thus have a relative bias RP' owing to ambient noise, whereas 
the cross-spectral integrals are unbiased by this error process. 

The forniulation of the covariance matrix V,':ir is outlined in Appendix A. Rewriting 
equation (A.6) in terms of the snr yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V P 9 S t  ( n )  = Aw-'(Rj' U p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,rSp, t R4' U4qUp*69, -t Rp'Rq' U p p U 9 9 6 p s S q t ) .  (4.16) 

The covariance between AUJ:) and AUi:) is identically zero unless they have at least one 
record in a common position ( p  = s or 4 = t). The third term in (4.16) is second order in 
RP' and, for snrs typical of IDA accelerograms of large earthquakes (> 15 dB), can be 
neglected. The relative power-spectral variance is thus Vpppp  = 2Ao- 'Rj1,  which will 
decrease as the integration bandwidth increases. In contrast, if the signds are from geo- 
graphically separated stations, up and u, will be essentially uncorrelated; therefore, the 
cross-spectral integral Up4 will increase with A m  at approximately the rate of a random 
walk process ( 1  U p q  1' - A o - '  U p ,  Uq9) ,  and the relative cross-spectral variance 

P. G. Silver and T.  H. Jordan 

(4.14) 

I u p ,  I-' V p q p , ,  P f 4 ,  

will remain roughly constant. 

4.2 T R A N S F E R - F U N C T I O N  E R R O R  

The transfer functions used in low-frequency source-recovery procedures are calculated from 
spherically symmetric, non-rotating, isotropic earth models which only approximate the less 
ideal, real Earth. Errors introduced by these approximations can severely bias moment- 
tensor inversions and lead to large errors in scalar moment (e.g. Patton & Aki 1980). 

Our analysis of this problem is based on the normal-mode representation (1.1). The 
seismogram for the p th  station is 

(4.17) 

where c k  is the resonance spectrum for the k th  multiplet and A k p  is its complex-valued 
initial amplitude, 

The spherically symmetric earth model used in the calculations has degenerate eigen- 
frequencies f o k ( o k  > 0) and mode quality factors Qk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB 1; hence, the k th  multiplet is 
collapsed to a singlet with an attenuation half-width (Yk = o k / 2 Q k .  It is convenient to intro- 
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Estimation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof seismic moment 765 

duce the complex frequency vk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= cdk t icyk. In the vicinity of cdk the resonance spectrum 
for a record of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT beginning at t = 0 is approximately 

ck(w) = i[ 1 - exp [- i (w - Itk)T] 1 /2 i (w - vk). (4.19) 

Errors in the transfer functions include those due to mislocation of the source and those 
due to an incorrect earth model. For large, propagating ruptures the standard location pro- 
cedures based on high-frequency body-wave arrival times do not necessarily yield the best 
estimates of the source centroid (Dziewonski et al. 1981). The data functionals U p ,  are 
independent of shifts in an event's temporal centroid, but they are affected by spatial 
mislocation. Location errors, particularly in hypocentral depths of shallow earthquakes, 
alter the relative excitations of the normal modes. The partial derivatives of the transfer 
functions with respect to the location parameters (Dziewonski et al. 1981) could be used to  
map the statistics of the mislocation error into the bias matrix B Z )  and the covariance 
matrix V$Lt; the formalism for developing such statistics directly from the mode data is 
implicit in the treatments of Backus (1977) and Dziewonski et al. (1981), but too few 
earthquakes have been studied at low frequencies to  establish an empirical basis adequate for 
this purpose. Hence, in our formal error analysis we shall ignore source mislocation and 
interpret our error estimates as uncertainties conditional on a particular choice of spatial 
centroid. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA synthetic experiment illustrating the effects of depth mislocation on moment 
estimation for shallow-focus and deep-focus earthquakes is presented in Section 6.2.  

Our analysis of transfer-function error is concentrated on the use of a radial earth model 
which is incorrect because it does not adequately represent the spherically averaged earth 
and does not account for the existence of aspherical heterogeneity. Our treatment is 
approximate. Although the k th multiplet recorded at the p t h  station may be split by 
asphericities, we assume it can still be characterized as a singlet with an apparent initial 
amplitude ikp and an apparent complex frequency V k p .  These mode parameters will 
generally differ from those predicted by the radial reference model: 

V k p  = V k  t Aukp 

= (Wk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt A u k p )  t i(ak t A(Ykp). 

Substitution into equations (4.17) and (4.19) yields 

(4.21) 

The analysis is simplified by several further approximations. In calculating the error 
All,$<) from (4.22) we assume the modes are sufficiently isolated for cross-terms ( k  # k ' )  to  
be neglected and the mode widths are sufficiently small for the limits of integration to  be 
extended to  k ~ .  The necessary integrals can then be evaluated explicitly: 

We have here introduced the dimensionless parameter 

E k p q  i(AvEp - AVk9)/2Qk 

= [ACYkp i- ACYk9 t i(AWkp - AUk9)]/2CYk. (4.24) 
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166 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the short-record limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a k T <  1) the integral (4.23) is approximately nT/2 and is indepen- 
dent of f k p q .  In practice the record length is usually large enough ( a k T >  1) and Ekpq is 
small enough ( ( E : ~ ~ ) ” ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 0.5) so that the dependence of the numerator of (4.23) on Ekpq 

can be ignored. Under these conditions (4.22) reduces to  

P. G. Silver and T. H. Jordan 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 is the set of modes contained in the interval (aa, wb), and 

h k p q  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - 1. - (1 A A k p / A k p ) *  (1 + A A k q / A k q )  

( l  € k p q )  

(4.25) 

(4.26) 

The statistics of A U E )  are therefore derivable from the statistics of the dimensionless 
quantity h k p q .  

The shift in the apparent centre frequency of the multiplet can be expressed as the sum 
of two terms, 

A W k p  = A s k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 6 W k p .  (4.27) 

The first is the difference between the degenerate eigenfrequency of the spherically averaged 
earth and that of the radial reference model used to  compute the transfer functions: 
A w k  i& - w k  (quantities pertaining to  the spherically averaged earth are indicated by 
overbars). nok is the same for all stations, so its contributions to Ekpq cancel; hence, to this 
order of approximation errors in the degenerate eigenfrequencies do not contribute to the 
transfer -func t ion err0 r A ug) . 

The second term represents the shift in the apparent centre frequency of the multiplet by 
aspherical heterogeneity. Such shifts have been studied theoretically by Jordan (1978) and 
Dahlen (1979) and empirically by Silver & Jordan (1981). To first order in the heterogeneity 
6 w k p  equals the multiplet location parameter h k p  defined by Jordan (1978); h k p  is a linear 
functional of the heterogeneity which tends asymptotically (Zs n )  to the local eigen- 
frequency averaged over the great circle connecting the source and receiver. The diagonal- 
sum rule of the degenerate perturbation theory (Gilbert 1971b) can be used to show that 
hkp has zero mean when averaged over the sphere (Jordan 1980). We therefore take 

( 6 w k p )  = 0. (4.28) 

We specify the cross-correlation between any two modes in 8 by assuming the frequency 
shifts are uncorrelated at different stations but strongly correlated at the same station, 
having Gaussian distributions with variances proportional to a;: 

(6 w k p  6 W k ’ q  ) = (YkOk’ 6 p q .  (4.29) 

To assume the locations of nearby multiplets are strongly correlated on the same record is 
consistent with the predictions of the asymptotic theory (Jordan 1978; Dahlen 1979) and is 
reasonably well justified by observations (Silver & Jordan 1981). Rms values of 6 w k p / a ) k  

derived from fundamental-mode IDA data are shown in Fig. 1; a typical estimate is 

(4.30) 

The error in the apparent attenuation parameter of the multiplet can be similarly parti- 
tioned, 
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Estimation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof seismic moment 767 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1. The frequency-shift parameter [- of equation (4.29) for the fundamental modes ,S, - ,S,, 
derived from the data of Silver & Jordan (1981). 

We assume a Gaussian statistical model analogous to  that for the frequency shifts: 

(h(Ykp)  = 0,  (4.3 2) 

( 6 a k p 6 f f k t p ) = a k ( l l k ' ' $ ~ & p q .  (4.33) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t@ = (&(Yip )l'*/(Yk 0.2. (4.34) 

For the fundamental spheroidal modes Riedesel, Jordan & Masters (1981) estimate 

They find that the fluctuations in apparent half-width are not strongly correlated with the 
multiplet locations, so we assume 6 a k p  and h a k p  have independent Gaussian distributions. 

Unlike n o , ,  AGk does not cancel out of the expression for e k p q ;  errors in the radial part 
of the anelastic structure thus contribute to A U f i ) .  The expected value of (4.24) is 

( f k p q  ) = A & k / f f k .  (4.35) 

To simplify the expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABK)  and VdIlq)st we henceforth assume the radial reference 
model is good enough to allow us to ignore this bias; the validity of this assumption for the 
particular radial attenuation structure used in our calculations will be discussed in Section 
6.2. Taking Aiik = 0 yields 

( c g p  q Ek'st ) = '/4 (ti + EL) CspS + &q t> + y4 (ti - '$;I ( & p  t + ' , S > .  (4.36) 

To first order the error in the initial amplitude can also be written as the sum of the radial 
and aspherical parts, 

A A k p  = A Z k ,  6 A k , .  (4.3 7) 

Calculations with published earth models suggest that the size of the relative error A 2 k p / A k p  

is not large; for example, the amplitudes of the fundamental spheroidal modes computed for 
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sub-crustal earthquakes using models 1066A and 1066B (Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dziewonski 1975) 
generally vary by less than 5 per cent, even though the details of the crustal and upper 
mantle structures are quite different. We therefore take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AAkp = 0. (4.38) 

An expression for the ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 A  kp/Akp has been derived by Jordan & Silver (1 98 1) from 
perturbation theory; to first order it is a sum over mode-mode interactions and, like the 
multiplet location, is a linear functional of the aspherical heterogeneity. As yet, little theo- 
retical work has been done to quantify the magnitude of the amplitude fluctuations, but 
some empirical results have been obtained by Riedesel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1981), who compared observed 
initial amplitudes with those predicted from good source models. Well-excited fundamental 
spheroidal modes show an rms scatter in relative amplitude (observed/synthetic) of - 40 per 
cent. Although larger than perhaps anticipated, these fluctuations are not strongly correlated 
among nearby modes and are thus reduced by integrating over frequency. A Gaussian 
model consistent with these results is specified by 

P. G. Silver and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. H. Jordan 

- 

( S A k , )  = 0 (4.39) 

( 6 A E p 6 A k ' q ) =  ] A k p  12ti 6 p q 6 k k '  (4.40) 

.$A = (16Akp/Akp12>"2 0.4. (4.4 1) 

The distributions of 6 A k p  and ekpq are taken to be independent. 

assumptions. Truncating terms of higher order than t2 yields the expected value 

( h k p q ) "  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/2(t:-tk)+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[t j  ' ( t :  ' $ k ) 1 6 p q .  

A consistent expression for the covariance requires keeping terms to S(t4). The result is 

We expand the denominator of (4.26) in powers of e k p q  and apply our statistical 

(4.42) 

COV [h:,, hkrst]  = 'Is ti AF&', [ 2  + ti + 3 APg'st + 6)] 

+ y8 tLApq;> [ 2  + .gL(APq;)+ 3Ai'4'st - 6 ) ]  

+ Y8tCY [ A('+) pqst@pqst ( l )  - 2 )  + Apq;>(Ar2sf + 2)] 

+ ti 6 k k t  [A?;! + t i  ( 6 p s h q t  + 6 p t 6 q s ) I  

+ Y 4 t i  ti 6 k k f  [2Ags),(A614)sr + 2) + Ap&!(Ap&), + APist)l 

+y4$k t i6kkk ' [ 2A?qs t (  +) A( ' )  p q s t  - 2) + AP&?(Ap&', + APg's,)], (4.43) 

where and A;;', are sums of Kronecker deltas: 

A(') - 6  + 6  (4.44) 

A(2') p q s t  - = 6  p s  6 P t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,s +6,t (4.45) 

P q s t  P 4  S t  

Because (4.42) is independent of the mode index k ,  it factors out of the expected value 
of equation (4.250, and the bias matrix reduces to 

B ( R )  P4 = { 1 / 2 ( t i  - t k )  + [ti + 1 / 2 ( t i  + tk)I6,, ). u p q .  (4.46) 
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Estimation of seismic moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA769 

Similarly, the terms in (4.43) independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk contribute to the covariance matrix in 
proportion to U;q Ust, whereas those involving f ikk i  are proportional to the spectral integral 

(4.47) 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to 

In the special case of power spectra ( p  = q ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = t) ,  all terms proportional to .$; drop out 
equations (4.46) and (4.48), as expected, since the power-spectral integrals are insensitive 
errors in the multiplet centre frequencies. Such variations introduce a negative bias to the 

cross-spectral integrals (the coherence of the observed time series is decreased by aspherical 
heterogeneity), which competes against a positive bias caused by variations in apparent 
attenuation. According to this model, ampIitude fluctuations contribute a positive bias to  
the power spectra but none to the cross spectra, a behaviour identical to ambient noise (cf. 
equation 4.15). 

To @(<*) the 'diagonal' elements of the covariance matrix ( p  = s, q = t )  are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As the bandwidth of integration increases I Upq 1' grows more rapidly than '4YPqpq, and the 
amplitude fluctuations contribute less to the relative variance of opq. This is a consequence 
of presuming the variations in tikp and GkP are correlated for all modes in this band at a 
given station but the amplitude fluctuations are not. 

4.3 M O D E L L I N G  E R R O R  

The normalized modelling error krn in equation (4.4) is defined in terms of the source 
mechanism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and the error matrix E = 

6, = m* . E .m = (m*m) : E. (4.50) 

To derive the statistics of 6, we impose as a probability distribution on m an appropriate 
likelihood function constructed from prior information about the source; i.e. we consider 
m to be a stochastic process from which the actual (unknown) mechanism is a sample. The 
bias and variance of k m  are completely specified by the second- and fourth-order tensors 

- C by the quadratic form 

(4.5 1) 

(4.52) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(2) = (m* m) 

lr(4) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6 m* m* k), 

The expressions are 

0 m -  = ( k  rn ) = p , ( 2 )  E (4.53) 

(4.54) 
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Let us first consider the important special case of a synchronous source (equation 2.13), 
where, with no loss of generality, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm can be taken to be purely real. A useful and simple 
probability density function for the orientation of a real unit vector of dimension n is the 
hyperspherical normal distribution 

Sn($)= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,'(K) eXp(Km0.m). (4.55) 

This distribution is parametrized by a most probable unit vector mo and a dimensionless 
scale factor K > 0, whose inverse is a measure of the dispersion. Large K corresponds to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
distribution of unit vectors tightly clustered about mo, whereas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = 0 corresponds to a 
uniform distribution on the n-dimensional unit hypersphere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, . C,(K) is the normalization 
integral taken over this domain, 

cn(K)= J- eXp(Kmo.m)d!d,,(m). (4.56) 

S2(m) is the circular normal, or von Mises, distribution (von Mises 1918), and S3(m) is the 
spherical normal, or Fisher, distribution (Fisher 1953); the latter is commonly employed in 
the statistical manipulation of palaeomagnetic pole positions (e.g. Watson 1966). The general 
hyperspherical case (n > 3) needed for our purposes has evidently received less mathematical 
attention than either of these special cases (Johnson & Kotz 1970, for example, give an 
incorrect form for the probability density function); the low-order moments of the hyper- 
spherical normal distribution are therefore derived in Appendix B. 

The results of Appendix B lead to the following expressions for the bias and variance of 
em for synchronous sources: 

a" 

Pm = f i ( ~ ) t r E ~  + ~ z ( K ) ~ o . E R  . m o ,  (4.57) 

6; = f 3 ( ~  j ( t r  ER)' + f 4 ( ~ )  ER : ER + f 5 ( ~ )  (tr ER) ( m 0 . E ~  .mo) 

+ f 6 ( ~ )  II ER . m o l l 2  + f , ( ~ )  ( m 0 . E ~  . mo)', (4.58) 

where ER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Re E. The functions { f i ( ~ )  : i = 1, 2, . . . , 7 )  are given in Table 1 in terms of 
the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa$q)(K) of equation (B8), together with explicit expressions for the special 
cases of a uniform distribution (K = 0) and the Gaussian limit (K + m). 

To generalize equations (4.57) and (4.58) to  asynchronous sources we use an iso- 
morphism between 6-dimensional complex unit vectors m mR + i mI and 12-dimensional 
real unit vectors m' E [mR I mI J .  Since E ER + i EI is Hermitian (E: = E R ,  EF = - EI), 
the normalized modelling error can be written em = m' . E' . m', where 

(4.59) 

Hence, the appropriate probability density function is S12(m'), and the moments of em can 
be computed by applying the formulae of Appendix B to  the case n = 12. Recast in terms of 
the complex-valued quantities mo and E, the results for general asynchronous sources are 

uk = f 3 ( ~ )  (tr E)' + f 4 ( ~ )  E* : E 

+fS(K)(tr E)(mg.E.mo)  

+ f6 (K)  II E * m o  1 1 2  + f 7 ( K )  (mo* . E . ~ o ) ~ ,  

where the functions { & ( K )  : i = 1 , 2 ,  . . . , 7 )  are again given in Table 1. 

(4.61) 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExpressions forfi(K). 

Synchronous sources* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i General Uniform 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu y  116 

O<KGm K = o  

2 K 2 U f )  0 

3 u p  - ( u p  -11144 

5 2K2(uy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-&) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  
2 0 2 )  O 

6 ~ K ’ u ? )  0 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 4 2 )  1/24 

7 K4[Ur) - (U?’) ’ ]  0 

*Pertain to equations (4.57) and (4.58). 
?Pertain to equations (4.61) and (4.62). 

Gaussian limit 

K - I  

K>l  

1 - K - ‘  

0 

2K-’ 

0 

4K-* -2K-l 

- 4K-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Estimation of seismic moment 77 1 

Gaussian 
limit K > 1 

2K-1 

1 - K - ‘  

0 

4K-’ 

0 

4K-I - 2K-’ 

- 4K-I 

The choice K = 0 corresponds to the interesting special case of a uniform distribution on 
the hypersphere of possible source mechanisms. All mechanisms have equal probability 
density and no a pnori information is imposed on the nature of the source. Equations (4.60) 
and (4.6 I )  reduce to the intuitively satisfying expressions 

8, = ‘/b tr E (K  = 0), (4.62) 

6% = [E* : E - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY6 (tr E)’] 

‘/42 ET, ED ( K  = 0), (4.63) 

where ED E - 1/,(tr E)I is the deviatoric part of E. If we want to  require the source to be 
synchronous but impose no other constraints, we can substitute K = 0 into equations (4.57) 
and (4.58); the results are similar to  those above, except E and E* are replaced by ER and 
the geometrical factor 1/42 is replaced by 1/24. 

The distributions of m discussed thus far are isotropic about a most probable mechanism 
mo; they provide no means of asserting that some components of mo, or combinations of 
components, are better known than others, as is often the case in seismology. The general- 
ization of the complete hyperspherical normal distribution to include anisotropic dispersion 
involves certain mathematical difficulties we wish to avoid here, but it is straightforward in 
the Gaussian limit of small dispersion (large K) .  As discussed in Appendix B, &(m) is 
asymptotically Gaussian with a mean mo and a variance matrix 

9,  = K - ’ ( I - m o l f l o ) .  (4.64) 

Table 1 shows that, for synchronous sources, equations (4.57) and (4.58) reduce in this limit 
to 

0, = V,,, : ER -k ER . m o ,  (4.65) 

6& = 4 m 0 .  E R .  V m . E R . m o  t 2 [I V, . ER 11’. (4.66) 

To include anisotropic dispersion all we need do is generalize the variance matrix V, appro- 
priately. Suppose, for example, a symmetrical, real, but possibly non-diagonal, variance 
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772 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, was obtained from some estimation procedure yielding the synchronous source 
mo, such as the direct inversion of equation (1.3). Then, the appropriate variance matrix for 
use in (4.65) and (4.66) would be computed by projecting and normalizing V, thus: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Vm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 11 mo (4.67) 

The extension of this Gaussian generalization to asynchronous sources is most easily 
accomplished by applying the isomorphism used to derive (4.60) and (4.6 1); equations 
(4.64)-(4.67) retain the same form except all vectors and matrices are 12-dimensional 
rather than 6.  

As a final topic of this section we consider appropriate forms for the modelling errors 
in the special case when the source mechanism is presumed to be purely deviatoric, i.e. when 
both the best estimate mo and its associated errors are perpendicular to any purely isotropic 
mechanism of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmI exp(iqQ, where 

m1=(3 ) - ”~ [1  1 1 0  0 01, (4.68) 

and $1 is an arbitrary phase. The domain over which a likelihood function must be specified 
is the intersection of the unit hypersphere with the hyperplane defined by m ~ .  All of the 
equations given in this section for &, and 6, retain the same form except that the error 
matrix E is replaced by its projection 

(I - mI mI) . E . (r - mI mI). (4.69) 

The dimension of the manifold, n ,  is reduced from 6 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 for synchronous sources and from 
12 to 10 for asynchronous sources; hence, in the specification of the functions f i ( ~ ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  1, 
2 ,  . . . , 7, the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa?) of Table 1 are replaced by a$$), and the coefficients ai4)  are 
replaced by u p ) .  

We shall make use of the likelihood functions for purely deviatoric mechanisms in our 
algorithm for detecting the existence of an isotropic part (Section 5.2). 

P. G. Silverand T. H. Jordan 

(I - mo mo) . V, . (I - momo). 

5 Optimization algorithms 

The statistical models developed in Section 4 permit, for any particular set of coefficients 
{ a p 4 :  , the estimation of the bias and variance induced in A2 by ambient seismic noise, 
transfer-function error, and the failure to  solve equation (2.10) exactly (‘modelling error’). 
We shall optimize the calculation of the coefficients { a p q ]  by minimizing certain linear 
combinations of non-negative-definite quadratic forms involving these statistics. Our optimi- 
zation algorithms thus belong to  the general class of ‘least-squares’ estimation procedures. 
Characteristic of these procedures is the existence of trade-off curves between two compet- 
ing measures of estimation error (Backus & Gilbert 1970). 

Consider, for example, the trade-off curve between the squared bias zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 (equation 4.5) and 
the variance u2 (equation 4.6) generated on the locus 6 E(0, n / 2 )  by minimizing the positive- 
definite quadratic form p2 cos 6 t u2 sin 6 with respect to  a variation of the u p q s .  As 6 -+ 0, a 
solution (or solutions) is approached which minimizes u2 subject to  the constraint that p2 
(and therefore 6) be zero. As 6 + n/2, u2 decreases to zero and approaches - M 2 ,  corre- 
sponding to the solution upq = 0. The intermediate point on this trade-off curve (6 = n/4) 
yields the solution(s) minimizing 

€2 = p 2  t 2. (5.1) 

By definition e2 equals ( e 2 ) ,  the so-called ‘mean squared error’, whose minimization is a 
common criterion for optimality in power spectral estimation (Jenkins & Watts 1968, 
p. 247). We adopt this criterion in our optimization scheme. 
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Estimation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof seismic moment 773 

Notation can be simplified by defining the 'total observational error' eo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= en -k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeg. The 
mean and variance of this random variable are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 5 . 3 )  

Of course, for any specified set of coefficients : a p p )  we have available only estimates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Po and a;, because quantities such as U p ,  appearing in the expressions for the bias and 
variance matrices (equations 4.15, 4.16, 4.46 and 4.48) must be approximated by their 
observed values op9. Statistics obtained by these substitutions are indicated by superposed 
tildes, e.g. B0 and 156. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.1 E S T I M A T I O N  O F  M: 

An appropriate measure of the error induced in an estimate of total squared moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M +  = C a P 9 u p 9  

P 9  

by ambient seismic noise and aspherical heterogeneity is the mean squared observational 
error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6; t 06. A similarly appropriate measure of the failure to  solve exactly the 
constraint equations 

C ap9 H p 9  = C(0,1/4) 

is the normalized mean squared modelling error Zk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflk + 6:. The former is an absolute 
error with dimensions of M ; ,  whereas the latter is a dimensionless relative error. 

To optimize the estimation of M i  we consider the solutions lying on the trade-off curve 
between C$ and 6 2 ,  i.e. the sets of coefficients { a p 9 )  minimizing the function 

CT 
P9 

f(e) = E Z ~  t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwz; tane, e E (0, n/2). (5.4) 

w is a constant with dimensions of M; which scales the two types of errors and renders 
(5.4) dimensionally homogeneous; a convenient choice is discussed below. 

Minimizing (5.4) with respect to  the apgs  leads to a system of normal equations 

1 r p q s t a s t  = dp9 > 
sr 

where 

( 5 . 5 )  

and p(") is the fourth-order tensor defined by (4.52). If the indices in (5.5) are permitted 
to  range over an entire set of P records, then (5.5) represents a system of Pz complex- 
valued equations for the Pz complex-valued unknowns { ap9 } .  However, because the 
matrices ap4 and dp9 are Hermitian and H p 9  obeys the symmetries embodied in equation 
(2.1 I), the use of appropriate isomorphisms allows this system to be transformed into a 
square system of P2 real-valued equations, considerably reducing the computational labour 
required for its solution. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
0
/3

/7
5
5
/6

2
3
7
5
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2
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The choice of the scaling constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is formally arbitrary, since it only governs the para- 
metrization of the trade-off curve by 8 (Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert 1970, p. 145), but inspection of 
equations (4.3) and (4.4) shows that the two types of error are commensurate for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw =  4M;. 
Selecting w to  be near this value insures the ‘knee’ of the trade-off curve will be in the 
vicinity of 8 = n/4. This intermediate point then represents a nearly optimal compromise 
between the extremal solutions at 8 = 0 (apq = 0, E$ = 0) and 8 = n/2 (minimum of 6;). 

To implement the opimization algorithm we make a rough estimate of MT to fix w and 
calculate the coefficients { ap4 for 8 = n/4 by solving (5 .5 ) .  If the system is singular or ill- 
conditioned, which is commonly the case if the number of record pairs is large, the inversion 
is accomplished by a regularization procedure which adds a small, positive constant to the 
‘diagonal’ matrix components rpqpq. The estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi; obtained from equation (4.1) is 
corrected for the relative modelling bias 20, and the absolute observational bias Po and is 
assigned a relative modelling variance 46; and an absolute observational variance U;. The 
results of the optimization algorithm can thus be written 

Seismologists prefer to  speak in terms of moment, rather than its square. Since the 
square-root of (5.9) is typically small compared to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM i ,  we can characterize the error in MT 
by a relative standard deviation whose square is 

p+=&*~ar[A?T] = Y4R;4~ar [ f i+ ] .  (5.10) 

Defining the normalized observation errors by 

allows us to write the relative bias correction i n a T  as 8, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$0 and the square of its relative 
standard deviation as 

(5.13) 

5.2 DETECTION O F  A N  ISOTROPIC P A R T  

One of the primary motivations for this work is the need for better algorithms to search for 
an isotropic component of the seismic moment tensor. This detection problem is best set up 
as a test of the null hypothesis that the moment tensor is purely deviatoric, i.e. MT =MD 
and MI = 0. A detection is deemed successful when the null hypothesis has been rejected at 
some pre-assigned confidence level. 

We begin by adopting the null hypothesis in our specification of the likelihood function 
for the source mechanism; mo is chosen as the best deviatoric estimate of the mechanism, 
and the tensors p(’) and p(4) are constructed from the assumption that errors in mo are 
perpendicular to the isotropic mechanism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAml. This can be accomplished by the methods 
outlined at the end of Section 4.3. 

C(Y6, 0), so that 
minimizing the function f(8) of (5.4) yields a system of normal equations with dpq = 0. The 

Such a specification has the property that p(4) : CI = 0, where CI 
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Estimation of seismic moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 5 

trade-off curve obtained by the regularized inversion of (5.5) thus collapses to the trivial 
solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. 

This behaviour is a consequence of imposing the deviatoric hypothesis we seek to  test. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As formulated, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi’, , and hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(0), is independent of the quantity 

(5.14) 

2& is just the bias in M: due to  the isotropic component of the modelling error. 
In our detection algorithm the estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa: is obtained by minimizing f(0) subject to the 

constraint PI = 0. As an optimal point on the trade-off curve we select w tan0 = 4M+, where 
& is the estimate of total moment given by equation (5.8). The resulting normal equations 
have the form of (5.5), where 

dpq  = h HP*4 : CI, 

and h is a Lagrange multiplier. h is chosen such that = 0 or, equivalently, 

1 apq H,, : CI = 1/4. 
P 4  

(5.15) 

(5.16) 

(5.17) 

Again, this system of complex-valued equations can be reduced to  an equivalent system of 
real-valued equations by employing appropriate isomorphisms. 

The estimate of the squared isotropic moment obtained by this procedure is 

(5.18) 

(5.19) 

By assuming the distribution of errors in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMl is adequately modelled by a Gaussian density 
function with zero mean and a variance given by (5.19), the null hypothesis M: = 0 can be 
tested against the alternative MI” > 0 at the (1 - a)  per cent confidence level according to 
standard procedures. The null hypothesis is rejected if 

#: > K, (4a; 6; t (5.20) 

where K, is the appropriate critical value for a one-sided tests, e.g. at the 95 per cent confi- 
dence level, Q = 0.05 and x a  = 1.64. 

6 Applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto real and synthetic data 

The techniques of scalar-moment estimation formulated in this paper have been applied to  
two well-studied events, the deep-focus Honshu earthquake of 1978 March 7 (Dziewonski 
et al. 1981 ; Masters & Gilbert 1981, private communication) and the shallow-focus Oaxaca 

Table 2. Earthquakes studied. 

Location Date Origin time Latitude Longitude Depth mb M, 
(UT) (deg) (deg) (km) 

Honshu, Japan 1978 Mar. 7 2r48147.6 32.005N 137.609E 439 6.9 - 
Oaxaca, Mexico 1978 Nov. 29 19:52:47.6 16.010 N 96.591 W 18 6.4 7.7 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Source mechanisms and variance matrices for the Honshu and Oaxaca events. 

Honshu (after Masters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert 1981, private communication) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASilver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand T. H. Jordan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m o  

mrr 

mrr 0.488 0.1 15 
mee 0.053 
m w  -0.541 
"re 0.384 
m@ -0.551 
me+ -0.121 

Oaxaca (after Stewart et al. 1981) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m o  

mrr 

mrr 0.262 0.565 
moo -0.260 
m w  -0.002 
mr8 0.717 
mrQ -0.574 

0.141 ... moo 

$m x 10 

m O e  m# mr8 mt@ 

-0.122 0.007 -0.056 0.000 
0.782 -0.660 0.116 0.677 

0.654 -0.060 -0.676 
0.061 0.073 

0.718 

vm x 10 

me zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe m# mre mt@ 

-0.308 -0.256 -0.269 0.150 
0.825 -0.517 0.337 -0.075 

0.773 -0.068 -0.074 
0.347 0.118 

0.262 

me@ 

0.206 
0.088 

-0.294 
-0.042 

0.281 
0.710 

me@ 

0.356 
0.066 

-0.442 
-0.164 

0.049 
0.492 

earthquake of 1978 November 29 (Ward 1980b; Stewart, Chael & McNally 1981; Reichle, 
Orcutt & Priestly 1982). The Preliminary Determination of Epicentre (PDE) bulletins of the 
United States Geological Survey (USGS) assign a body-wave magnitude of 6.9 to  the former 
and a surface-wave magnitude of 7.7 to  the latter. Estimates of the location parameters and 
source mechanisms are listed in Tables 2 and 3. 

Both events were recorded on the vertical-component accelerometers at nine stations of 
the IDA network. The data {up,; p ,  q = 1, 2, . . . , 9: were obtained for each record pair 
by fast-Fourier transforming Hanning windowed seismograms of 10-hr lengths and inte- 
grating the cross-spectra over 1 millihertz (mHz) bands. For each station estimates of the 
snr were made in each band by integrating the spectra of noise samples taken prior to the 
events. 

The bias matrices Bd:) and B g )  and covariance matrices $:)st and V')sf were computed 
from equations (4.15), (4.46), (4.16) and (4.48), respectively, using these snr estimates and 
the values of the heterogeneity parameters discussed in Section 4.2 ( E m  = 0.5, $a = 0.2, 

Time-domain transfer functions were generated from the 1066A model of Gilbert & 
Dziewonski (19751, the recently derived Q model of Masters & Gilbert (1982), and the 
location parameters of Table 2. These time series were processed exactly as the observed 
seismograms to yield the matrices H,, . 

.$A ~ 0 . 4 ) .  

6.1 E F F E C T S  O F  C O N S T R A I N T S  O N  T H E  S O U R C E  MECHANISM 

The estimates of scalar seismic moment can be constrained by imposing a likelihood func- 
tion on the source mechanism m of the sort discussed in Section 4.3. To investigate the 
effects of such constraints on h#T we performed a series of numerical experiments with the 
Honshu event. Synthetic seismograms were computed from the moment-rate tensor of 
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Estimation of seismic moment 777 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Masters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert (1981, private communication) listed in Table 3 (MT = 0 . 6 4 4 ~  1OZ7dyne 
cm = 0.644 x 1OZ0N m), and the resulting cross-spectra were integrated across the frequency 
band 4-5mHz to give theoretical values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUp4 for the nine IDA stations recording this 
event. The estimation algorithm of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.1 was applied to  these synthetic data using the 
various likelihood functions described in Section 4.3. 

Table 4 summarizes the results for four basic types of likelihood functions. Each type 
characterizes a different manifold of source mechanisms and is parametrized by a dimen- 
sionless constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ,  whose inverse measures the dispersion about a most probable mechanism 
mo. Type HA corresponds to a hyperspherical density function for a general asynchronous 
source; its bias and variance are given by equations (4.60) and (4.61). Type HS is also 
hyperspherical, but the mechanism is constrained to be synchronous (equations 4.57 and 
4.58). Type HSD incorporates the further restriction that the mechanism be purely devia- 
toric; its statistics are constructed by the methods outlined at the end of Section 4.3. Finally, 
type GSD represents the Gaussian approximation to type HSD (equations 4.64-4.66). In all 
these distributions mo was taken to  be the synchronous, deviatoric mechanism of Table 3 ,  

the same mechanism used to generate the data. 
For each of the experiments in Table 4 the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a,,; p ,  q = 1, 2 ,  . . . , 9)  were 

computed assuming the snrs and heterogeneity parameters assigned to the real data. How- 
ever, because the synthetic data were not, in fact, contaminated by such observational 
errors, the values of aT listed in the table were not corrected for the relative observational 
bias P o .  

At a fixed value of K restricting the source to be synchronous and deviatoric generally 
decreases the errors in MT by a small amount. At K = 18, for example, the relative error 
p~ = (6% -t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6:)’” decreases from about 10 per cent for the HA distribution to 8 per cent 
for HSD. This modest gain is a manifestation of the heuristic notion that imposing a priori 
constraints on the source mechanism should permit an improved estimate of scalar moment 
(conditional, of course, on the constraints being correct!). The exception occurs at K = 0, 
where going from an HA to an HS distribution actually increases the estimated error. The 

Table 4. Statistics of total-moment estimates for the Honshu event derived from synthetic data in the 
band 4-5 mHz for various source-mechanism likelihood functions. 

Type Probability Source K Pm urn 
density description 
function 

HA Hyperspherical Asynchronous 0 
9 

18 
50 

HS Hyperspherical Synchronous 0 
9 

18 
50 

HSD Hyperspherical Synchronous, 0 
deviatoric 9 

18 
50 

GSD Gaussian Synchronous, 9 
devia toric 18 

50 

-0.058 0.120 
-0.044 0.105 

-0.014 0.047 
-0.029 0.081 

-0.072 0.126 
-0.038 0.093 
-0.021 0.066 
-0.012 0.038 
-0.045 0.082 
-0.028 0.075 
-0.018 0.054 
-0.011 0.032 
-0.012 0.085 
-0.011 0.058 
-0.010 0.032 

0.042 0.095 0.696 
0.035 0.087 0.709 
0.024 0.075 0.707 
0.010 0.062 0.682 
0.051 0.110 0.677 
0.030 0.084 0.694 
0.018 0.072 0.684 
0.007 0.059 0.663 
0.042 0.108 0.644 
0.026 0.080 0.675 
0.016 0.069 0.672 
0.007 0.059 0.658 
0.029 0.088 0.692 
0.016 0.072 0.677 
0.007 0.059 0.659 

*Correct value isMT = 0.644 X lOZ7dyne cm. 
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explanation for this apparently anomalous behaviour is subtle: restricting the mechanism 
to be synchronous will increase the expected error if the error matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is nearly real, since 
the elements of m will then be in phase and the quadratic form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. E .  m will, on the 
average, be larger. This is indeed the case at K = 0, where the power-spectral integrals 
dominate the sum more. 

Increasing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK implies increasing the probability that the actual mechanism lies near mo; 
for all the distributions in Table 4 this reduces the estimation errors, since i@ij~ can be 
optimized accordingly. In the limit K +m the error assigned to mo goes to zero, and the 
optimal estimate yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,  = 0. 

The Gaussian approximation is expected to be valid in the large K limit. In fact, at 
K = 50 the HSD and GSD distributions give almost identical estimates of MT and its errors. 
The agreement deteriorates as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is decreased, but is still adequate for values as low as K = 9. 
The expected error in mo scales approximately as K - ~ ' ~ ;  i.e. a value of K = 9 corresponds to 
an error of about 33 per cent, which exceeds the uncertainty in most focal mechanisms 
obtained from first-motion analysis. The Gaussian approximation should therefore be applic- 
able to the study of the many events for which good mechanisms exist, including the 
examples considered here. 

P. G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASilver and T. H. Jordan 

6.2 E S T I M A T I O N  OF' T O T A L  M O M E N T  

MT was estimated from real data using GSD distributions to  constrain the source mech- 
anism. The parameters mo and V, are displayed in Table 3. For the Honshu event, m o  was 
taken to  be the synchronous, deviatoric mechanism of Masters & Gilbert (1981, private com- 
munication), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, was constructed according to equation (4.67) from the variance matrix 
obtained by their regression analysis. For Oaxaca, the double-couple mechanism of Stewart zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
el  al. (1981) was adopted. The uncertainties in the strike, dip and slip of the auxiliary plane 
were assigned standard errors of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 7", k 7" and f 15", respectively, which are consistent with 
the constraints imposed by their study. We assumed these errors to  be uncorrelated and 
derived Vm by first-order perturbation theory. To allow for the possibility of a small, non- 
double-couple, deviatoric component in the source we augmented this variance matrix by a 
matrix of the form (4.64) with K = 100. 

The bias-corrected estimates of MT derived from actual data are shown in Figs 2 and 3. 
The points correspond to integrals over disjunct 1-mHz bands spanning the frequency 
interval 1-1 1 mHz. Despite the narrowness of the integration bandwidth, the precision of 
the estimates is quite good; their relative standard deviations range from 10 to 22 per cent. 

Our estimates of total moment are generally consistent with other studies. Moment-rate 
tensors for the Honshu earthquake have been computed by Masters & Gilbert (1981, private 
communication) from IDA data in the band 2-5 mHz and by Dziewonski et al. (1981) from 
SRO data peaked at approximately 16 mHz; these yield total moments of 0.64 and 0.40 x 
1027dynecm, respectively. We obtain values that vary from 0.52k 0.071 x 1027dynecm 
(3-4mHz) to 0.30k 0 . 0 4 8 ~  1027dynecm (10-1 1 mHz). Averaging zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi@+ over the ten fre- 
quencypoints yields a root mean square (rms)MT of 0.43 x 1027dyne cm, essentially identical 
to that found by applying the estimation algorithm to power and cross-spectra integrated 
across the entire 1-1 1 mHz interval. 

A similar averaging of our results for the Oaxaca earthquake gives an rms value of 
2.8 x 10"dyne cm, with individual estimates ranging from 2.2k0.45 x 1027dyne cm 
(7-8mHz) to  3.2k0.45 x 1OZ7dyne cm (3-4mHz). In comparison, Stewart er al. (1981) 
computed a moment of 3.2 x 1027dyne cm from their double-couple mechanism by fitting 
surface waves recorded by the World-Wide Standardized Seismographic Network (WWSSN), 
and Reichle er al. (1982) got 2.9 x 1027dyne cm using a somewhat different mechanism and 
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Estimation of seismic moment 779 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2. Estimates of total moment averaged over l-mHz bands for the Honshu event of 1978 March 7. 
Error bars represent one standard deviation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
OO 2 4 6 8 10 

FREQUENCY (mHz) 

Figure 3. Estimates of total moment averaged over l-mHz bands for the Oaxaca event of 1978 November 
29. Error bars represent one standard deviation. 

surface waves recorded by IDA and SRO instruments. Both data sets had predominant 
frequencies near 5 mHz. Ward's (1980b) analysis of higher-frequency (- 30 mHz) body 
waves produced estimates ranging from 1.4 to  2.8 x 1027dyne cm. 

The precision attainable by our algorithm should permit the resolution of a fairly weak 
frequency dependence. The Oaxaca event yields an essentially flat moment spectrum - a 
result consistent with the short source times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(G  20s) obtained by Stewart et al. (1981) and 
Reichle et al. (1982). In contrast, there is evident in the plot for Honshu a systematic 
decrease in MT with frequency, resulting in a drop of about 25 per cent across the band. A 
regression fit to a Brune-type source spectrum yields an apparent corner frequency of 
15 f 4 mHz, which is anomalously low for an event of this magnitude. 

However, we have excluded from our analysis two potential contributors of frequency- 
dependent bias: source mislocation and an incorrect model of radial Q structure. To investi- 
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780 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gate the former we generated noise-free synthetic seismograms for the hypothetical sources 
of Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 using the hypocentres of Table 2; we then inverted these synthetic data assuming 
various source depths. The results are given in Fig. 4. Perturbing the source depth of the 
Honshu event by 20 km (- 5 per cent) introduced an error in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHT that averages only 5 per 
cent and is nowhere greater than 10 per cent. For the shallow-focus Oaxaca event, compar- 
able errors are generated by a 6-km displacement of the hypocentre. The detailed studies of 
Dziewonski zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (198 1) and Stewart et al. (1981) suggest that focal-depth errors much in 
excess of these values are unlikely. Hence, the marginal uncertainty in MT due to an 
incorrect depth is only on the order of a few per cent. 

The effect of an incorrect radial Q model on aT can be illustrated by considering a 
shallow-focus event such as Oaxaca, where the fundamental spheroidal modes dominate 
the seismogram. Over an integration bandwidth of only 1 mHz the ratio A(Yk/ak of equation 
(4 .35)  can be approximated by -AQ/Q,  where AQ/Q is the average relative bias in the 
quality factors of fundamental modes contained in the band. Referring to  equations (4.25) 
and (4.26) and ignoring other sources of bias we obtain ( A u k ) )  = (AQ/Q)U,, .  This 
implies that the relative bias in due to errors in Q is approximately AQ/Q.  Given the 
quality and size of the fundamental-mode data set used by Masters & Gilbert (1982), their 
model, which has been adopted to generate the transfer functions, should be able to predict 

P. G. Silver and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. H. Jordan 

0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.2 

- 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
460 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKM. 

' 0.0  

0.4 

0.2 

a 1  

- 

- 

-o '2 t  -0.4 -- 
0 2 4 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 l o  

FREQUENCY ( m H z )  

I 

24 KM.  

12 KM. 

I 
0 2 4 6 8 10 

FREQUENCY (mHz)  

Figure 4. Relative bias in total moment caused by displacement of the assumed source depth from its true 
value. Curves computed from synthetic data for: (a) the Honshu source at 439 km, and (b) the Oaxaca 
source at 18 km assuming focal depths of 420,439,460 km and 12, 18,24 km, respectively. 
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Estimation of seismic moment 78 1 

the average fundamental-mode Qs to 5 per cent (their prediction uncertainties are only a few 
per cent or less) and, thus, would not lead to  an appreciable error in the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM T  for a 
typical shallow-focus event. In the case of the deep-focus Honshu event, however, the 
magnitude of the error cannot be so strictly bounded, because the overtones contribute 
significantly to the seismogram, especially in the band 6-1 1 mHz, and their Qs are less well 
known. We do not feel warranted, therefore, to exclude the hypothesis that the true value of 
corner frequency for Honshu is much greater than 15 Hz. 

6.3 TEST F O R  AN ISOTROPIC P A R T  

The detection algorithm formulated in Section 5.2 was applied to  the Honshu and Oaxaca 
data to test for the existence of an isotropic moment MI. In Figs 5 and 6 the bias-corrected 
estimates at given by equation (5.18) are compared with the ‘detection thresholds’ 
computed for the 90 and 95 per cent confidence levels. These thresholds are defined by the 
inequality (5.20). All values of have been normalized by our best estimates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(aT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.43 x 1027dyne cm for Honshu, 2.8 x 1027dyne cm for Oaxaca). 

The detection thresholds for the two events are quite different, being generally higher for 
Honshu, especially in the band 3-6mHz. Indeed, as Fig. 5 shows, the data for Honshu at 
3-4 mHz are effectively incapable of distinguishing a purely isotropic mechanism from a 
purely deviatoric one, even at the 90 per cent confidence level. 

The mode-excitation efficiency of an isotropic source relative to a deviatoric source of 
equal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMT can be measured by the ratio of the mode’s compressional energy density, Ec, to 
its shear energy density, Es,  at the source depth (Gilbert 1973b). At the 18-km hypocentral 
depth of the Oaxaca event, the ratio Ec/Es increases gradually with frequency for the 
fundamental spheroidal modes. Since these modes dominate the seismograms, the detection 
thresholds decrease with frequency. Despite their low values (< 0.1 in the band 7-1 1 mHz 
for the 95 per cent level), only one estimate of MT/M+ (9-IOmHz) is significantly positive 
at the 95 per cent level. Taking the ten measurements together, the hypothesis that the 
Oaxaca event is purely deviatoric cannot, therefore, be rejected. 

1.0 c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.8 - 

? 0.6 ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N, ‘’ 0.4- 

E 

0.0 
o.2 t 

- 
-0.2; 2 4 6 8 10 

FREQUENCY (mHz) 

Figure 5. Test for the detection of an isotropic component of the Monshu mechanism. Points connected 
by solid line are estimates of M i  /M+ averaged over 1-mHz bands. Points lying above the light and heavy 
dashed lines are significantly greater than zero at  the 90 per cent confidence levels, respectively. 
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FREQUENCY (mHz) 

Figure 6 .  Test for the detection of an isotropic component of the Oaxaca mechanism, following the con- 
ventions of Fig. 5. 

At the much greater focal depth of the Honshu event (439km), E,-/Es for the funda- 
mental modes falls off rapidly beyond 2mHz, causing a sharp rise in the detection thresholds 
plotted on Fig. 5. Based on fundamental-mode excitation alone, it would be very difficult 
to  detect an isotropic component of a deep-focus earthquake, a fact recognized by Okal & 
Geller (1979). Fortunately, at frequencies above about 4 mHz, the detection thresholds for 
our data set are controlled primarily by the excitation of overtones, not fundamentals, and 
the detectability of an isotropic part improves, reaching an optimum at 7-8 mHz. 

Except for the points at 1-2 and 3-4mHz the estimated values of M i / M i  for Honshu 
are much more positive than those for Oaxaca, varying between 0.25 and 0.70 with an 
average value over all 10 points of 0.34. All six points at frequencies greater than 5mHz 
show an isotropic part that is significant at 90 per cent confidence level, and four of the 
six are significant at the 95 per cent level. Formally, therefore, we can reject the hypo- 
thesis that the Honshu mechanism is purely deviatoric. 

The sensitivity of our conclusions to  focal-depth mislocation was investigated by re- 
inverting the data set with +20km displacements in the Honshu hypocentre; these pro- 
duced only minor shifts in the curves of Fig. 5 and did not alter the outcome of the signifi- 
cance test. 

Other potential sources of extraneous bias are more difficult to evaluate. Both an 
incorrect radial Q model and mode coupling by lateral heterogeneities could alter the distri- 
bution of compressional and shear energies in the displacement field and thus affect the 
estimates of M:/M+. Until additional experiments can be conducted to pin down the magni- 
tude of these effects, the positive findings of Fig. 5 must be considered provisional. 

7 Discussion 

Our tentative identification of an isotropic component to the Honshu mechanism constitutes 
an interesting result, lending credence to the conjecture of previous seismologists (e.g. 
Gilbert & Dziewonski 1975) that isotropic compression accompanies some deep-focus 
earthquakes. Our hypothesis-testing algorithm has been rigorously formulated for an attack 
on this difficult observational problem and is being applied to the study of additional events 
recorded by the IDA network and other digital arrays. 
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The techniques for scalar-moment estimation developed here offer many advantages. 
Theoretical transfer functions are employed by our analysis, but the algorithms avoid the 
matched filtering of observed seismograms by synthetics and are, therefore, fairly robust with 
respect to errors in the assumed earth model. Careful attention has been given to  the estima- 
tion statistics and to schemes for optimizing the estimation errors, including those associated 
with incorrect transfer functions. As the experiments of the previous section demonstrate, 
the total moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMT can be obtained with a precision of better than 20 per cent by 
averaging the data from a sparse network over bandwidths of only 1 mHz. This precision 
should be sufficient to identify 'slow earthquakes' such as those discussed by Kanamori, 
Sacks and their co-workers and to investigate other anomalous aspects of source time func- 
tions. In some cases a significant improvement in the estimation statistics, especially in the 
detectability of an isotropic part, may be achievable by judiciously choosing time windows 
lagged to reduce the contributions of the fundamental modes (Dratler et al. 1971). 

Our method for estimating scalar moment requires no a priori information about the 
source mechanism, but, if such information is available, it can be specified in terms of the 
various likelihood functions discussed in Section 4.3. Imposing constraints on the source 
mechanism derivable from, say, first-motion analysis allows total moment to be obtained 
from very few seismic recordings. For example, consistent estimates of MT for both the 
Honshu and Oaxaca events have been computed using only two stations. Moreover, speci- 
fying a likelihood function allows us to eliminate the negative bias in moment estimates for 
shallow focus events caused by the degeneracy of the strain tensor at the free surface 
(Kanamori zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Given 1981). 
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Appendix A: formulation of Vi:)st 

The covariance matrix for ambient seismic noise is 

We assume the endpoints of the integration are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, =Jawo and cdb = J b w o ,  where wo is the 
fundamental Fourier frequency 2n/T and Ja and Jb are integers, and we approximate the 
frequency integrals by sums over discrete Fourier points, 

The covariance matrix involves the first four moments of f i p .  All odd-order moments are 
zero for a Gaussian white-noise process with zero-mean. The required even-order moments 
are 
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( i iP(jwo) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii,*(jwo) i i f ( k ~ , ) i i , ( k ~ ) ) =  T’(v; ~ : 6 , ,  6,t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ ~ ; ~ ; 6 ~ , 6 ~ t 6 j k ) .  

Vj:)st= Tv; U q t 6 p s  + TV; Up*6q, + A U T ~ V ~ U ~ ~ , , ~ , , .  

( -45)  

The resulting expression for the covariance matrix is 

(-46) 

Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB: moments of the hyperspherical normal distribution 

In this section we derive general expressions for the moments of the hyperspherical normal 
distribution S,(m) defined by equation (4.55). We also examine the form of these moments 
when K = 0, corresponding to a uniform distribution on the n-dimensional unit sphere, and 
given formulae asymptotically valid in the Gaussian limit of small dispersion (K + m). 

Let mp denote the pth-order outer-product tensor 

(B1) 
mimj . . . m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ A .  

p times 

The p th moment of S, is 

p”) (I6’ ) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcil (K) 6’ eXp(K 60 .m) dnf l (6) .  (B2) 
Ja n 

The normalization factor Cn (equation 4.56) is an integral of the general form 

C,(Kr) = exp(Kr .m) dnn(m) ,  (B3) Jn, 
where r -  ~ ~ r ~ ~ = ( r - r ) l ’ z .  To the function (B3) we apply V,., the gradient operator with 
respect to  the vector field r ,  and evaluate the results at r = mo: 

[ V,Cn(K P)] = k0 = K I f 3  eXp(K 6 0 .  6) d n n ( 6 ) .  (B4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1% 
This surface integral is proportional t op ( ’ ) .  Hence, the p t h  moment is generated by apply- 
ing the gradient operator p times, 

=K-PC-l(  n K )  [V,PCn(~r>lr=f i , .  (B5) 

Expressing the surface element dCln in hyperspherical coordinates (ErdClyi 1953, chapter 
XI) and using the integral representation of the modified Bessel function of the first kind 
I ,  (Olver 1970, equation 9.6.18) we can reduce (B3) to the simple expression 

c n ( K Y )  = (211)ut1(Kr)-”lv(KY), 

n 
V E -  -1. 

2 
The gradient of Cn is thus related to the derivative of the function z-”l,(z); a formula for 
this derivative (op. cit., equation 9.6.28) yields 

K 2  

211 
V,C,(Kr) = r - C, + 2  (Kr). 

The repeated application of (B7) in equation (BS) generates a finite series of p t P )  involving 
the functions C, only through the coefficients 
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In the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, corresponding to a uniform distribution on the unit hypersphere, the 
coefficients are easily calculated from the closed-form expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aF)(o> = [24(v + 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 2) . . . (v + 4)1-1, 

and the low-order moments reduce to the isotropic tensors 

To examine the limit of small dispersion (large K )  we observe that the probability density 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,(m) is proportional to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
exp(Km0.m)=exp(K)exp[-(K/2) (m-mo) .(m-mo)]. (B 18) 

When K is large, S,(m) is appreciably different from zero only in the immediate vicinity of 
mo, where mo. m 1. The domain of S,(m) can thus be approximated by the hyperplane 
tangent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs1, at mo, on which the density function (B18) is a Gaussian distribution with a 
mean (m) = mo and a variance matrix Vm Var[m] = K - ~  (I-m0 m o ) .  The moments of 
this distribution are: 

= moi (B 19) 

p p  = (Pm) i j  + m()imoj (B20) 
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