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Optimal Estimation of the Average Areal Rainfall 

and Optimal Selection of Rain Gauge Locations 

G. BAST!~. B. LORENT. c. OUQ!.A: .. '-NO M. GEVERS 

Laboraw1re d'Auromatique et d'Analyse des Sysuimes. Loucain Unirersity 

We propose a simple procedure for the real-time estimation of the a;erage rainfall over a catchment 

area. The ramfa!l is modeled as a two-dimensional random field. The average are:~! ramfail 1s computed 

by a linear unbiased mimmum vari:~nce esumatwn method tkriging) which requires knowledge of the 

varwgram of the random field. We propose a time-varying estimator for the variogram which takes into 

account the influences of both the seasonal_ variat_wns and the rainfall intensity. Our average area! 

rainfall estimator has been implemented in practice. We illustrate its appi!caf!onto real data in two river 

basins in Belgium. Finally, it is shown how the method can be used for the optimal selection of the rain 

gauge locations in a basin. 

INTRODUCTION 

We propose a simple procedure for the real-time estimation 

of the average rainfall over a catchment area from rainfall 

measurements made at a few measurement stations in that 

area. The estimation of such areal rainfall is an important step 

in many hydrological applications. such as evaluation of hy­

draulic balances. management of surface water resources. or 

real-time forecasting of river flows. For this last application 

the rainfai! over the river basin is, of course. the main input to 

any rainfall-river flow forecasting model [Larent and Gerers, 

!976]. 

Following previous contributions [Creutin and Oh/ed. 1982; 

Rodrigue:-lturbe and .\fejia. 1974; Chua and Bras, 1982], the 

rainfall over a basin is modeled as a two-dimen<>ional random 

field. This approach allows us to take into account. in a rigor­

ous and systematic way, the seasonal and spatial variability of 

the rainfall process. 

The estimator for the average area] rainfall is then a linear 

minimum variance unbiased estimator (also called BLUE) 

[Papouiis. 1965], which is obtained by a straightforward ex· 

tension of the well-known kriging approach [De/finer and Del­

htJmrne. 1975; Joumel and Hwjbregts. 1978: Delhurnme, 1978]. 

The optimal estimator requires knowledge of the variogram of 

the rainfall random field as a function of s~;;?~~e and time. In 

order to obtain realistic rainfall estimates. a theoretical vario­

gram model must be chosen. and its parameters must be esti­

mated. This is the most difficult .step. 

The main contribution of this paper is in the d.osign of a 

procedure for the real-time estimation of a variogram model. 

The spatial variability of rainfall data has been analvzed under 

ditferent sets of assumptions: the seasonal trends of the vario­

gram and the influence of the rainfall intensity have been 

examined. This has !ed to the adoption of a s1mpk Yariogram 

model. in which the time nonstationanty of the rainfall fun,:­

tion is entirelv concentrated in a time-\af\Ini! scliini! factor 

which can be .adapted in real timeJ The ad~an~agc :s ~hat the 

weighting coefficients of the optimal ramfali e,r:mat,1r can 

now be computed on..:c and for all. while the estimatiOn vari­

an..:e is computed in real l!me using ct vcr:- 'impic adapuve 

procedure. 

The objective of our research was to de-;tto!n ~tn adaptin: 
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estimator for the average area! rainfall which is simple enough 

to be used in real time and which does not have to rely on 

delicate meteorological interpretations. 'we believe that the 

proposed procedure achieves these objectives. Our estimator 

has been practically implemented; we present an application 

to real data in two river basins. 

Finally. as an interesting by-product we show how the opti­

mal estimation method developed in this paper can also be 

used to optimaily select the location of rainfall gauges in the 

catchment area. 

2. Dt:fll'ITIO'-iS AND NOTATION 

The point rainfail <kpth is denoted p1k. ;), with ;; = (x, y) E 

R2 , a Cartesian space coordinate. and k E !'\' +, an integer 

index. We consider the discrete sequence (indexed by kl: 

[p{k. :)Jk = L 2, ... , K} 

of K nonzero point rainfall depths during K (not necessarily 

succ:-;sive) time intervals. each one of duration 7"s. In line with 

prevtous works [Creutin and Obled. 1982: Rodrigue:-fturhe 

and M ejia. 1974: Chua and Brds, 1982: De/finer and Delhomme, 

1975]. for a fixed k. p(k, :) is viewed as a realization of a 

two-dimenswnal random field 1 RF) on R 2 denoted P(k. :). 

The mean and the variogram of this field are written as 

mi k. :l = E[P(k, :l] (I) 

with (:,, ::) a pair of current points in 1ll:,·+t·w1J.t..be-<.J.sSI!,fOed, 

in this paper. that for any k the field \P(k. :) is isotr0p19/ and 

.. ~ylfiJis the _.,_irH_rinsic_ a.si..~mprion .. :C(!Y'ilie mean··~sspace 
;tationary (independent of -l· 

mlk. ;) = m(k) 

and I 2) the variogram is isotropic and space-st:ll!onary lit de­

pemis only on the Euclidean distance d,1 between::, and::): 

(4) 

Cuns1dcr a catchment area i1t is most often a riH~r basml 

OcR: with ram!all m~aour.:ment statinns numbered 1 to N. 

For cat:h value uf the index k. the measuremems an: thus 

sp.:ciflc numencal values of the fun<.:tion l'(k. ::J: 

.:,), ... ' p\k. :,1 (5) 
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Fig. I. Semois river basin: rain gauge iocarions. 

This constitutes a realization of the random,\' vector: 

fl(k) = {P(k, :Jl, P(k, : 2), • • •• P(k • .:,l) (6) 

To illustrate, later in the paper we presem two applications: 

the Semois river basin (figure 1; 1230 km 2) with N = 17 sta­

tions, Ts = 1 day, and K = 2557 daily observatiOns; and the 

Dyle river basin (Figure 2; 600 km 2) with N = 16 stations, 

T5 = 6 hours, and K = 1425 six-hourly observations. 

3. OPTIMAL EsTJMATIO!'; OF THE AvERAGE 

AREAL RAINFALL 

The "average area! rainfall" A(k) is defined as follows: 

A(k) = __!__ [ P(k. :) d:: 
iill.,n 

(7) 

where !ill is the area of the considered river basin. Clearly. 

A(k) is a discrete-time scalar random sequence indexed by 

k = 1, · · ·, K. As is well known [see Journel and Huijbregts, 

1978], an optimal (linear, unbiased. minimum variance) esti­

mator of A(k) can be _computed for each k from the set of 

rainfall observations fl(k),. by 

!'/ 

.4(k) = 2.: ;_,(k)P(k . .::;) (8) 
i= l 

where the coefficients A;(k) are the solution of the kriging 

system: 

i = 1, ···, N 

:v 

I ;_i(kl = 1 (9b) 
I= 1 

with tJ(k) a Lagrange parameter. For practical computer im-

Fig. 2. Dyle nver basin: rain gauge !ocauons. 

WJ~,ry~--~~.- .. -.-..-
20 1.0 60km 

Fig. 3. Semois river: experimental variogram. 

plementation. a discretization square grid of M nodes is super­

imposed on Q. The nodes are numbered N + 1 toN + M. The 

following numerical approximation is used: 

l ~ 1 M 

iQI Jn {(k, Zi, ~) d(:::: A·f Jty(k, z,, ;;N+J) (10) 

Notice that it is equivalent to replace the right-hand side of 

equation (9a) by the numerical approximation (10) or to di-' 

rectly adopt a discrete space definition of A(k) in lieu of ( 7): 

1 M 

A(k) = - I P(k. z'l+) 
.\1 j= I 

(11) 

With the numerical approximation (10), the estimation vari­

cnce is then given by 

1 .''I M 

aE 2(k) = .u(k) +- 2.: 2.: J.i(k);·(k, zi> ::1'~+) 
:\1 i=l j=l 

4. lDEST!FlCA TION OF A V ARIOGRAM MODEL 

The optimal ;,i are computed by the linear system (9) from 

the knowledge of the variogram i'(k, dij). In practice, however, 

the variogram is not given and must be inferred from the 

available data. This is the topic of the present section, where 

we shall studv the estimation of the variogram under different 

sets of assumptions. \ 

Estimation of a Global ,u ean Variogram 

It is well known, of course, that the variogram is a function 

of the time index k, but as a first step we shall compute a 

~!mml2 
l 6h 
1 
i 
~ 

15-j 

Fig. 4. Dy!e nver: expenmental variogram. 
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TABLE l. Global Time-!nvanant Estimates of Variogram 

Parameter 

Semois river 

Dyle river 

0.56 

0.204 

0.51 

0.56 

global time-invariant estimate of the variogram in the form of 

a ttme average over the K time intervals with nonzero rain­

falls. The reason for doing this will become apparent later. 

From the observations in the rain gauges located at points z, 

and ::j, the following unbiased estimate is obtained: 

1 K 

·~'d)--) (nik •)-nik -)12 n ii - JK i....,. lt"'\ , ""i J:'\ ~ "'; s 
- k=l 

(13) 

Such an estimate has been computed for every pair of rain 

gauges in the Semois river basin (K = 2557) and in the Dyle 

river basin ( K = 1425). The results are graphically presented 

in Figures 3 and 4. 

The experimental variogram takes the form of a somewhat 

extended duster of points. On the basis of many experimental 

results such as those of Figures 3 and 4, and in line with 

common practice in the geostatistical literature. we shall fit 

the following very simple model to the experimental vano-

'gram: 

( 14) 

By a least squares fit, the values of Table 1 are obtained (for 

diJ expressed in kilometers). The reason why this global model 

I 
/July 76 

I 

/ll.Y 

Fig. 6. Semms river: estimated monthly variograms. 

is of interest is that the parameter P of this time-invariant 

model will be used later in a time-dependent modeL 

Note that other forms of theoretical variograms (such as the 

Gaussian, exponential, or spherical model) could also be used. 

It is difficult to validate a particular variogram model experi­

mentally, since the estimate of the average area! rainfall com­

puted with each variogram cannot be compared with a "true" 

average rainfall, because the latter is unknown. In addition, it 

has been shown [Bastin and Gevers, 1984] that the variogram 

(in the least squares sense) does not necessarily lead to the best 

kriging estimates. In any case, the methodology developed 

further in this paper applies almost unchanged to a general 

class of variograms, provided they have the form ::r:;""(dij, {3). 

Seasonal Trend of the Rainfall RF 

It is, of course. unrealistic to assume a time-invariant model 

for the variogram because ( l) it does not take into account the 

potential seasonal trends of the phenomenon and (2) it would 

yield a unique estimation variance a/ of the average area! 

rainfall (see 112)) for all rainfall events. whatever the meteoro­

logical conditions and the rainfall intensity.- This is not very 

plausible. 

In order to verify whether a seasonal trend is present, 

monthly experimental variograms have been computed. Typi­

cal examples for the Dyle river basin are presented in Figure 

5. for graphical clarity the clusters of points have been ap­

proximated by a dashed line which is obtained by dividing the 

dij axis into a number of classes and by computing the'tneans 

of ·?(d,i) for all points d;1 which belong to the same class. This 

figure clearly shows the seasonal behavior of the spatial varia­

bility of the rainfall process: the variogram appears much 

larger in summer than in autumn. Similar trends have been 

observed all through every year for which we had data (with 

us-

1.G-

0.:5· -NOVEMBER 

, -~-FESflUAflY 

! ----::::::::.-::...--------
<~-· 

0. Ji_· ------·----
0. 5. 10. 15. dq(km) 

Fig. 7 Dyk nver: estimated monthly variograms. 
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TABLE 2. Estimated Values of 1 and /1 for the \lonthly 

Yanograms of the Form x:-miJ,/'"" 

m 

January 

February 

\.far eh 

Apnl 

\fay 

June 

July 
August 

September 

October 

November 

December 

Global 

Sem01s Basin 

2lml 

0.15 

0.28 

0.23 

0.35 

0.51 
1.57 

1.59 

1.11 

0.53 

0.21 
0.13 

0.32 

0.56 

ff(m) 

0.63 

0.54 

0.62 

0.-\7 

0.59 

0.40 

0.51 

0.51 

0.53 
0.74 

0.62 

0.53 

0.51 

-----------------
Dyie Basm 

Jiml 

0.067 

0.063 
() 072 

0.221 

0.~62 

0.673 

0.~68 

0.505 

0.144 

0.0-+2 

0.105 

0.090 

0.104 

•<44 

0.59 

0.60 

0.29 

0.5.2 
0.30 

0.54 

0.5! 

0.54 

0.56 

049 

0.61 

0.56 

rare exceptions due to very special meteorological conditions 

such as the drought of 1976 in western Europe). 

One could think of explaining these seasonal variations in 

meteorological terms, such as convective rainfalls in summer 

or frontal rainfalls in winter. However. since we want to pro­

pose a simple procedure for the real-time estimation of the 

average area! rainfall, we shall include all the seasonal behav­

ior of the rainfall in the variogram parameters. so as to avoid 

the delicate problem of meteorological interpretation. 

The results of Figure 5 suggest that a first way of incorpor­

ating the seasonal variations is to assume a piecewise station­

ary seasonal trend (on a monthly basis) for the RF. More 

precisely, we assume that the variogram '/(k, :,, :j) is time­

invariant duringa month, but not necessarily from one month 

to another. The t~eoretical variogram model is now written as 

(15) 

where m is the index of the month to which the day k belongs 

(m= l, 2, · · ·, 12). 

We have computed a theoretical variogram of the form 

x(m)d;/'m1 for each month by least squares fitting to all the 

available data for that month; for example. the data of No­

vember 1975 and November 1976 are taken in the same class 

and processed together. 

The results are shown in Figures 6 and i and in Table 2. 

Again, they clearly show the seasonal patterns of the vario­

grams. It follows from Table 2 that the monthly variograms 

differ much more in the coefficient :t(m) than in the coefficient 

fJ(m). This observation suggests a further simplification of the 

variogram model: The coefficient /3(m) is assumed time-

TABLE 3. Estimated Values of :x and f3 for the \ionthly Variogram 

:x(mld/'m' and the Simplified Monthly Vanogram :ximld/' for four 

Typical Months in the Dyle Rtver Basin 

February 

May 
July 

November 

Original Variogram 

Model 

:J. fi 

0.063 0.59 

0.362 0.52 

0368 0.54 

0 105 0.49 

Simplified Variogram 

\lode! 

[3* 

0.068 0.56 

0.326 0.56 

0.349 0.56 

0.088 0.56 

1 /mm\ 
\6h} 

,..r 

dff;/ 

/ 

0.5r / -- NOVEMBER 

FEBRUARY 

0·o. 5. 10. 15. dlj(km) 

Fig. 8. Dyle river: estimated monthly variograms \solid curves!. 

identical to figure 7. and simplified monthly variograms (dashed 

curves). 

invariant and set to a fixed value /3" while all the time non­

stationarity of the RF is concentrated in the scaling factor 

:x(m). The variogram model is then written as 

(16) 

with 

where m is the index of the month to which day k belongs. It is 

a kind of "separation of variables"; the variogram model is 

separated into two factors: :-x(m), which is time-varying but 

space-invariant, and {""(d;), which is time-invariant but space­

dependent. In the case of the Dyle river basin, for example, 

one can take {3* = 0.56, which is the value obtained by a least 

squares fit over all the available data points for this basin (see 

Figure 4 and Table 1). Then x(m) can be computed by fitting 

the model ( 16) to the cluster of points corresponding to each 

month. When the value of {J* is fixed a priori, it is actually 

better to use a weighted least squares fitting for the estimation 

of x(m), where the weighting matrix takes into account the 

geometrical loca•ion of the rain gauges in the basin. For more 

details, see Base in and Gerers [ 1984]. The results are shown in 

Table 3 and Figure 8. Figure 8 shows the estimated monthly 

variograms of the form :x(m)d/'"'~ and the simplified monthly 

variograms of the form :x(mld/" for four typical months. The 

figure shows that the simplification is certainly justified: the 

c~rves are so close that they can hardly be distinguished. 

The simplified form (16) of the variogram model has sorr 

important implications for the computation of the optin-1.: .. 

estimate of the average rainfall: 

I. It is easy to show that the system (9) with the approxi­

mation ( 10) can be rewritten as 

i = 1, ·· ·, N (18a) 

l'i 

I ;.i = t ( 18b) 
i= l 

TABLE 4. Number of Rainfall Events in Each Class and for Each 

Season in the Dyle River Basin 

Winter 

Spnng 
Summer 

Fall 

Intensity Range ior Each Class, mm/6 hours 

0.0-0.2 0.2-0.4 0.4-0.8 0.8-4.0 4.0--7.2 7.2-12.8 

78 
67 

lOO 

103 

62 
47 
53 
62 

68 

61 
45 

48 

133 

122 
114 

137 

20 

18 
30 

22 

2 

12 
14 

7 
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Fig. 9. 

..L..,-------,---.------r-' A<k) ( ':;;:') 
0.1 1.0 10.0 

• Winter • Spring A. Summer o Fall 

Seasonal relationship between the estimated average rainfall 

A(k) and the variogram scale factor ::~.lk). 

Hence the A.; are independent of a.(k), and consequently they 

are time-invariant. Therefore the optimal estimator 

N 

A(k) = I A.;P(k, Z;) (19) 
i= 1 

turns ollt to be a unique time-invariant weighted sum of the 

observations P(k, z;). where t~ weighting coefficients A.; 

depend only upon the geometrical location of the rain gauges 

and can be computed once and for all. . 

2. One can also show that the estimation error variance 

can be written as 

TABLE 6. Semois River Basin Estimation Results for Some 
Chosen Days in 1971 

Date, 1971 

Jan. 26 April 26 June 18 Aug. 8 Dec. 19 

Rain Gauge 

1 33.7 14.4 27.0 14.2 11.4 
2 34.7 17.2 26.0 11.4 11.8 
3 32.3 16.3 31.6 24.0 12.9 
4 29.0 15.5 34.2 14.2 16.3 
5 33.8 16.6 33.6 20.0 13.2 
6 32.0 16.8 35.2 9.1 9.8 
7 30.3 20.0 26.4 7.7 9.5 
8 35.8 17.8 32.3 12.3 11.2 
9 31.5 15.7 19.3 8.2 10.0 

10 28.4 15.6 41.8 23.2 7.3 
11 33.9 20.7 28.2 7.0 12.4 
12 39.5 19.6 39.6 22.8 9.2 
13 35.3 12.8 29.3 24.5 12.8 
14 28.2 24.5 32.9 11.0 12.0 
15 24.5 23.1 38.4 11.1 8.0 
16 31.0 21.4 24.3 7.8 11.1 
17 30.9 21.5 29.9 8.0 13.3 

Estimation 
results 

A 31.9 19.5 30.9 12.7 11.1 
i 2.09 2.08 6.39 8.30 0.85 

UE 0.99 0.98 1.73 1.97 0.63 

UdA 3.1% 5.0% 5.6% 15.5% 5.7% 

Values are in millimeters per day. 

Here also, the variance VE* is time-invariant and can be com­

puted once and for all; the time dependence of a/(k) is only 

through :;r.(k). 

Influence of che Rainf0l Intensity 

(20) For both the Semois and the Dyle river basin we have 

with 

.\1 ..., 

- Ml I I i'*(d'I+Ui+) 
i= I j= I 

TABLE 5. Weighting Coefficients i.1 

pointed out the important s:'!asonal variations of the vario­

gram. One might wonder, however, whether these s~ason~l 

variations in the variogram are not greatly amplified by the 

. differences between the mean rainfall intensity in summer and 

in: winter. More specifically, are the larger values of the vario-

(2l) gram in summer not caused by the higher intensity of the 

rainfall during that season rather than by a truly larger spatial 

variability? 

Semois River Basin Dyle River Basin 

In order to study the potential relation between the rainfall 

intensities and the variogram, we have performed the follow­

ing analysis: 

(VE* = 0.48) (VE* = 0.63) 

Rain Gauge A.j~ o/o Rain Gauge ).i, o;o 

1. The estimates A(k) of the average area! rainfall for all 

the available rainfall events are computed, using (19) with the 

~ '~b. computed by@ 
----------------------- 2. The ratniall data are partitioned into four seasons de-

0.8 6.6 
2 2.0 
3 3.8 
4 2.0 

5 3.6 
6 3.3 
7 8.5 
8 9.6 
9 6.5 

10 3.9 
11 5.2 
1:'! 8.9 

!3 4.0 

14 9.8 

15 7.4 
16 8.6 

17 1:!:! 

2 

3 
4 

5 

6 
7 

8 
9 

10 
11 

12 
13 
14 

15 
16 

5.4 

5.6 
8.2 
4.7 

2.9 

5.6 
5.6 

6.4 
8.4 

8.8 
6.8 

5.9 
6.ll 
4.6 

7.4 

fined as winter: January, February, March: spring: April, 

May, June: summer: July, August, September; and fall: Oc­

tober, November, December. 

3. For each season the rainfalls are subdivided into six 

classes according to their intensity levels measured by .4(k) 

computed in part 1 of the analysis. For the Dyle river basin 

the number of available data in each class for each season is 

given in Table 4. 

4. For each class in each season the coefficient :;r.(k) of the 

variogram model is computed by a least squares fitting as in 

the previous sections. 

The result of this procedure is illustrated for the Dyle river 

by the chart presented in Figure 9, which shows :;r.(k) versus 

. .i(kl (with a bilogarithmic scale) for each of the four seasons. 
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TABLE 7. Dyle River Basin Esnmalion Results for Some Chosen 6-hour Periods m !976. I 977. and 

1978 

Dec. 6. 1978 April ::s. !978 May 16. 1977 July ~1. 1976 ;..lov l. !976 Nov. l:Z. !976 

1200-1800 !200-!800 1:00-1800 0600-1~00 !800·2400 l S00-2400 

Ram Gauge 

1 1.8 10.3 7.0 6.3 0.8 1.5 

2 14.6 LO 0.0 

3 2.6 9J 7.8 3.6 l.l ' ' -·" 
4 0.0 4.7 6.1 ::.3 L3 :.3 

5 2.8 6.8 10.3 10.4 11 :.6 

6 lJ 12.4 9.3 14.0 !.2 2.8 

7 1.9 ~.5 !0.3 11.6 1.2 

8 l.l 7.1 14.7 !1.6 0.9 :.5 
9 1.6 2.6 9.6 6.9 14 2.4 

10 1.2 0.6 !2.0 6.2 1.8 ' ' 

11 1.4 -+J 14.0 93 1.8 

12 1.7 5.5 lO.O 8.0 1.7 '' 
13 1.9 7.4 0.0 1.6 2.1 
14 L3 6.2 4.6 4.0 1.9 2.7 

15 2.6 .u l !.0 18.0 2.6 

16 2.7 11.2 12.0 7.i 0.9 '1 

Estimation 

results 

.4 !.76 5.83 9.40 7.98 1.34 2.17 

i 0.077 !.093 1.783 3.156 0.051 0.107 

a£ 0.22 0.83 1.06 1.41 0.18 0.26 

aE/A 12.7% 14.3°·~ 11.2% 17.7% 13.3% 11.8% 

Values are in millimeters per 6 hours. 

The chart shows that even when rainfalls of the same inten­

sity levels are considered. the seasonal trend is still clearly 

present in :xik). For example, when A(k) = !, the value of :x(k) 

is twice as large in summer as in winter. However. the chart 

also shows that the estimation error variance G E 1(k) = :x(kt ~~ * 
is a function of rhe rainfall intensity and that choosing a 

unique variogram model within a given season would lead to 

a systematic underevaiuation of a/ for high-intensity rainfalls 

and to an overevaluation for low-intensity rain falls .. Therefore 

the procedure that we have adopted ultimately for the compu­

tation of the average area! rainfall is as follows: 

1. For each basin considered, using ail available data. 

compute once and for all the coefficient /3*, the weighting 

factors i.;, the normalized error vanance. and the chart 

(:x(ki-A(k)) just described and illustrated in Figure 9. 

2. Then. for each period k, compute 

N 

.4(k) = I ;.,p{k • .:,) 
i= 1 

pick the value of :x(k) corresponding to ,4(k) on the chart, and 

compute a£ 2(k) = x(k)VE*· 

Notice that with this procedure the time nonstationarity of 

the random field is concentrated in the time-varying scalar 

parameter :x(k), which is computed in real time and which 

takes into account both the seasonal variations and the effects 

of the rainfall intensity through the use of the chart (:x(k)-.4ik)). 

Tables 5. 6, and 7 show some typical results of this esti­

mation procedure for the two basins considered here. 

5. OPTIMAL SELECTION OF THE RAt~ GAUGE 

LOCATIONS 

As we have pointed out in the previous sectiOn. the normal­

ized estimation error variance depends only on the geo­

metrical location of the measured points. Obviously, the 

choice of the variogram model and of the parameters is con­

ditioned by the particular set of available data. But once the 

variogram model is chosen, the variance VE * can be viewed as 

depending exclusively on the location of the rain gauges. 

Hence it becomes possible to compute the error variance v£ * 
associated with any set of hypothetf::al data points without 

getting actual data at these points. Therefore the normalized 

variance 1£ * is an efficient tool for solving rain gauge allo­

cation problems. For example, the variance VE* can be used 

for ( l) choosing the location of an additional rain gauge in 

nrder tc improve the estimation accuracy a' much as possible, 

L~) selecting the best locations of additiunal rain gauges 

among a set of admissible locations. and 0) selecting the most 

representative subset of .'v! rain gauges from a set of N avail­

able ones. 

We shall now illustrate these points in the case of the 

Semois river described in the previous section. 

Iterative Selection of che Most Renresenrative 

Rain Gauqes 

Two potential supplementary rain gauge locations (num­

bered 18 and 19) are added to the 17 existing ones (see Figure 

10). For each of the !9 locations we can compute the variance 

i'£ * as if each of them was the only one avallable and select 

the one that leads to the smallest k£ *. 

Fig. !0. Two potentJal supplementary rain gauges !tnaogies). 
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Fig. 11. Iterative selection of the rain gauge locations in the Semois 

river basin. 

Next we can add to th1s first gauge a second station which, 

combined with the first one, leads to a minimum VE * again. 

This procedure can be continued, adding more stations and 

monitoring the decrease of the normalized variance VE * of the 

estimation error, until the obtained precision is judged satis­

factory. For the Semois river basin the result of this successive 

selection is illustrated in Figure 11. We notice that (l) the last 

seven rain gauges chosen (6, 10, 5, 11, 4, 2. and 1) are obvi­

ously superfluous. since including them in the optimal esti­

mator does not result in any significant decrease of J-~ * and (2) 

the two potential supplementary locations (18 and 19) are 

among the three ""best"' ones in order to improve the average 

rainfall variance estimation. 

Selection of the Most Representative Subset 

of Three Rain Gauges 

At some point, the Belgian Ministry of Public Works, in 

charge of waterways. decided to equip three existing rain 

gauges in the Semois river basin with telemeasurement facili­

ties. It was therefore desirable to choose the best subset of 

three rain gauges among the 17 existing ones. The normalized 

variance V£* was computed for all possible combinations of 

three locations. The best configuration was found to be (9, 12, 

14). Notice, however, that with this configuration the esti­

mation variance V£* is slightly larger than with the configur­

ation (12, 18, 19) involving the two hypothetical locations 18 

and 19 (see Table 8). 

We have also compared the estimated values of A(k) and of 

o-£lA(k) using either the three stations (9, 12, 14) or the 17 

stations. Typical results for the Semois river basin are present­

ed in Table 9. 

Rit·er Flow Prediction 

The average area! rainfall, estimated by the procedure pre­

sented in thi; paper, has been used as input of a rainfall-river 

TABLE 8. Normalized Estimation Variance and Weighting 

Coefficients for s~veral Rain Gauge Configurations in the 

Semois River Basin 

Rain Gauge 

Configurations 

9. 12. 1~ 
12. 18, 19 

17 stations 

v• 
E 

1.0:! 

0.93 

0.48 

Weighting Coefficients 

1., 

i.q = 0.35. i.," = 0.31. i.,4 = 0.3~ 

i.,2 = 0.33. i.,. = 0.35. i.,. = 0.32 

see Table ~ 

TABLE 9. Comparison Between the Estimated Values of A(k) and 

of uE,A(k) for Some Days in 1971 Using Either Three or 17 Stations. 

in the Semois River 8asin 

Date, 1971 

Jan. 26 April 26 June 18 Aug. 16 Dec. 19 

'Three-Station Rain Gauge Configuration (9, 12, /4) 

A(k). mm/d 32.9 19.9 30.4 13.7 10.4 

UE;A(k), '% 4.4 7.3 8.4 21.2 8.9 

Alk). mm/d 

u£/Afk).% 

17-Station Rain Gauge Configuration 
31.9 19.5 30.9 12.7 

3.1 5.0 5.6 15.5 
11.1 
5.7 

. flow model that is used for the short-term prediction of river 

flows. Despite the fact that with the configuration (9, 12, 14), 

VE * = 1.02 as compared with VE * = 0.48 when 17 rain gauges 

are used. it has been observed that this deterioration of V£ • 

with the configuration (9, 12. 14) increases the river flow pre­

diction error variance only slightly [Gevers and Bastin, 1982]. 

This observation is of interest for the implementation of a 

real-time telemeasuring network; it shows that river flows can 

be forecast in real time with good precision using only a very 

limited number of telemeasured gauges. 

6. Coxcu.:sioNs 

We have presented a new procedure for the estimation of 

the average area! rainfall over a river basin. The procedure is 

simple and concise and can be implemented in real time; it 

does not require any meteorological interpretation of the rain­

falls. The estimated average rainfall is a fixed linear combi­

nation of the measured point rainfall depths. The time non­

stationarity is reflected in the variance of the estimate through 

an adaptive parameter :x(k), which can be read off directly 

from a precomputed chart; this parameter takes into account 

both the seasonal variations and the effects of the rainfall 

intensity. 

One of the by-products of our procedure is that it yields a 

simple method for the selection of '"the most informative" rain 

gauges among a set of existing ones, or for the selection of an 

optimal location to install additional rain gauges. An appli­

cation has been presented. 

Our procedure has been used for the real-time estimation of 

the average area! rainfall on several river basins. The esti­

mated rainfalls were then used as input of a river flow predic­

tion model. 
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