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additional N / 2  complex  multiplications necessary for algo- 
rithm  (A) cause only a  slight  increase in  the overall computa- 
tion  time. In applications where the fast Fourier  transform is 
used repeatedly  with  the  same  table of complex  exponentials, 
the increase  in computation  time  becomes insignificant. 

The main  advantage of algorithm  (A) is that it is less suscep- 
tible to roundoff  errors  than schemes such as (B). If the 
cumulative roundoff  error  due to finite precision arithmetic is 
proportional to  the  number of operations,  then  the  maximum 
error  for algorithm (A) is proportional to logz N .  The maxi- 
mum  error  for  (B) is proportional to N .  This is because the 
largest number of complex  multiplications  required to  produce 
any  exponential  factor with algorithm  (A) is 2(logz N -  2), 
while the  number of complex  multiplications per exponential 
factor varies from 1 t o  N / 2  for algorithm  (B). 

As a  final note,  algorithm (A) is easily implemented in  a 
high-level computer language such as Fortran. 

SUMMARY 
An algorithm for calculating the  table of complex  exponen- 

tials for a fast  Fourier  transform has  been  developed. The 
proposed algorithm requires N -  4 complex  multiplications 
while a standard algorithm uses N / 2  operations, accompanied 
by  a  bit-reversal scheme. This  increase  in computational  effort 
is offset by  a  considerable gain in  improved numerical stability. 
The algorithm  developed  in  this paper  accumulates  roundoff 
errors at  the  rate of logz N ,  whle the  standard algorithm has 
an  error  growth  rate of order N .  In applications  where the 
same table of complex  exponentials are used repetitively, the 
additional  operations  required  by  the  proposed algorithm 
amount to only a  slight  increase  in the overall computation 
time. 
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Optimal  Estimation of Time Series Functions 

EDWARD J. WEGMAN 

Abstract-The principal methods of spectral estimation include 
kernel smoothing, ME-AR methods, and the F’rony algorithm. In this 
paper  we  consider not only the estimation of spectral density matrices, 
but also related  time  series functions such as transfer functions, gain, 
phase,  cepstrum,  and so on. Computational  algorithms are developed 
for use of splines as estimators. Smoothing splines are shown to be 
special  cases of kernel smoothers so that properties of kernel smoothers 
carry  over to spline estimators.  Optimality of these estimators is 
discussed. 

I. INTRODUCTION 
In this paper, we are concerned  with  the  optimal  estimation 

of spectral  density matrices and  related  time series functions 
such as transfer  functions, gain,  phase, cepstrum,  and so on. 
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Much literature exists on  the  estimation of spectral densities. 
Three principal approaches  include  the  smoothed  FFT 
(Blackman-Tukey) approach,  the Burg-Parzen MEM-AR algo- 
rithm,  and  the so-called Prony  method. See [71 for a com- 
petitive evaluation of these  approaches. Each method has its 
adherents  and  its advantages. The  Prony  method is successful 
in  identifying  line  spectra in  a  relatively noise-free environ- 
ment,  but is less successful in  noisy  environments. Similarly, 
the MEM-AR approaches of Burg [ 3 ]  and Parzen [61 are 
successful at  identifying lines in a low-noise  environment, 
although  they may exhibit  line  splitting. Because of the  inti- 
mate  connection  with  the autoregressive model,  the MEM-AR 
technique can also estimate well the  smooth  spectral densities 
provided the  spectra are  autoregressive  like. The  smoothed 
FFT  approach does not  adapt well to spectra  with  strong line 
components since the  smoothing  tends  to  eliminate  the lines 
as well. Much data  are needed to resolve lines in  such a case 
and, of course, knowledge of smoothness  cannot  compensate 
for  lack of data.  The  approaches of Burg, Parzen, and  Prony 
are  more  appropriate  on  these cases. For  smooth  spectra  and 
related  functions with  noisy data,  the  smoothing  approach 
appears t o  be a viable alternative as we shall see later in this 
paper. 

Cogburn and Davis [4] consider estimating a periodic  func- 
tion (of period 2n) f(w) using periodic  smoothing splines 
which they  apply to univariate spectral  density  estimation. 
As we shall show  later,  the  smoothing spline approach is equiv- 
alent to the  smoothing window approach with the  smoothing 
window determined  in some optimal sense. We extend this 
approach to  the multidimensional case and  apply results not 
only to spectral  density matrices, but also to nonparametric 
estimation of such  time series functions as  gain,  phase, transfer 
function,  cepstrum,  and  the like. It is worthwhile to point  out 
that  our analysis  applies to physical  systems without  strong 
resonances  where smoothness of an  appropriate  filter-related 
function  may be  assumed. 

In  Section 11, we define  the  filter-related  functions with 
which we shall  be concerned.  Section 111 contains a  descrip- 
tion of the  computational algorithms for  the  smoothing splines 
while Section IV discusses the parallel between  the use of 
smoothing splines and  smoothing kernels. Section V deals 
with multiplicative  models while Section  VI  concludes  the 
paper  with a discussion of optimality papers. 

11. SOME PERIODIC  TIME  SERIES FUNCTIONS 
Following the  notation of Brillinger [ 2 ] ,  we consider an 

( r  + s) vector-valued stationary series 

[:::::I 
where t = 0, f l ,  +2 ,  * - * with X(t) r-vector valued and Y ( t )  
s-vector valued. All vectors in this  paper  are row vectors 
unless otherwise specified. f is used to indicate  transpose. We 
let px = EX(t) ,  p y  = EY( t )  where E( e) is the  statistical expec- 
tation  and  with covariances given by 

E ( [ X ( t  + u )  - PXIt [ X ( t )  - P x l )  = r x x ( u )  

E ( [ X ( t  + u )  - PXIt [ Y ( t )  - PYl) = r x y ( u )  = -Yyx(-u) 

E( [ Y(t  + u )  - p y l ?  [ Y ( t )  - p y l )  = -yyy(u) u = 0,+1, - - * . 
We may  define  the  spectral densities  by 

f X X ( 0 )  = - *Ixx(u) e-iwu 
1 “  

2n u=-m 
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f Y Y ( U )  = - r y y ( u )   e - i w u  
1 -  

-n<o<n .  
2n u=-m 

Suppose we believe that Y ( t )  is a filtered version of X ( t ) ,  i.e., 

Y( t )  = p + X(u)a( t  - u)? + E ( t ) .  
01 

(2.1) 
u=-m 

The p and a(t)  that minimize 

E ( d t )  e+(t>)  
are given by 

P i  = P$ - A m )  Px i 
and 

where 

A ( w )  = f y x ( w ) f x x ( W ) - ' ,  -71 < 0 < n. 
A ( w )  is the matrix  transfer  function of the  filter.  The s-vector- 
valued series 

E ( t ) = Y ( t ) - P - C X ( u ) a ( t - u ) +  t = 0 , + 1 , * 2 ; - .  
U 

is the error  series and  has  spectral density matrix 

f € € ( W )  = f r r ( w )  - f Y x ( ~ ) f x x ( ~ ) - l f x Y ( W ) ,  
-n<w<n.  (2.3) 

In  the case s = 1, we may  write 

(2.4) 
which is the multiple  coherence of Y ( t )  with X ( t )  at frequency 
a. In  the case where P, s both  are  1, 

RYX(~)=fYX(~)/[fxx(o)fYY(w>l"2, - n < w < n  
(2.5) 

is the coherency. Again, if r ,  s = 1, we may  define 

C(w) = IA<W>I = IfYx(w)/fxX(w)l, - n <  0 < n 
and 

$(o) = argA(w), -n < w < n (2.6) 

which are, respectively, the gain o f   Y ( t )  over X ( t )  at w and  the 
phase  between  Y(t)  and X ( t )  at w. G is symmetric  about 0 
and  periodic  with  period  2n. Additionally, if E ( t )  0, 

p(w)12 =fyy(w) / fxx(w) ,  -n<w<.rr. (2.7) 

I#J is also  periodic with period 277 and satisfies I#J(-w) = -I#J(w). 
Also, we may  write 

$(a) = argf rx(w) ,  -71 < w < n. (2.8) 

111. VECTOR  SPLINES 

Clearly,  a  wide  variety of time series related  functions  are 
periodic vector-  (or  matrix-) valued functions with period  2n. 
Provided we are willing to assume  some smoothness  conditions 

on these  functions, we may use a  periodic smoothing spline 
approach to their  estimation. In the discussion which  follows 
we let f be  a generic representation  for  any of these  time series 
functions.  That is, we let f(w) = ( f l (w) ,  * , fk(w))  be  a 
k-dimensional  vector of real-valued functions of period 2n. 
We are assuming the multivariate model 

No) =f(w) + E ( W )  

where EE(w)  = 0 and EE(w)? ~ ( w )  = a21. The  function h ( w )  
is known  either  at  lattice frequency-sampling points  or con- 
tinuously  and it is desired to estimate f(o). Let !? be the class 
of all such  functions f and  let 5'0 be the  set  of Bore1 measur- 
able g in  9'such  that I-", g ( o )   g i ( o )   d w  < 00. We let d m )  
denote  the  set of all vectors g in !? such  that g has m continu- 
ous derivative (componentwise)  and  define 

Ym = {g E !?: g E C ( m - l )  and g(m)  € Y o } .  

Let L be  a linear  differential  operator 

d U  d U - 1  

d o U  d d - l  
,L =-+yl -+ - *  +y,, O < u d m .  

Of course, Lg(w)  = (Lgl (a), - * , Lgk(o ) ) .  We want to ap- 
proximate h in P by  a smooth  function g E Tu. The following 
measure of closeness is the analog of the one-dimensional 
Cogbum-Davis measure  which attempts to balance  accuracy 
(first term)  with  smoothness  (second  term): 

n +'s ( L g ( w ) )   ( L g ( o ) ) t   d w .  (3.1) 
h2,n -n 

A function g in 9 ,  minimizing An,h,L(g, h) will be called a 
periodic  lattice  smoothing  vector  spline (LSVS). The param- 
eter h balances the degree of smoothing  with  the degree of 
accuracy.  The choice of h may  be  made  by the  method of 
(generalized)  cross  validation  which is studied extensively by 
WahbaandWold[lO],[ l l ]   andWahba[9] .  

It is also worth  pointing  out  that (3.1) could be extended 
by  replacing the  first  term  on  the  right-hand side  with 

to  get cross coupling.  This  generalization complicates  com- 
putational  algorithms,  but,  in principle,  could be dealt  with 
by using quadratic programming  algorithms. We will not  pur- 
sue  this generalization here. 

Similarly, if h is known  for all values of w, it is natural to 
define  a smoothing spline to h as  a function g minimizing 

We call such a g E P, a periodic  continuous  smoothing  vector 
spline (CSVS) to h. 
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It is clear that  (3.1)  may  be  written as where 

(3.3) 

where, of course, A , , , ~ ( g i ,   h i )  is the one-dimensional  mea- 
sure  applied to  the  ith  component of g and h. Similarly, 

(3.4) 

Equations  (3.3)  and  (3.4)  imply  that we can  fit the  lattice 
smoothing  vector  spline g and h by  fitting  the  lattice  smooth- 
ing  spline gi t o  hi, i = 1,  2, * * - , k. For if not,  suppose g* is 
the  function  which minimizes An,h,L(g, h )  but gf is not  the 
spline  fit t o  hi. Then  there  exists  a  spline gi such  that 

An,h,L(gi,  hi) < A n , , L ( g i * ,   h i ) -  

Define g** = ( g l  , * - - , gT-l , gi,  gf+ , * * - , g z )  so the clearly 

An,A,L(g**r h )  < A n , , L ( g * ,  h )  

which  contradicts  the  assumption  that g* was the LSVS t o  h. 
Thus,  the LSVS  is the vector of univariate  LSS.  Similarly,  the 
CSVS to  h is just  the  vector  of CSS to  hi, i = 1,2 ,  * * - , k .  

Cogburn  and Davis discuss  algorithms  for  fitting  the LSS and 
the CSS. In  particular,  let P(s)  be the  characteristic  poly- 
nomial  of L so that 

P(s) = s" + yIs"-I + * * * + yv 

Q(TC) = 1 P(ik)I2, i = a. 
and  let 

Let 

2 l/Q(i + 2nZ) + l /Q( i  + 2nZ) 
01 

I=-W I = 1  1 
and  let 

and 

with l j l  < n. 

Then  the LSS to  hi is given  by 

Letting 
12" 

and 

sk(w) = .L 1 aA,l ei lw,  
71 I = - -  

we can  closely approximate ns,,h(o) by nsh(w). s h ( o )  has 
importance as an  approximation to  sn ,h(o)  but also  because 
the CSS to  hi is given by 

h i ( y )  SX(O - y )  dy. (3.6) 

If it is  known  that  the  function f to  be estimated  has deriva- 
tives of order U, but if no  specific  operator L is known,  a 
natural  choice is L = d u / d o u ,  in which  case sA(o) becomes 

1 X2" 1 X2" 

2n I = -m 12" + X2u 
O0 

=- eilw = - 
12" + X2" 2n I=-w 

e-ilw 

(3.7) 
Letting 

eiyw dy , 

we may  define 

and 

k=-m 

It follows  (see  Cogburn  and Davis [4])  that 

m 

h On s h ( o )  = h On ;*(a) =lw h ( y )  th(w - y )  dy. (3.9) 

Explicit  functional  forms are given by Cogburn  and Davis for 
t (o) .  Notice that we may  write  the  estimate o f f a s  a  convolu- 
tion  with th .  Hence,  provided that t A  satisfies  appropriate 
properties,  consistency  of the spectral  density  estimators  fol- 
lows automatically  by classical methods. We discuss this  more 
fully in  Section IV. 

We close this section  by  noting again that  the choice of X is 
of critical  importance.  For X small,  much  weight is given to  
the  smoothness  term so that  the  resultant  estimator  may  lack 
fidelity to  the data, increasing bias. Conversely, if X is large, 
more  weight is given to  the accuracy  term,  increasing  variance. 
A balance  must be struck  between  these  two  extremes,  but 
regrettably the  optimal  choice of depends  on  the  functionf 
we are  trying to  estimate.  Wahba  and Wold [ lo ] ,  [ 111  and 
Wahba [9]  suggest the  method  of cross  validation as a solu- 
tion. We refer t o  those  papers for specific  details of the 
method. 
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Iv .  WINDOW ESTIMATORS, SPLINES, AND CONSISTENCY 
Equations  (3.5)  and (3.9) establish the  connection of spline 

estimators with the classic smoothing kernel estimators.  In 
principle, then, provided the splines are chosen  with some 
care, the classic results appropriate to kernel smoothers  carry 
over directly to spline smoothers. We detail this  connection 
below in  order to establish some consistency results  for spline 
smoothers. 

Several approaches to estimating  the  time series functions 
may  be pursued. Note  first that if a suitable raw estimate h of 
the  appropriate time series function (e.g., spectral  density, 
coherence,  transfer  function,  etc.) can  be identified,  then a 
spline smoother  may be  applied directly.  The  suitable  raw h 
for  the  spectral density is, of course, the periodogram. In the 
other cases, the  raw  estimate is not so obvious.  Alternatively, 
the  filter  functions  may be estimated by the  corresponding 
functionals of the  spectral density estimate.  That this is a 
sensible procedure is demonstrated by the consistency results 
below. To see this,  let X(l),  X(2), - * . be  a stationary, discrete, 
vector-valued stochastic process. We may define the finite 
Fourier  transform (of  sample size n) by 

and  in  turn we may define the periodograrn by 

The cross periodogram is defined  in  a natural way  as 

It is easy to  show  that 

where the covariance is estimated by 

1 n - u  
y$$(u> = - X ( j  + u)? X ( j ) .  

j=1 

The periodogram is  well known to be inconsistent (having too 
large a  variance) and a usual method of establishing consis- 
tency is to  smooth  by means of a spectral  window, 

R 

fyJ(u) =In I g i ( y )  K ( o  - y )  dy  =I$?& 0 K(w)  (4.1) 

or equivalently  by weighting the covariances by  a lag window 

&$(a) = - y$&(u) kM(u)  e-iwu. (4.2) 
1 M  

2.rr u=-M 

The resemblance of formula  (4.1) to (3.6) is obvious so that, 
in  fact,  the  continuous  smoothing spline estimate of the spec- 
tral  density  matrix is just  the classic spectral window estimate 
with  the  spectral window determined  in a way which mini- 
mizes (3.2). 

Letting L = d u / d o u ,  we may take 

f$J(o) =I$J 0 &(a) (4.3) 

where ?h(o)  is determined by (3.8).  In this case, 1/X becomes 
the usual "bandwidth" parameter.  The mean-square error is 
minimized (asymptotically) if h is chosen O(n(1/4u'1)). In this 

case the mean-square error is 0(n-4u/4u+1) ,  hence fgd is 
weakly consistent. 

While (4.3) is %ertainly a feasible computational  formula,  the 
construction of th  is rather messy. We may take advantage of 
the  alternative  form (4.2). In this case, 

f$)(u> = - 2 ygJ(u) kh(u)  e-iwu 
1 n  

2~ u=-n 

where kk(u)  is related to $, by 

A 

th(w) = - kh(u)  e-iuw. 
1 ~~ 

2n u=-m 

Comparing  this  expression  with (3.7), we may write 
1 

so that  the CSVS becomes 

In practice, the periodogram is often  computed  on a lattice 
{jn/n,  -n < j < n}  and  the CSVS may then be approximated 
by 

(4.5) 

which, of course, corresponds to  the LSVS. Again, consis- 
tency follows from classical results for kernel  estimates (see 
Anderson [ 1 I). 

Given the  appropriate spline  estimates of the  spectral densi- 
ties f$J(o), fgJ(o), f@(u),  fgJ(o), we may construct 
estimates of other periodic functions,  namely,  the  transfer 
function 

the spectral  density of the  error series 

the  multiple  coherence 

the  coherency 

RV$(w) = f ~ J ( w ) / [ f y J ( w ) f ~ ~ ! ( w ) 1 1 / 2 ,  (4.9) 
the gain 

G(")(o) = /A(n)(o)I  = IfpJ(w)/f$$(u)1, (4.10) 

and finally, the phase 

qdn)(o) = argfpd(w). (4.1 1) 

Brillinger [2] provides strong consistency  results for all of 
these functions when the  density  matrix is estimated by kernel 
smoothed estimates. His theorem [ 2,  Theorem 8.1 1.1 ] re- 
quires that h increases to 00 as n increases, say through  the 
sequence, X, such  that &, Xirn < 00 for  some m > 0, 
(hG1 n)1/2h,E +- as n --too for some e > 0. For  such a  choice, 
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all the  estimators (4.6)-(4.11)  are  strongly consistent 
estimators. 

The filter weights a(u) are related to the  transfer  function via 

a(u) = - A ( o )  eiuw do 
2n r -n 

where, of course,d(o) = f y x ( ~ ) f x ~ ( ~ ) - l .  Since Brillinger’s 
consistency  results apply to lattice  estimators, we have A avail- 
able  on a lattice.  Thus, a may be approximated by  a  sum. In 
addition to results of Brillinger [2] ,  Hannan [5],  and Wahba 
[8]  consider estimates of the  form 

where f ( n )  are spectral density  estimates based on kernel 
smoothed periodograms. Our suggested estimator  for â  is 
essentially  this  with the f ( ” )  being spline estimators.  The 
results of Hannan and Wahba carry over directly. 

V. MULTIPLICATIVE MODELS 
As we have mentioned earlier, the use of spline estimates  for 

spectral densities, even matrix  spectral densities, is not  totally 
satisfactory  in  the presence of lines  in the  spectra.  There is 
another sense,  however, in which the discussion of the  pre- 
vious section is unsatisfactory.  It is well known  that  21p&(w)/ 
f x x ( w )  is asymptotically  chi-squared with two degrees of 
freedom, we(-n, n), o f 0. It is also known  for 01, * * , ai, 
the  random variables @&(al), * * , I$?(o i )  are asymptoti- 
cally independent.  Thus, a  multiplicative  model of the  form 

holds  rather  than  the additive form h ( o )  = f(w) + E(o), 
postulated in the beginning of Section 111. Taking  logarithms 
yields  a model of the  form 

which, strictly speaking, fits  the spline model  much  better. 
Thus,  with a  multiplicative model of this  type, we are  estimat- 
ing not  the  spectral  density,  but  the  log  spectral  density. This 
is the  cepstrum. We are  thus using our  smoother  not  on  the 
periodogram but  on  the  log periodogram. The main disadvan- 
tage of this  model  is  the loss of the  extremely convenient com- 
putation of the spline given by (4.4). The logged model  (5.1 ), 
however, fits  almost  exactly  the  theoretical model required 
of the spline. The  fact  that ZPJ(q), * * ,Zp&(oj) are 
asymptotically  independent guarantees that,  asymptotically, 
the covariance matrix of e (o l ) ,  - * , €(ai) is diagonal, fulfill- 
ing the  conditions of the  model m the beginning of Section 111. 
It  should be pointed  out  that were these errors  correlated, 
expressions (3.1)  and (3.2)  would have to be quadratic  forms 
involving the inverse covariance matrix. This would eliminate 
the result that  the  vector spline is the vector of univariate 
splines, thus making the whole  problem  considerably more 
difficult computationally. Of course, because of the kernel 
interpretation,  the additive model  retains a theoretical validity, 
even though  strictly speaking, the multiplicative model is most 
appropriate. 

The logged model has an  interesting practical  advantage, 
however. In particular (assuming r ,  s = I), we may write the 
transfer  function using the following: 

and  coherency 

Zg$((JJ) 
log [ZP!(W) @J(o)l’/2 

= log Ryx(O)  + €p(O) .  

That is to say,  each of these  functions fits the spline model 
directly, so that  each  may be estimated directly with a  spline 
rather  than as products  and  ratios  of spline estimates. Since 
as we pointed  out  in  Section I, the spline estimates of spectral 
densities may miss sharp peaks, this  latter  procedure seems 
more  satisfactory when appropriate. 

VI. OPTIMALITY 
The  statistical  quality of an  estimator is usually measured 

against some  type of optimality  criterion. We have  used the 
phrase “optimal  estimation”  in  our  title.  Our  estimators  are 
optimal  in  the sense that  they minimize the mixed norm 
criterion given in (3.1) and (3.2). These error  criterion repre- 
sent least squares  augmented  by a penalty  for  lack of smooth- 
ness. Because of the  kernel-smoother  interpretation, we can 
view these  error  criterion as determining, in the sense of (3.1) 
or (3.2), the  optimal kernel smoother  and regard the  fact  that 
they are also splines as incidental. Of course, the  maximum 
entropy  method is also optimal  in a different sense. The  point 
is that kernel smoothers are not to be  regarded as simply 
ad  hoc  estimators,  but as estimators which are  optimized 
against a  penalized least squares criterion. 

There is another sense in which our  estimators can be 
contrasted with maximum  entropy  estimators. Maximum 
entropy  estimators are parametric  estimators.  They  depend 
on a Gaussian assumption to carry out  the  maximum  entropy 
computation  and  are  in  fact  parameterized as an autoregressive 
model. By contrast,  the spline-based estimates  are  truly  non- 
parametric, making no  assumption  about  the  underlying  func- 
tional  form  or  the  finite dimensional distributions of the  sto- 
chastic process. Wegman [ 121 discusses the  nonparametric 
character of spline estimators at  some length  and discusses the 
role of optimality  in a nonparametric  setting. 
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