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Abstract— We consider a sequential estimation problem with
two decision makers, or agents, who work as members of
a team. One of the agents sits at an observation post, and
makes sequential observations about the state of an underlying
stochastic process for a fixed period of time. The observer
agent upon observing the process makes a decision as to
whether to disclose some information about the process to
the other agent who acts as an estimator. The estimator agent
sequentially estimates the state of the process. The agents have
the common objective of minimizing a performance criterion
with the constraint that the observer agent may only act a
limited number of times.

I. INTRODUCTION

Recursive estimation of a linear stochastic process with
full and partial state information has been extensively studied
in the literature [1]. In this paper, we introduce the prob-
lem of recursive estimation with limited information. More
specifically, we consider estimating a stochastic process over
a decision horizon of length N using only M ≤ N measure-
ments. Both the measurement and estimation of the process is
carried out sequentially by two different decision makers, or
agents, called the observer and the estimator,1 respectively.
Over the decision horizon of length N, the observer agent has
exactly M opportunites to disclose some information about
the process to the estimator. These information disclosures,
or transmissions, are assumed to be error and noise free,
and the problem is to jointly determine the best observation
and estimation policies that minimize the average estimation
error between the process and its estimate.

Estimation problems of this nature arise in many appli-
cations ranging from monitoring and control over wireless
sensor networks [2], and scheduling of packet transmissions
over time-allocation limited channels. For example, due to
the power-limited nature of the wireless sensors, in most
sensor net applications the wireless devices can only make
a limited number of transmissions [3].

The rest of the paper is organized as follows. In Section II,
we formally define the problem, and briefly discuss a poten-
tial application. Section III discusses estimating an i.i.d. ran-
dom sequence with a limited number of mesaurements along
with an extension to the case when the underlying process
is Gauss-Markov. We present some illustrative examples in
Section IV.
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1As we show next, in a communication-theoretic setting we may call

them an encoder and a decoder, respectively.

II. PROBLEM STATEMENT

A. Problem Definition

The problem of optimal estimation with limited measure-
ments can be treated in the more general framework of a
communication system with limited channel uses. For this
purpose, consider the generic communication system whose
block diagram is given in Figure 1 [4]. The source outputs
some data bk for 0 ≤ k ≤ N −1, that needs to be communi-
cated to the user over a channel. The data bk are generated
according to some a priori known stochastic process, {bk},
which may be i.i.d., or correlated as in a Markov process.
An encoder (or an observer) and a decoder (or an estimator)
is placed after the source output and the channel output,
respectively, to communicate the data to the user efficiently.
In the most general case, the encoder/observer may have
access to a noise-corrupted version of the source output:

zk = bk + vk, 0 ≤ k ≤ N −1

where {vk} is an independent2 noise process.
The main constraint is that the encoder/observer can access

the channel only a limited, M ≤ N, number of times. The
goal is to design an observer-estimator pair,3 (O,E ), that
will “causally” (or sequentially) observe (or encode) the
data measurements, zk, and estimate (or decode) the channel
output, yk, so as to minimize the average distortion or error
between the observed data, bk, and estimated data, b̂k.

Source Channel User

b x y b̂

Length N M Uses
k k k k

Decoder/Encoder/

Observer Estimator

Fig. 1. Communication with limited channel use.

The channel is assumed to be memoryless, and is com-
pletely characterized by the conditional probability distribu-
tion Pc(y|x) on y ∈Y for each x ∈X , where X and Y are
the set of allowable channel inputs, and the set of possible
channel outputs, respectively.

The average distortion D(M,N) depends on the distortion
measure and may vary depending on the underlying appli-
cation. Some examples are the average mean-square error

D(M,N) = E

{
1
N

N−1

∑
k=0

(bk − b̂k)2

}
(1)

2Independent across time and from the source output process bk .
3Or depending on the application, an encoder-decoder pair (E ,D).
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or the Hamming (probability of error) distortion measure

D(M,N) = E

{
1
N

N−1

∑
k=0

Ibk �=b̂k

}
(2)

where IS denotes the indicator function of the set S.
From a communication-theoretic standpoint, with the

channel, source, and the distortion measure defined, we can
formally state our main problem: Given a source and a
memoryless channel, for a given decision-horizon N, and
number of channel uses M, what is the minimum attainable
value of the average distortion D(M,N)? This minimization
is carried out over the choice of possible encoder-decoder
(observer-estimator) pairs which are causal.

In this paper, we present a solution to this problem when
the source process is i.i.d. with a continuous or discrete
probability density function, and the encoder/observer has
access to the noiseless or a noisy version of the source
output. We assume that the channel is noiseless, and hence,
it is completely characterizied by the probability distribution
Pc(y|x) = δ (y− x). We also present the solution to the case
when the source process is Gauss-Markov.

B. An Example Application

In most industrial wireless sensing applications, wireless
sensors communicate over an RF (radio frequency) channel,
and a significant amount of power is consumed to transmit
the sensor measurements [3]. In most sensor net applications,
the wireless sensors are battery-powered [3], and therefore,
it is important to use the wireless channel only when it is
necessary to extend the life of the wireless device as long
as possible. The desired length of time the wireless device
will be in operation can be related to the decision horizon
N in some appropriate time unit, and the size of the battery
installed in the sensor can be related to the possible number
of transmissions or channel uses M (see Figure 2).

Estimator  SensorTXRX

RF Channel

MN

Fig. 2. Optimal transmission scheduling with limited channel access.

Hence, given an underlying performance criterion D(M,N),
the problem is to design the best transmission schedule, and
estimation policies for the wireless device and the remote
monitoring station, respectively.

III. ESTIMATING AN I.I.D. RANDOM SEQUENCE

A. Problem Definition

Consider the special case of the general problem defined
in Section II, where the source outputs a zero-mean4 i.i.d.
random sequence bk, 0 ≤ k ≤ N−1. Let B denote the range
of the random variable bk. We assume that bk’s have a finite
second moment, σ2

b < ∞, but their probabiliy distribution

4This is not restrictive, as the known mean can be subtracted out by the
estimator.

remains unspecified for now. At time k, the encoder/observer
makes a sequential measurement of bk, and determines
whether to access the channel for transmission, which it can
only do a limited, M ≤ N, number of times. The channel
is noiseless and thus has a capacity to transmit the source
output error-free when it is used to transmit. Note that, even
when it decides not to use the channel for transmission,
the observer/encoder may still convey a 1-bit information
to the estimator/decoder. In view of this, the channel input
xk belongs to the set X := B∪{NT}, where NT stands for
“no transmission.”

More precisley, we let sk denote the number of channel
uses (or transmissions) left at time k. Now if sk ≥ 1, we have
yk = xk for xk ∈ B∪{NT}. If sk = 0, on the other hand, the
channel is useless, since we have exhausted the allocated
number of channel uses. Note that, when the channel is
noiseless, both the observer and the estimator can keep track
of sk by initializing s0 = M and decrementing it by 1 every
time a transmission decision is taken.

We want to design an estimator/decoder

b̂k = µ̂k(Id
k ) for 0 ≤ k ≤ N −1

based on the available information Id
k at time k. Clearly, the

information available to the estimator is controlled by the
observer. The distortion measure between the observed and
estimated processes can be taken to be the average mean
square error as given by (1), or the probability of error
distortion measure which is given by (2).

The information Id
k available to the estimator at time k is

a result of an outcome of decisions taken by the observer up
until time k. Let the observer’s decision at time k be

xk = µk(Ie
k )

where Ie
k is the information available to the observer at time

k. Assuming perfect recall, we have

Ie
0 = {(s0, t0);b0}

Ie
k = {(sk, tk);bk

0;xk−1
0 }, 1 ≤ k ≤ N −1

where tk denotes the number of time or decision slots left at
time k. We have t0 = N and tk+1 = tk −1, 0 ≤ k ≤ N−2. The
range of µk(·) is the space X = B∪{NT}. Let σk denote
the decision whether the observer has decided to transmit
or not. Assume sk ≥ 1, and let σk = 1 if a transmission
takes place; i.e., xk ∈B, and σk = 0 if no transmission takes
place. We have s0 = M and sk+1 = sk −σk, 0 ≤ k ≤ N − 2.
The observer’s decision at time k is a function of its k past
measurements, and k−1 past decisions, i.e.,

µk(Ie
k ) : Bk ×X k−1 → X , 0 ≤ k ≤ N −1

Now, the information Id
k available to the estimator at time

k can be written as Id
k = {(sk, tk);yk

0}, 0 ≤ k ≤ N − 1. By
definition, the channel output yk satisfies yk = xk if sk ≥ 1,
and yk ∈ /0 (i.e., no information) if sk = 0. Thus, for sk ≥ 1,
having yk = xk = NT may still be considered as information.

Consider the class of observer-estimator (encoder-decoder)
policies consisting of a sequence of functions Π =

1030



{µ0, µ̂0, . . . ,µN−1, µ̂N−1}, where each function µk maps Ie
k

into X , and µ̂k maps Id
k into B,5 with the additional

restriction that µk can map to B at most M times. Such
policies are called admissible. We want to find an admissible
policy π∗ ∈ Π that minimizes the average N-stage distortion,
or estimation error:

eπ
(M,N) = E

{
N−1

∑
k=0

(bk − µ̂k(Id
k ))2

}
(3)

or for source processes with discrete probability densities:

eπ
(M,N) = E

{
N−1

∑
k=0

Ibk �=µ̂k(Id
k )

}
(4)

If M ≥ N, this problem has the trivial solution where the
observer writes the source output bk directly into the channel
at each time k (i.e., µ∗

k (bk) = bk), and since the channel is
noiseless, the estimator can use an identity mapping (i.e.,
µ̂∗

k (Id
k ) = bk), resulting in zero distortion. Therefore, we only

consider the case when M < N.
Before closing our account on this section, we would

like to note the nonclassical nature of the information in
this problem. Clearly, the observer’s action affects the in-
formation available to the estimator, and there is no way in
which the estimator can infer the information available to the
observer. Also note the order of actions between the decision
makers in the problem. At time k, first the random variable
bk becomes available, then the observer acts by transmitting
some data or not, and finally, the estimator acts by estimating
the state with µ̂k, the cost is incurred, and we move to the
next time k +1.

B. Structure of the Solution

We first consider the problem of finding the optimal
estimator µ̂∗

k at time k. Note that the estimator µ̂k appears
only in a single term in the error expressions (3)-(4). Thus,
for the mean-square error criterion, the optimal estimator is
simply the solution of the quadratic minimization problem

min
µ̂k(Id

k )
E
{

(bk − µ̂k(Id
k ))2|Id

k

}
which is given by the conditional expectation of bk given the
available information at time k:

µ̂∗
k (Id

k ) = E{bk|Id
k } = E{bk|(sk, tk);yk

0} (5)

Similarly, for the probability of error distortion criterion, the
optimal estimator is the solution of the minimization problem

min
µ̂k(Id

k )
E
{
Ibk �=µ̂k(Id

k )|Id
k

}
If at time k the channel can still be used (sk ≥ 1), the solution
to this problem is given by the maximum a posteriori
probability (MAP) estimate of the random variable bk given
the available information at time k:

µ̂∗
k (Id

k ) = arg max
mi∈Bk(Id

k )
δ (yk − i)pi = arg max

mi∈Bk((sk,tk);yk
0)

pi (6)

5Note that we do not distinguish between the source and user sets.

where Bk(Id
k )⊂B is some subset of the range of the random

variable bk, which we assume is countable. Let mi denote the
values the random variable bk takes. Then, pi’s denote the
probability mass function of the random variable bk, i.e.,
pi = P[bk = mi].

Note that, for the probability of errror distortion criterion,
if the channel is useless at time k (i.e., sk = 0), the best
estimate of bk is simply given by

µ̂∗
k (Id

k ) = arg max
mi∈B

pi (7)

since the past channel outputs, yk−1
0 , are independent of bk.

Similarly, for the mean-square error criterion, the channel
output yk has no information on bk if sk = 0. Thus, in this
case, the conditional expectation in (5) equals

µ̂∗
k (Id

k ) = E{bk|(0, tk);yk−1
0 ,yk} = E{bk} = 0 (8)

since again the past channel outputs, yk−1
0 , are generated

by the σ -algebra of random variables bk−1
0 , and hence are

independent from bk.
If sk ≥ 1, the channel output yk = xk, but since yk−1

0 = xk−1
0

is the outcome of a Borel-measurable function defined on the
σ -algebra generated by bk−1

0 , the conditional expectation in
(5) is equivalent to

µ̂∗
k (Id

k ) = E{bk|(sk, tk);xk} (9)

By a similar argument we can write (6) as

µ̂∗
k (Id

k ) = arg max
mi∈Bk((sk,tk);xk)

pi (10)

Now, substituting the optimal estimators (9)-(10) back into
the estimation error expressions (3)-(4) yields

eπ
(M,N) = E

{
N−1

∑
k=0

(bk −E{bk|(sk, tk);xk})2

}
(11)

eπ
(M,N) = E

{
N−1

∑
k=0

Ibk �=argmaxmi∈Bk((sk ,tk);xk) pi

}
(12)

which we seek to minimize over the observer/encoder poli-
cies µk(Ie

k ),0 ≤ k ≤ N−1. Since xk = µk(Ie
k ), we see that the

choice of an observer policy affects the cost only through
the information made available to the estimator.

In general, the observer’s decision µk at time k depends on
(sk, tk), all past measurements bk−1

0 , the present measurement
bk, and its past actions xk−1

0 . However, as we show next,
there is nothing the observer can gain by having access to
its past measurements bk−1

0 and its past actions xk−1
0 as far

as the optimization of the criteria (11)-(12) are concerned.
Thus, a sufficient statistics for the observer are the cur-
rent measurement bk and the remaning number of channel
uses (transmission opportunities) and decision instances, i.e.
(sk, tk). We have the following result whose proof is in [2].

Proposition 1: The set Se
k = {(sk, tk);bk} constitutes suf-

ficient statistics Se
k(I

e
k ) for the optimal policy µ∗

k of the
observer. In other words,

µ∗
k (Ie

k ) = µ̄(Se
k(I

e
k ))
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for some function µ̄ .
A consequence of Proposition 1 is that the observer’s deci-
sion to use the channel to transmit a source measurement or
not is based purely on the current observation bk and its past
actions only through (sk, tk).

Since µk depends explicitly only on the current source
output bk, the search for an optimal observer policy can be
narrowed down to the class of policies of the form6

µk(Ie
k ) = µ̄((sk, tk);bk) =

{
bk if bk ∈ T(sk,tk)
NT if bk ∈ T c

(sk,tk)
(13)

where T(sk,tk) is a measurable set on B and is a function
of (sk, tk). The complement of the set T(sk,tk) is taken with
respect to B, i.e., T c

(sk,tk)
= B\T(sk,tk). When probability of

error distortion criterion is used, Proposition 1 implies that
Bk((sk, tk);NT) = T c

(sk,tk)
, and Bk((sk, tk);mi) = mi.

Note that the optimal estimators (9) and (10) have access
to (sk, tk) as well. Thus, even when the observer chooses not
to transmit bk, it can still pass a 1-bit information about bk

to the estimator provided that sk ≥ 1. If k is such that all M
transmissions are concluded prior to time k (i.e., sk = 0), the
estimators are given by (7)-(8), irrespective of bk.

C. The Solution with Mean-Square Error Criterion

Let (sk, tk) = (s, t), and e∗(s,t) denote the optimal value of
the estimation error (or distortion) (11) when the decision
horizon is of length t, and the observer is limited to s channel
uses, where s ≤ t. From (13), we know that at time k, the
optimal observation policy will be of the form (13). Now,
at time k + 1, depending on the realization of the random
variable bk, the remaining (t − 1)-stage estimation error is
either e∗(s−1,t−1), or e∗(s,t−1). Thus, inductively by the DP
equation [5], we can write7

e∗(s,t) = min
T(s,t)

{
e∗(s−1,t−1)

∫
b∈T(s,t)

f (b)db

+e∗(s,t−1)

∫
b∈T c

(s,t)

f (b)db (14)

+
∫

b∈T c
(s,t)

[
b−E{b|b ∈ T c

(s,t)}
]2

f (b)db

}

where f (b) is the pdf of the random variable bk. To solve
for e∗(s,t), we first note the boundary conditions e∗(t,t) = 0, and
e∗(0,t) = tσ2

b , ∀t ≥ 0. The optimal sets satisfy the boundary
conditions T ∗

(t,t) = B, and T ∗
(0,t) = /0, ∀t ≥ 0. The recursion

of (14) needs to be solved offline and the optimal sets T ∗
(s,t)

must be tabulated starting with smaller values of (s, t).8 The
solution to the original problem can then be determined as
follows:

Initialize s0 = M, t0 = N. For each k in 0 ≤ k ≤ N −1 do:
1) Look up the optimal set T ∗

(sk,tk)
from the table that was

determined offline.

6As long as k is such that all M measurements are not exhausted.
7Assuming that the random variables {bk} are continuous with a well-

defined probability density function (pdf) f (b).
8Note that (1,2) is the smallest possible nontrivial value.

2) Observe bk and apply the observation policy

µ̄∗((sk, tk);bk) =

{
bk if bk ∈ T ∗

(sk,tk)
NT if bk ∈ T ∗c

(sk,tk)

3) Apply the estimation policy

µ̂∗
k (T ∗

(sk,tk)
) = E{bk|bk ∈ T ∗c

(sk,tk)
} =

∫
b∈T ∗c

(sk ,tk)
b f (b)db∫

b∈T ∗c
(sk ,tk)

f (b)db

4) Update
sk+1 = sk −σk, tk+1 = tk −1

In tabulating T ∗
(s,t) one should start with solving for T ∗

(1,2),
and the corresponding estimation error e∗(1,2). To determine
the optimal set at (s, t), we need to know the optimal costs
at (s, t −1), and (s−1, t −1). Hence, we can propagate our
calculations as shown in Figure 3.

 1  3 2  4  5

1

2

3

ts

Fig. 3. Recursive calculation of e∗(s,t).

Now, we return to the problem of minimizing (14) over
T(s,t). This is an optimization problem over measurable sets
T(s,t) on the real line, and since these sets are not countable,
there is no known method for carrying out this minimization
in a systematic manner. Therefore, we restrict our search
to the sets that are in the form of simple symmetric inter-
vals, i.e., T c

(s,t) = [−β(s,t),β(s,t)], where 0 ≤ β(s,t) ≤ ∞. The

optimum choice for β(s,t) is β ∗
(s,t) =

√
e∗(s−1,t−1)− e∗(s,t−1).

Note that, we always have e∗(s,t−1) ≤ e∗(s−1,t−1), since for the
same decision horizon, t−1, the minimum average distortion
achieved by s channel uses, is always less than that achieved
by s−1 channel uses. So, β ∗

(s,t) always exists. Hence, in the
class of symmetric intervals, the best set T c

(s,t) is given by
the interval

T ∗c
(s,t) = [−

√
e∗(s−1,t−1)− e∗(s,t−1),

√
e∗(s−1,t−1)− e∗(s,t−1)] (15)

D. The Solution with Probability of Error Criterion

As in Section III-C, let (sk, tk) = (s, t), and let e∗(s,t) denote
the optimal value of the estimation error. At time k + 1,
depending on the realization of the random variable bk, the
remaining (t − 1)-stage estimation error is either e∗(s−1,t−1),
or e∗(s,t−1). Thus, assuming that s ≥ 1, inductively by the DP
equation, we can write

e∗(s,t) = min
T(s,t)

{
P[bk ∈ T(s,t)]e

∗
(s−1,t−1) +P[bk ∈ T c

(s,t)]e
∗
(s,t−1)

+P[bk ∈ T c
(s,t)]− max

m j∈T c
(s,t)

p j

}
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Plugging in P[bk ∈ T c
(s,t)] = ∑mi∈T c

(s,t)
pi, and rearranging the

terms, we obtain the following error recursion:

e∗(s,t) = e∗(s−1,t−1)

+ min
T c

(s,t)

⎧⎨
⎩−(e∗(s−1,t−1)− e∗(s,t−1)) ∑

mi∈T c
(s,t)

pi

+ ∑
mi∈T c

(s,t)

pi − max
m j∈T c

(s,t)

p j

⎫⎬
⎭ (16)

We have the following property whose proof is in [2].
Proposition 2: Suppose 1 ≤ s ≤ t. Then, the error differ-

ence e∗(s−1,t−1)− e∗(s,t−1) satisfies:

0 ≤ e∗(s−1,t−1)− e∗(s,t−1) ≤ 1
Using Propostion 2, in [2] we show that the optimum choice
for the sets T c

(s,t) is the singleton T c∗
(s,t) = {mi∗}, where

i∗ = argmaxmi∈B pi. In other words, the optimal solution
is not to transmit the most likely outcome, and transmit all
the other outcomes. Moreover, this policy is independent of
the number of decision instances left, and the number of
transmission opportunities left, provided that sk ≥ 1.

E. Gaussian Case

Suppose bk’s are zero-mean, i.i.d. Gaussian with variance
σ2

b . If we generalize the search for an optimum in (14)
to intervals of the form T c

(s,t) = [α(s,t),β(s,t)], where −∞ ≤
α(s,t) ≤ β(s,t) + ∞, it can be shown that the solution is still
a symmetric interval around zero in the Gaussian case [2].
To evaluate the optimum estimation error e∗(s,t) in terms of
e∗(s−1,t−1) and e∗(s,t−1), we substitute the optimum interval
solution (15) into the right-hand side of (14) and obtain

e∗(s,t) = e∗(s−1,t−1)−
[
e∗(s−1,t−1)− e∗(s,t−1)−σ2

b

]

×
⎡
⎣2Φ

⎛
⎝
√

e∗(s−1,t−1)− e∗(s,t−1)

σ2
b

⎞
⎠−1

⎤
⎦

− 2σ2
b√

2πσ2
b

√
e∗(s−1,t−1)− e∗(s,t−1)e

−
e∗(s−1,t−1)−e∗(s,t−1)

2σ2
b (17)

We can normalize the optimal estimation error by letting

ε(s,t) =
e∗(s,t)
σ2

b
, and rewrite the recursion (17) in a simpler form:

ε(s,t) = ε(s−1,t−1)−
[
ε(s−1,t−1)− ε(s,t−1)−1

]
×[2Φ

(√
ε(s−1,t−1)− ε(s,t−1)

)−1
]

(18)

− 2√
2π
√

ε(s−1,t−1)− ε(s,t−1)e
− ε(s−1,t−1)−ε(s,t−1)

2

with the initial conditions (IC) ε(t, t) = 0, ε(0, t) = t,∀t ≥ 0.

F. Limiting Solution for the Gaussian Case

The normalized recursion of the estimation error in the
Gaussian case is given by (18). Note that, this is a Riccati-
like equation, which needs to be solved offline to determine
the optimal observation and estimation policies. However,

unlike the RE, (18) is a two-dimensional recursion with
given boundary conditions. In order to see how this recursion
behaves when (s, t) are large, we proceed as follows. Let
t = s+k, where k ∈N is an arbitrary integer. We substitute
s+k for t in the recursion (18) starting with k = 1, and obtain

ε(s,s+1) = ε(s−1,s)− [ε(s−1,s)−1]× [2Φ(
√

ε(s−1,s))−1]

− 2√
2π
√

ε(s−1,s)e
− ε(s−1,s)

2 (19)

since e(s,s) = 0. The sequence (19), can be shown to
converge from the initial condition ε(0,1) = 1 to the limit
lε ≈ 0.3345, which is the solution of the nonlinear equation:

(1− lε)(2Φ(
√

lε)−1) =
2√
2π

√
lε e−

lε
2

Proceeding in the same manner, we can calculate the limits
of the sequences ε(s,s+k) for an arbitrary but otherwise fixed
k, and it turns out that lims→∞ ε(s,s+k) = lε k ≈ 0.3345k. Since
k is arbitrary, we conclude that for t ≥ s,

lim
s→∞,t→∞

ε(s,t) = lε(t − s)

As a result, from (15), the optimum interval for the observer
not to transmit is given by [−√

lε ,
√

lε ] ≈ [−0.5784,05784].
Note that this interval is for the normalized Gaussian density.
For an arbitrary Gaussian distribution with variance σ2

b , the
interval must be scaled by the standard deviation σb, i.e.,
[−√

lε σb,
√

lε σb]. In the limit as (M,N) get large, the N-stage
optimal average distortion, D∗

(M,N) = 1
N e∗(M,N), for a Gaussian

i.i.d. source with variance σ2
b is given by

lim
M→∞,N→∞

D∗
(M,N) = lε

1
N

(N −M)σ2
b = lε

(
1− M

N

)
σ2

b

One can identify the term
(
1− M

N

)
σ2

b as the average distor-
tion when no observer is used. More precisely, say there is
no observer agent, and thus the source is allowed to make
M transmissions at some arbitrary times. When the estimator
receives the source data, clearly the estimation error for that
stage is zero. When no measurement is received on the
other hand, the estimator simply estimates the process by
its a priori density, and incurs an error of size σ2

b . This
process of estimation leads to an average estimation error of
size eno−observer =

(
1− M

N

)
σ2

b . Comparing this error with the
asymptotic optimum estimation error obtained by using an
optimum observer-estimator pair, we see that they differ by a
factor of lε . Hence, (1− lε) can be thought of as the encoder-
decoder gain of the communication system in Figure 1 for a
Gaussian i.i.d. source and a noiseless channel.

G. Gaussian Case with Noisy Measurements

Let the source process bk be i.i.d. Gaussian. If the observer
has access to a noisy version of the source output, i.e.,
zk = bk + vk, where vk is an independent zero-mean i.i.d.
Gaussian process with variance σ2

v , the solution is similar to
the noiseless case [2]. The optimal estimator is given by

µ̂k((sk, tk);xk) =

⎧⎨
⎩

σ2
b

σ2
b +σ2

v
zk if zk ∈ T(sk,tk)

E
{

bk|zk ∈ T c
(sk,tk)

}
if zk ∈ T c

(sk,tk)
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and the optimum interval where the observer chooses not
to transmit is given by T c

(s,t) = [α(s,t),β(s,t)], where β ∗
(s,t) =

σ2
b +σ2

v

σ2
b

√
e∗(s−1,t−1)− e∗(s,t−1), and α∗

(s,t) =−β ∗
(s,t). Substituting

these values into the error recursion and normalizing, ε(s,t) :=
σ2

b +σ2
v

(σ2
b )2 e∗(s,t), we obtain the two-dimensional recursion:

ε(s,t) = ε(s−1,t−1)−
[
ε(s−1,t−1)− ε(s,t−1)−1

]
×[2Φ

(√
ε(s−1,t−1)− ε(s,t−1)

)−1
]

(20)

+
σ2

v

σ2
b

− 2√
2π
√

ε(s−1,t−1)− ε(s,t−1)e
− ε(s−1,t−1)−ε(s,t−1)

2

with the ICs ε(t, t) = σ2
v

σ2
b

t, ε(0, t) =
(

1+ σ2
v

σ2
b

)
t,∀t ≥ 0.

H. Gauss-Markov Case

Suppose the source process is Markov bk+1 = Abk + wk,
driven by an i.i.d. Gaussian process {wk} with zero-mean. If
the observer has access to the source output, bk, without
noise, the solution is similar to the i.i.d. case. The only
difference is that, now the observer-estimator pair has to
keep track of three variables (rk,sk, tk), where rk keeps track
of the number of time units passed since the last use of the
channel for transmission. A similar DP recursion, now in
three dimensions, can be obtained; see [2] for details.

IV. ILLUSTRATIVE EXAMPLES

A. Example 1

The first example is just solving the problem of Section III-
E for (s, t) = (1,2). So, the observer can use the channel for
tranmission only once, at time k = 0 or 1, and the observer
and the estimator are jointly trying to minimize the average
distortion (or estimation error):

e = E
{
(b0 − b̂0)2 +(b1 − b̂1)2}

where b0,b1 are i.i.d. Gaussian with zero mean, and variance
σ2

b . If we arbitrarily choose to transmit the first source
output, or the second one, the estimation error would be
e∗no−observer = σ2

b , which is the best error that can be achieved
without a decision maker that observes the source output.
Now, suppose the observer is aware of the fact that the
estimator knows the a priori distribution of b0. So, it makes
sense for the observer not to transmit the realized value of
b0 if this value happens to be close to the a priori estimate
of it, which in this case is the mean value of b0, i.e., zero.

Motivated by this intuition, the observer adopts a policy in
which it will not use the channel to transmit b0 if it lies in an
interval [α,β ] around zero. The decision for the second stage
would already have been made once α and β are determined,
because, if b0 ∈ [α,β ], then the observer cannot use the
channel to transmit at time 1, and if b0 /∈ [α,β ], there is
no reason why it should not transmit at time 1.

Now, the optimization problem faced by the observer is to
choose α and β such that the following error is minimized:

e(α,β ) =
∫ β

α
(b−E {b|b ∈ [α,β ]})2 f (b)db

+σ2
b P{b0 /∈ [α,β ]}

The solution can be easily obtained by checking the first,
and second order optimality conditions, and is given by
(α∗,β ∗) = (−σb,σb). Thus, the observer should not use the
channel to transmit the source output b0 if it falls within one
standard deviation of its mean. For these values of α and β ,
the optimal value of the estimation error can be calculated
as

e(α∗,β ∗) = σ2
b

[
1−

√
2

πe

]

Comparing this to the no-observer policy, e∗no−observer = σ2
b ,

we see that there is a
√

2
πe ≈ 48% improvement in the

estimation error.

B. Example 2

The second example we will discuss considers the follow-
ing design problem. We are given a time-horizon of a fixed
length, say 100. For this N = 100 time units, we would like to
sequentially estimate the state of a zero-mean, i.i.d. Gaussian
process with unit variance. We have a design criterion which
says that the aggregate estimation error should not exceed
20. The solution to this problem without an observer agent
is to reveal 80 arbitrary observations to the estimator and
achieve an aggregate estimation error of 20. Suppose now
we use the optimal observer-estimator pair. In Figure 4, we
plot the optimal value of the 100-stage estimation error for
different values of M.
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Fig. 4. Optimal 100-stage estimation error vs the number of channel uses.

It is striking that a cumulative estimation error of 20 can be
achieved with only 34 transmissions. This is approximately a
80−34

80 ×100≈ 58% improvement over the no-observer policy.
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