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Abstract

In this paper, we present the best possible parameters p,q ∈R such that the double

inequalityMp(a,b) < T [A(a,b),Q(a,b)] <Mq(a,b) holds for all a,b > 0 with a �= b, and we

get sharp bounds for the complete elliptic integral E (t) =
∫ π /2

0
(1 – t2 sin2 θ )1/2 dθ of

the second kind on the interval (0,
√
2/2), where

T (a,b) = 2
π

∫ π /2

0

√
a2 cos2 θ + b2 sin2 θ dθ , A(a,b) = (a + b)/2, Q(a,b) =

√
(a2 + b2)/2,

Mr(a,b) = [(ar + br)/2]1/r (r �= 0), andM0(a,b) =
√
ab are the Toader, arithmetic,

quadratic, and rth power means of a and b, respectively.

MSC: 33E05; 33C05; 26E60
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1 Introduction

For r ∈ R and a,b > , the Toader mean T(a,b) (see []) and rth power mean Mr(a,b) are

defined by

T(a,b) =


π

∫ π/



√

acos θ + bsin θ dθ (.)

and

Mr(a,b) =

⎧

⎨

⎩

( a
r+br


)/r , r �= ,

√
ab, r = ,

(.)

respectively.

It is well known thatMr(a,b) is continuous and strictly increasing with respect to r ∈R

for fixed a,b >  with a �= b. Many classical bivariate means are a special case of the power

mean, for example,H(a,b) = ab/(a+b) =M–(a,b) is the harmonicmean,G(a,b) =
√
ab =

M(a,b) is the geometric mean,

A(a,b) = (a + b)/ =M(a,b) (.)

is the arithmetic mean, and

Q(a,b) =
√

(

a + b
)

/ =M(a,b) (.)
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is the quadraticmean. Themain properties of the powermean are given in []. The Toader

meanT(a,b) has beenwell known in themathematical literature formany years, it satisfies

T(a,b) = RE

(

a,b
)

,

where

RE(a,b) =


π

∫ ∞



[a(t + b) + b(t + a)]t

(t + a)/(t + b)/
dt

stands for the symmetric complete elliptic integral of the second kind (see [–]), therefore

it cannot be expressed in terms of the elementary transcendental functions.

Let r ∈ (, ), K(r) =
∫ π/


( – r sin θ )–/ dθ , and E(r) =

∫ π/


( – r sin θ )/ dθ be,

respectively, the complete elliptic integrals of the first and second kind. Then K(+) =

E(+) = π/, the Toader mean T(a,b) given in (.) can be expressed as

T(a,b) =

⎧

⎨

⎩

a
π
E(

√

 – ( b
a
)), a > b,

b
π
E(

√

 – ( a
b
)), a < b,

(.)

and K(r) and E(r) satisfy the derivatives formulas (see [], Appendix E, p. -)

dK(r)

dr
=
E(r) – ( – r)K(r)

r( – r)
,

dE(r)

dr
=
E(r) –K(r)

r
,

d(K(r) – E(r))

dr
=
rE(r)

 – r
.

Numerical computations show that

E

(

√




)

= . . . . , K

(





)

= . . . . , E

(





)

= . . . . ,

K

(





)

= . . . . , E

(





)

= . . . . .

Recently, the power meanMr(a,b) and Toader mean T(a,b) have been the subject of in-

tensive research. In particular, many remarkable inequalities for both means can be found

in the literature [–].

Vuorinen [] conjectured that the inequality

M/(a,b) < T(a,b)

holds for all a,b >  with a �= b. This conjecture was proved by Qiu and Shen [], and

Barnard et al. [], respectively.

Alzer and Qiu [] presented a best possible upper power mean bound for the Toader

mean as follows:

T(a,b) <Mlog/(logπ–log)(a,b)

for all a,b >  with a �= b.
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Neuman [], and Kazi and Neuman [] proved that the inequalities

(a + b)
√
ab – ab

AGM(a,b)
< T(a,b) <

(a + b)
√
ab + (a – b)

AGM(a,b)
,

T(a,b) <




(

√

( +
√
)a + ( –

√
)b +

√

( +
√
)b + ( –

√
)a

)

hold for all a,b >  with a �= b, where AGM(a,b) is the arithmetic-geometric mean of a

and b.

Let λ,µ,α,β ∈ (/, ). Then Chu et al. [], and Hua andQi [] proved that the double

inequalities

C
[

λa + ( – λ)b,λb + ( – λ)a
]

< T(a,b) < C
[

µa + ( –µ)b,µb + ( –µ)a
]

,

C
[

αa + ( – α)b,αb + ( – α)a
]

< T(a,b) < C
[

βa + ( – β)b,βb + ( – β)a
]

hold for all a,b >  with a �= b if and only if λ ≤ /, µ ≥ / +
√

π ( – π )/(π ), α ≤ / +√
/, and β ≥ / +

√
/π – /, where C(a,b) = (a + b)/(a + b) and C(a,b) = (a +

ab + b)/[(a + b)] are, respectively, the contraharmonic and centroidal means of a and b.

In [–], the authors proved that the double inequalities

αQ(a,b) + ( – α)A(a,b) < T(a,b) < βQ(a,b) + ( – β)A(a,b),

Qα (a,b)A(–α)(a,b) < T(a,b) <Qβ (a,b)A(–β)(a,b),

αC(a,b) + ( – α)A(a,b) < T(a,b) < βC(a,b) + ( – β)A(a,b),

α

A(a,b)
+

 – α

C(a,b)
<



T(a,b)
<

β

A(a,b)
+

 – β

C(a,b)
,

αC(a,b) + ( – α)H(a,b) < T(a,b) < βC(a,b) + ( – β)H(a,b),

α

[

C(a,b) –H(a,b)
]

+A(a,b) < T(a,b) < β

[

C(a,b) –H(a,b)
]

+A(a,b),

αC(a,b) + ( – α)A(a,b) < T(a,b) < βC(a,b) + ( – β)A(a,b),

α

A(a,b)
+

 – α

C(a,b)
<



T(a,b)
<

β

A(a,b)
+

 – β

C(a,b)
,

αQ(a,b) + ( – α)H(a,b) < T(a,b) < βQ(a,b) + ( – β)H(a,b),

α

H(a,b)
+
 – α

Q(a,b)
<



T(a,b)
<

β

H(a,b)
+
 – β

Q(a,b)

hold for all a,b >  with a �= b if and only if α ≤ /, β ≥ ( – π )/[(
√
 – )π ], α ≤ /,

β ≥  –  logπ/ log, α ≤ /, β ≥ /π – , α ≤ π/ – , β ≥ /, α ≤ /, β ≥ /π ,

α ≤ /, β ≥ /π – /, α ≤ /, β ≥ /π – , α ≤ π – , β ≥ /, α ≤ /, β ≥

√
/π , α ≤ , and β ≥ /.

The main purpose of this paper is to present the best possible parameters p,q ∈R such

that the double inequality

Mp(a,b) < T
[

A(a,b),Q(a,b)
]

<Mq(a,b)

holds for all a,b >  with a �= b.
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2 Lemmas

In order to prove our main results, we need several lemmas which we present in this sec-

tion.

Lemma . (See [], Theorem .) The inequality E[Mp(x, y)] >Mq[E(x),E(y)] holds for

all x, y ∈ (, ) if and only if

p≤ C(q) := inf
r∈(,)

{

rE(r)

( – r)[K(r) – E(r)]
+
( – q)[K(r) – E(r)]

E(r)

}

,

where q → C(q) is a continuous function which satisfies C(q) =  for all q ≤ / and C(q) <

 for all q > /.

Lemma . The double inequality

( – t)/ + 

( – t)/ + 
<  –

t


<

[

(
√
 – t + t)/ + (

√
 – t – t)/



]/

(.)

holds for all t ∈ (,
√
/).

Proof Let u = ( – t)/. Then u ∈ (/ 
√
, ), t =  – u, and the first inequality of (.) is

equivalent to

u + 

u + 
<
u + 


(.)

for all u ∈ (/ 
√
, ).

We clearly see that (.) follows from

(u + )
(

u + 
)

– 
(

u + 
)

= (u + )
(

u + 
)

( – u)
[

(u – ) + u + u + u
]

> 

for all u ∈ (/ 
√
, ).

For the second inequality of (.), let v =
√
 – t ∈ (

√
/, ), then it suffices to prove that

ρ(v) :=
[(v +

√
 – v)/ + (v –

√
 – v)/]


–
(v + )



=




[

v – v +
(

v – 
)/

–
(v + )



]

>  (.)

for all v ∈ (
√
/, ).

We claim that

(

v – 
)/

>  – v + v + v (.)

for all v ∈ (
√
/, ).
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Indeed, if v ∈ (
√
/, (

√
 – )/], then we clearly see that the function  – v + v + v

is strictly increasing on (
√
/, (

√
 – )/], and (.) follows from

 – v + v + v ≤  – ×
√
 – 


+ ×

(

√
 – 



)

+ ×
(

√
 – 



)

=
 – 

√



< .

If v ∈ ((
√
 – )/, ), then (.) follows easily from

(

v – 
)

–
(

 – v + v + v
)

=
(

 – v
)(

– + v + v
)

>
(

 – v
)

[

– + ×
√
 – 


+ 

(

√
 – 



)]

= .

Therefore, inequality (.) follows from (.) and

v – v +
(

v – 
)/

–
(v + )


> v – v +

(

 – v + v + v
)

–
(v + )



=
( – v)( + v + v + v)


> 

for all v ∈ (
√
/, ). �

Lemma . The inequality

E(t) >
π



(

 –
t



)

holds for all t ∈ (, /).

Proof Let

f (t) = E(t) –
π



(

 –
t



)

. (.)

Then simple computations lead to

f
(

+
)

= , f

(





)

= . . . . > , (.)

f ′(t) = tf(t), (.)

where

f(t) =
E(t) –K(t)

t
+
π


,

f
(

+
)

=
π


> , f

(





)

= –. . . . < , (.)

f ′
 (t) =

f(t)

t( – t)
, (.)
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where

f(t) = 
(

 – t
)

K(t) –
(

 – t
)

E(t),

f
(

+
)

= , (.)

f ′
(t) = –t

[

K(t) – E(t)
]

<  (.)

for t ∈ (, /).

From (.)-(.) we clearly see that f(t) is strictly decreasing on (, /). Then (.) and

(.) lead to the conclusion that there exists t ∈ (, /) such that f (t) is strictly increasing

on (, t] and strictly decreasing on [t, /).

Therefore, Lemma . follows easily from (.) and (.) together with the piecewise

monotonicity of f (t). �

Lemma . The inequality

(

 + t


√
 + t

)/

>  +
t



holds for all t ∈ (, /).

Proof It suffices to prove that the inequalities

 + t


√
 + t

>  +
t


(.)

and

(

 +
t



)/

>  +
t


(.)

hold for all t ∈ (, /).

Indeed, inequalities (.) and (.) follow easily from the identities

(

 + t
)

– 
(

 + t
)(

 + t
)

= t( – t)( + t)

and

(

 +
t



)

–

(

 +
t



)

= t
(




+
t


+

,t

,
+

,t

,,
+

t

,
+

t

,,

)

. �

Lemma . Let λ =  log/[ logπ – log –  logE(
√
/)] = . . . . and

g(t) =


π

√
 + tE

(

t
√
 + t

)

–

[

( + t)λ + ( – t)λ



]/λ

.

Then g(t) >  for all t ∈ (, /).



Song et al. Journal of Inequalities and Applications  ( 2015)  2015:408 Page 7 of 12

Proof It follows from t/
√
 + t ∈ (, /), λ < /, Lemma ., Lemma . and the mono-

tonicity ofMr( + t,  – t) with respect to r ∈ R that

g(t) >


π

√
 + t ×

π



[

 –
t

( + t)

]

–

[

( + t)/ + ( – t)/



]/

=
 + t


√
 + t

–

[

( + t)/ + ( – t)/



]/

>

(

 +
t



)/

–

[

( + t)/ + ( – t)/



]/

(.)

for t ∈ (, /). Let

g(t) = 

(

 +
t



)

–
[

( + t)/ + ( – t)/
]

. (.)

Then simple computations lead to

g() = , g

(





)

= . . . . > , (.)

g ′
(t) =





[

t – ( + t)/ + ( – t)/
]

,

g ′
() = , g ′



(





)

= –. . . . < , (.)

g ′′
 (t) =





[

 –


( + t)/
–



( – t)/

]

,

g ′′
 () =




> , g ′′



(





)

= –. . . . < , (.)

g ′′′
 (t) =





[



( + t)/
–



( – t)/

]

<  (.)

for t ∈ (, /).

From (.) and (.) we know that there exists t ∈ (, /) such that g ′
(t) is strictly

increasing on (, t] and strictly decreasing on [t, /). Then (.) leads to the conclu-

sion that there exists t ∈ (, /) such that g(t) is strictly increasing on (, t] and strictly

decreasing on [t, /).

Therefore, Lemma . follows from (.)-(.) and the piecewise monotonicity of

g(t). �

Lemma . Let λ =  log/[ logπ – log– logE(
√
/)] = . . . . . Then the function

t–Eλ–(t)[E(t) –K(t)] is strictly decreasing on (, ).

Proof From Lemma . we clearly see that the inequality

E
(

Mλ(x, y)
)

>Mλ

(

E(x),E(y)
)

=

(

Eλ(x) + Eλ(y)



)/λ

(.)

holds for all x, y ∈ (, ) with x �= y.
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It follows from the monotonicity of the function E(t) and the power meanMp(x, y) with

respect to p ∈R together with λ >  that

E

(

x + y



)

= E
(

M(x, y)
)

> E
(

Mλ(x, y)
)

(.)

for all x, y ∈ (, ) with x �= y.

Inequalities (.) and (.) lead to

E
λ

(

x + y



)

>
Eλ(x) + Eλ(y)



for all x, y ∈ (, ) with x �= y, which implies that the function Eλ(t) is strictly concave on

(, ).

Note that

t–Eλ–(t)
[

E(t) –K(t)
]

=


λ

dEλ(t)

dt
. (.)

�

Therefore, Lemma . follows easily from (.) and the concavity of Eλ(t) on (, ).

Lemma . Let λ =  log/[ logπ – log –  logE(
√
/)] = . . . .

h(t) =
+λ

πλ
E

λ(t) –
( + t)λ + ( – t)λ

λ

and

h(t) =
+λ

πλ
E

λ(t) – (
√
 – t)λ – λ/.

Then h(t) >  for t ∈ [/, /) and h(t) >  for t ∈ [/,
√
/).

Proof Simple computations lead to

h

(





)

= . . . . > , h

(

√




)

= , (.)

h′
(t) =

λ

λ

[

λ+

πλ
t–Eλ–(t)

(

E(t) –K(t)
)

+ ( – t)λ– – ( + t)λ–
]

, (.)

h′
(t) = λ

[(



π

)λ

t–Eλ–(t)
(

E(t) –K(t)
)

+ (
√
 – t)λ–

]

, (.)

h′


(





)

= –. . . . < , h′


(





)

= –. . . . < . (.)

From (.) and (.) together with Lemma . we clearly see that both h′
(t) and h′

(t)

are strictly decreasing on (,
√
/). Then (.) leads to the conclusion that h(t) is strictly

decreasing on [/, /] and h(t) is strictly decreasing on [/,
√
/).

Therefore, Lemma . follows from (.) and the monotonicity of h(t) on [/, /]

and h(t) on [/,
√
/). �
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Lemma . (See [], Corollary .) The inequality



π
E(t) <

( – t)/ + 

( – t)/ + 
(.)

holds for all t ∈ (, ).

3 Main results

Theorem . Let λ =  log/[ logπ – log– logE(
√
/)] = . . . . . Then the double

inequality

Mp(a,b) < T
[

A(a,b),Q(a,b)
]

<Mq(a,b)

holds for all a,b >  with a �= b if and only if p ≤ λ and q ≥ /.

Proof Since the arithmetic mean A(a,b), quadratic mean Q(a,b), Toader mean T(a,b),

and rth power mean Mr(a,b) are symmetric and homogeneous of degree , without loss

of generality, we assume that a > b. Let t = (a – b)/
√

(a + b). Then t ∈ (,
√
/) and

equations (.)-(.) lead to

Mr(a,b) =
A(a,b)
√
 – t

[

(
√
 – t + t)r + (

√
 – t – t)r



]/r

, (.)

T
[

A(a,b),Q(a,b)
]

=
A(a,b)E(t)

π
√
 – t

. (.)

We divide the proof into three cases.

Case  r ≥ /. Then it follows from (.) and (.) together with the monotonicity of

Mr(a,b) with respect to r that

T
[

A(a,b),Q(a,b)
]

–Mr(a,b)

≤ T
[

A(a,b),Q(a,b)
]

–M/(a,b)

=
A(a,b)
√
 – t

[



π
E(t) –

( – t)/ + 

( – t)/ + 

]

+
A(a,b)
√
 – t

[

( – t)/ + 

( – t)/ + 
–

(

(
√
 – t + t)/ + (

√
 – t – t)/



)/]

. (.)

Therefore,

T
[

A(a,b),Q(a,b)
]

<Mr(a,b)

for all a,b >  with a �= b follows from Lemmas . and . together with (.).
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Case  r ≤ λ. Then equations (.) and (.) together with the monotonicity ofMr(a,b)

with respect to r lead to

T
[

A(a,b),Q(a,b)
]

–Mr(a,b)

≥ T
[

A(a,b),Q(a,b)
]

–Mλ(a,b)

=
A(a,b)
√
 – t

[



π
E(t) –

(

(
√
 – t + t)λ + (

√
 – t – t)λ



)/λ]

. (.)

We divide the proof into two subcases.

Subcase . t ∈ (, /). Let u = t/
√
 – t. Then u ∈ (, /) and (.) leads to

T
[

A(a,b),Q(a,b)
]

–Mr(a,b)

> A(a,b)

[



π

√
 + uE

(

u
√
 + u

)

–

(

( + u)λ + ( – u)λ



)/λ]

. (.)

Therefore,

T
[

A(a,b),Q(a,b)
]

>Mr(a,b)

for  < |a – b|/
√

(a + b) < / with a �= b follows from Lemma . and (.).

Subcase . t ∈ [/,
√
/). Let

h(t) =
+λ

πλ
E

λ(t) –
(
√
 – t + t

)λ
–

(
√
 – t – t

)λ
. (.)

It is easy to verify that

√
 – t ≤

 – t


and

√
 – t <

√
 – t (.)

for all t ∈ (,
√
/).

Equation (.) and inequality (.) lead to

h(t) >
+λ

πλ
E

λ(t) –
( + t)λ + ( – t)λ

λ
(.)

and

h(t) >
+λ

πλ
E

λ(t) – (
√
 – t)λ – λ/. (.)

Therefore,

T
[

A(a,b),Q(a,b)
]

>Mr(a,b)

for / ≤ |a – b|/
√

(a + b) with a �= b follows from Lemma ., (.), (.), (.), and

(.).
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Case  λ < r < /. On the one hand, equations (.) and (.) lead to

lim
x→+

[

logT
[

A(,x),Q(,x)
]

– logMr(,x)
]

= log

[

√
E(

√


)

π

]

+
log

r

= –
(r – λ) log

λr
< . (.)

Inequality (.) implies that there exists δ >  such that

T
[

A(a,b),Q(a,b)
]

<Mr(a,b)

for all a,b >  with a/b ∈ (, δ).

On the other hand, by the Taylor expansion and let x >  and x→ , then equations (.)

and (.) lead to

T
[

A(,  – x),Q(,  – x)
]

–Mr(,  – x)

=


π

√

 – x +
x


E

(

x



√

 – x + x



)

–

[

 + ( – x)r



]/r

=  –
x


+
x


–

[

 –
x


+

(




–
 – r



)

x
]

+ o
(

x
)

=
 – r


x + o

(

x
)

. (.)

Equation (.) implies there exists δ ∈ (, ) such that

T
[

A(a,b),Q(a,b)
]

>Mr(a,b)

for all a,b >  with a/b ∈ ( – δ, ). �

From Theorem . we get Corollary . immediately.

Corollary . Let λ =  log/[ logπ – log– logE(
√
/)] = . . . . .Then the double

inequality

π



[

(
√
 – t + t)p + (

√
 – t – t)p



]/p

< E(t) <
π



[

(
√
 – t + t)q + (

√
 – t – t)q



]/q

holds for all t ∈ (,
√
/) if and only if p≤ λ and q ≥ /.
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