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Abstract

EvAsiva Ii N1'ìtÏVERS are letermined for each
of two potentially colliding ships, such that their
nìiss ti stance is maximized. These maneuvers
are frequently contrary to the established rules
'ì the road. It is assumed that the ship speeds

tant during the encounter, and that the
s ni the 5hips are bounded between syni-

Zt limits, corresponding. to hard right atid
left. turlkb. The optimal turn directions are
I ro bo explicit functions of the range, bear-

r.eading between the two ships. The en-
ce ease, when both ships maneuver, a re

non-cooperative case, when only one ship
tnateuvers, are both anaìvzech Examples of the

mai maneuvers for two identical ships are
-outed ii detail.

Introduction

Sorne seven per cent of the world's marittn.e
involved in a two-ship collision in 1970
Au, traffic densities and ship dimensions
We can expect this alarming figure to

portiottally, unit substantial improv*'-
re made in bolli the international colli-

nidaiae regt;iations at d the au,sociate
)m-nmt. \\ hih LinS iegulatiot are due or

- in l92. it i expected that these rnin.
titille 1.0 deal irtneip liv wtth the respon-

for inalicuveFlug, rather than with tite
-íivOualire itaineuvers themselves.
tarit mie regulations for collision preven-

J), .11er: di with 1ensi Cún/l, Inc., 260
SI. t'rjdatz A tC?iU(i, Etilo Alt-o, (Ja(ilornia 94.306.
¡le ub'ntttcri this paper for pebliraliorì or,
.Jrini.'r .5, 107.3.
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tiou relate to many aspects of the two-ship cii-
counter (Ref. 2). The specification of evasive
maneuvers, however, has generally beeit based on
ignoring the ship dynamics and on applying
intuitive reasoning to specific relative geometries
(Reis. 3-7). While these maneuvers can provide
safe clearance when the initial range is large, the
resulting miss distance ntay be unacceptably small
for other initial geometries. In fact, cases can be
found in which the recommended maneuvers
actually leni1 to a collision when more realistic
ship dynamics are assuned.

For example, consider two ships having equal
speeds and maximum turn rates, located relative
to each other as shown in Fig. i Assume that
the two identical ships have minimum turn r:di
equal to 4000 ft., and suppose that they are first
aware of euch other when ship B is 1600 ft. to the
left and 3280 ft. ahead of ship A, and headed to
A's right. Reference 5 cites the following regula-
tion governing this situation:

"\Vhen two vessels are proceeding iii 'itch
directions as to involve risk of collision, tu less
one is a hampered vessel, each ltall alter
Course or speed or both so as to cause the lilie
o.f sight to tite other to rotate in an anti-clock-
wise (lLrectiotL"

Assuming that the speeds cannot be sig-
nificantic altered, the above regulation requires
that both ships turn hard right, in order to cause
a counterclockwise rotation of 1)0th lines uf sight.
As shown ir í?ig. i (b), the resulting motion may
lead to a collision.

Ott the other hand, the evasive tuneLvers de-
terniineci by the rneth<.ii presented iii I ii paper
require both shi1 s lo twit le , which itrcilAees the

motion of Fig .1 Ilei-e tite iicie. of sigla. r'.etate
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Fig. I Ship Motion for Two Sels of Maneuvers.

clockwise, and the minimum value of the range
is 2000 it. This dramatic example, which is by
no means artificial or contrived, illustrates the
practical implications of the present mathematical
approach to the deterniination of the "optimal"
or "best" collision-avoidance maneuvers -

The present analysis models the transient
portion of the two-ship encoOnter, and emphasis
is placed on determining the turn directions which
should be used by the ships in order to best avoid
a collision. Here the "best" maneuvers are defined
as those which maximize the miss-distance, or
the. separation at minimum range. This simple
performance index permits a quantitative com-
parison oi any two sets of maneuvers. It is used
io determine those maneuvers which are "op-
timal", in the sense that the miss-distance is
maximized. When a collision is truly imminent,
this index accurately reflects the concerns and
interests of the personnel aboard both ships.

Method of Anclysis

The "optimal" evasive maneuvers can be
determined in at least two ways, which are briefly
described as follows:

a
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The equations of motion for each ship
(Ref. S) including realistic transient effects
mused by the rudder deflections (controls),
can be used in a trial-and-error procedure
with different relative initial conditions.
Each triai uses a specific set of controls and
the resulting miss-distance is found by
integrating forward the two sets of equa-
tioris of motion until the range between the
ships is a minimum. The best control se-
quences for ea(th initial condition are those
which yield the greatest miss-distance.
The dynamic equations of the ships are
simplified so as to include only the principal
effects of the controls, and the equations of
motion are expressed in an axis system
which gives the motion of one ship relalive
to the other. For this simplified model, aria-
lytical methods are used to find the controls
of both ships at the time of minimum range
( i.e., at termination of the evasive manm-
vers). When the equations of relative motion
are integrated backwards in time, using
these controls, a path is determined along
which the terminal relative condition could
have originated.

The first approach has at least two disad-
vantages. The computational load quickly be-
comes very great for multiplo initial conditions
even when attention is restricted to specific
slii ps. Furthermore, it is possible to overlook
certain sets of maneuvers which might yield
greater miss distances than those resulting from
the assumed maneuvers. The second approach,
however, leads to conclusions which are as valid
as the equations used to approximate the motion.
If the simplified equations provide an adequate
approximation to the actual motion, it is safe to
conclude that the derived maneuvers are nearly
optimal in a practical sense. Thus, the second
approach based on simplified dynamics has been
chosen as the basis for the analysis of this paper.

The method of determining the optimal colli-
sion avoidance maneuvers is based on "optimal
control theory." In recent years, techniques based
on this theory (Ref. 'J) have been developed for
analyzing problems having the following two
characteristics:

1. The timevariation of the variables (i.e.,
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the state") defining the dynamic system
is implied by the equations of motion. These

differential equations have foreing fiinc-
tions, or "controls", to be determined.

2. The performance of the system in response
to any control variation is measured by a
given "payoff" criterion, which is an index
to be maximized by the choice of coiitml.
Constraints on the state or the controls are
accounted for in this maximization.

in the collision-avoidance problem, as is pi-es-
ently explained, the controls are the turn-rates
of the two ships (due to rudder defiections).
The payoff is the miss-distance separating the
ships at the time of closest approach.

A detailed mathematical description of the
motion of a typical ship in response to changes
iii the rudder setting is very complex. For
present purposes, however, the short-term motion
of the ship can be represented by a constant-speed
model, for which lateral accelerations are the only
means of control (Ref. 3). Speed changes are
assumed to be negligible, and therefore each ship
an maneuver only by changing its heading.

These assumptions reflect the fact that normal
forces acting on a ship in a turn are t3Tically
much larger than the available axial forces which
wûnld cause changos in speed. The turn ratcs of
ioth ships arc. assumed to be bounded hciwceii
symmetrical limits, corresponding to liard left.
or hard right turns. A ship's path corresponding
to a specific constant turn rate is therefore a
circular arc., and the imat-h itself is smooth, even
whei i the rudder swj tclies from hard left to ha id
right.

The motivation for the above choice of dv-
mimic model is that the relative motion is de-
scribed by only three variables, which are the
range, hearing and heading of one ship relative
to the other defined in (Fig. 2). Despite the
sirnlicity of this model, it is found that the
optimal maneuvers must be determined by mm-
merical computation for a specific pair of shp.

The differential equations of relative motion
give the time derivatives of the position and henil-
ng of one ship relative to the other, in terms of

the turn rates of the two ships. These equations
are presented in the Appendix. The equations are
simplified by normalizing time imits of length and
time; i.e., so that the faster lmiti (Ship A) lias

Ship

y
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Ship A ¿'4

Fig. 2Geometry of the Tivo-Ship Encounter.

X

unit speed and unit maximum turn rate. The
slower ship (Ship B) then has the dimensionless.
spee&y = 1, and a maximum turn
rate equal to w. The maximum miss-distance
achievable from a given relative position and
heading is denoted by r1' , and this has also becim
normalized by the minimum turn radius of time
laster ship.

In the 'cooperative" collision avoidance situa-,
t.ion, both lmips maneuver so as to maximize tue
mnismodisthnce, muid for this problem the t iiiii
rates of Ixth ships are cimmisickired as av;ql:mIle
controls. la the ''nomm-cooperative" prohienim, it is
assumed that only onìe of time ships is capable of
evasive maneuvers, while the other ship follows
a. straight path. A significant result of this study
is a demonstration of time effect of cooperation on
the avoidance maneuvers and the resulting miss-
distance which can he achieved from a given
initial relative position and heading. In the co-
operative case, the normalized controls (turn
rates) to be determined are o5 aid O , which
have niagnitucles no greater than unity. Thus,
for example, 0A = ±1 corresponds to a hard
right turn foi- ship A. The non-cooperative case is
analyzed under the assumption that ship B does
not maneuver during the encounter, and there-
fore ç = O.

As shown in the Appendix, the turn directions
of the ships at the time of closest. approach can
be easily determined mathematically, and these
mmm neuvers mire exactly mis would be exj meet ed
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itlltlitjVeIV. 'lItp ietro.r:ule solllt.ioiis* to tite
eqitatiotis tif motion are then used with these
terminal controls to find where any specific ter-
mi teil ci ,adition could have originated.

Numerical Results for Identical Ships

(.ua it il ative results for this model of the colli-
sion-avoidance problem require that tite Speeds
and maximum turn-rates of the ships he specified
numerically. For purposes of illustration, these
i: rameters are chosen to be those of two identical

ships: i.e., y = = 1. Results of the analysis
are now given as optimal maneuver strategies
for both ships, in the cooperative case, and for one
ship, in tite noncooperative case. These results
were obtained using the optimal control technique
j ost discussed. The mathematical (letails are
i iresented in the Appet idix.

cooperative Case

In tite cooperative case., both ships maneuver
so as to maximize the final miss-distance. As
shown iii the Appendix, both ships turn hard
right or hard left until the range-rate is zero.
The dependence of the maneuvers on the relative
position is shown in Fig. 3, for several values of
the relative heading O in the range 300 to 180°.
Tite evasive turn directions of the ships are in-
dicated by the subscripts "R" and "L". That is, a
typical notatin iii this diagram is "AJBL".
Titis notation indicates that Ship A (located at
the origin of this relative axis system) is to turn
hard right while B turns barri left, whenever
ship H is located in titis tegion relative to Ship
A. Helotive positions to the right of the diagonal
hue through tite origin are those for which tite
range-rate is positive, and for which maneuvers
a re therefore unnecessary.

Tbe contours of constant r1 shown in Fig. 3
are the normalized maximum miss-distances
which cati. he obtained when both ships maneuver
a indicated; for exami.le, if ship B is initially
located on the contour r, = 1, the final miss-
distance can be rio greater than one minimum
t.urn-rsdius, and will be less than titis value if

* "Jetrograde' is used tu nican ''backwards-
tinte', i.e., the independent. variable tf the dii-
ferential equations is the ''time-Lo-go" until the
range is a minimum.
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either shut (le'i:i n's frutti its oiutinìal torti
maneuver.

It is seen that for each relative heading (except
O = 0° and 180°), the plane of positions of ship
B relative to ship A may be divided into three
regiois. These will be referred to as "maneuver
regions," since the optimal maneuver for each
ship depends on the region in which B is located
relative to A. At the intersection of these regions,
the sanie miss-distance results from use of any
of the three maneuver strategies. This intersec-
tion is referred to as a dispersal point (Ref. 110).
Possible paths from the "dispersal point" are
illustrated in Fig. 4 for tite initial heading O = 1200
(tite initial position can lie rea(l froto Fig. 3(d)).

ATonCooperalit'c Case

The non-cooperative case is analyzed by assum-
ing that ship B does tiot maneuver, but instead
travels in a straight path on the surface of the
sea, with a' = 0. Relative to the cooperative
case, it is found that for some positions, a differ-
cnt evasive maneuver may be indicated for ship
A. The optimal collision avoidance maneuver for
one ship then depends upon whether or not the
other ship is cooperative.

Numerical results for the non-cooperative case
are shown in Fig. 5. Evasive maneuvers for ship
A are seen to be nearly independent of whether
Ut. not. B cooperates. That is, tite line separating
the maneuver regions for ship A has approxi-
mately the same location regardless of B's co-
operation. However, the increase in miss dista ncc
due to B's cooperation can be appreciable, as
shown by comparing the r1 contours of Fig.
5 (a) to those of Fig. 3 (b). For example if ship B
is initially located near the point r = - .0,
y = .5, 0 = 60°, tite miss-distance for the co-
operative case is given by Fig. 3(b) as r1 .8.
If B does not maneuver ftoin this initial relative
position, Fig. 5 a) shows that the non-coopera-
tive miss-distance is approximately r1 = .5,
or about 60% of the valuo for the cooperative
case.

The constant-heading diagrams of Figs. 3 and
S can also be used to determine the missdistance
which results if neither ship maneuvers. In this
(Oase, the heading remains fixed tuai B's relative
motion is a straight path, perpendicular to the
line t = 0, which passes diagonally through the
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b) e 60°

d) e 1200
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Fig. S-Optimal Maneuvers and Miss-1)ist.ances for IdenlicalSliips, Coopera.ivr Case.
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origin in these figures. In particular, the straight
line segment of Fig. 3 which separates the region
'ARBR" from the region "A1J3il' is a locus of

initial conditions leading to a collision if neither
ship turn.s, i.e., if q = o = 0.

Summary of Results

Optimal collision avoidance maneuvers have
been found for a simplified mathematical model

B

/
I
A

a) ARBL

A

b) ALBL c) ARBR

Fig. 4Dispersal Poin t Trajectories, Cooperative
Case (O = 1200).

of the two-ship encounter. The criterion maxi-
mized by the choice of turn directions was the
miss-distance. Both cooperative and non-coopera-
tive ca.ses have heel) examined, with results
presented for the special case of identical ships.
The analytical methods used here molelod the
relative motion, or the set of future relative posi-
tions of the ships. This dynamic approach is in
contrast to the intuitive maneuvers based ou the
present relative position, and given in the ref-
erences as recommended 'Rules of the Road".

The avoidance maneuvers recommended in
Ref. 2-6 were specified as functions only of the
bearing of the threatening ship. We have shown
here, however, that the optimal evasive maneu-
vers also depend upon the relative range and
heading. Normalized diagrams were presented
for the case of identical ships which show the
optimal turn maneuvers of the ships and the
resulting miss_distance.* It was demonstrated
that initial conditions exist. for which a collision
can he avoided oniy if turns in the directions of
the optimal maneuvers are used. It was also
found that these maneuvers are not necessarily
uric. That is, certain relative positions exist
for which more than one set of maneuvers is
optimal. These multiple-maneuver or dispersal
points help to explain the underlying tactical

* While results are given here only for two iden-
tical ships, it is known that the evasive maneuvers
also depend on each ship's speed and maximum
turn rate.

a) 8 - 600 b) 5 1200

Fig. 5Optimal Maneuvers and it! jss-Djtances for Identical Ships, .Vnn -Coopeiat,.re Case.
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diflicuh ics in solving the collision avoidance
pt-ch1i ni.

Appendix

Equations for Relative S/tip Motion and Terminal
conditions

Under the assumptions given in the body of
the paper the position and heading of ship B
relative to ship A obey the following normalized
differential equations:

= «Ay + y sin O

Y-1+«nX+YCOSO (1)

O = «A ± °it

Here, z, y, and O are the position and heading
variables shown in Fig. 2. The slower ship B has
the Speed y i and a maximum turn rate equal
to c. The controls o and WOB are respectively
the normalized turn rates of A and B, which are
bounded inmagnitude;i.e., i 04 20ß + i.
The position equations can also be written in
polar coordinates as

= ces 4' ± cos (O -
(2)

ci u + jsin 4' + -y sin (O -

For die simplest version of the collision avoid-
niice problem, the quantity to be maximized is
the miss-distance, rQ1) = r1. The time of closest
approach, t1, is given implicitly by Eq. (2) as

= ces 'í + -y cos (O - j) = O

That is, when the range-rate is zero, each termi-
nal bearing is associated with two values of reis-
tive heading, which are

Oj = 4' ± COS
reos ,j

(3)

For the eae of identical ships, y = i and Oj = O

or O 24'.

Nece.ssary Conditions for Optimal Trajectories

The problem of maximizing the miss-distance
cin lxi posed as a free-time, terminal-payoff type
(Ref. 9), with either or hot h turn rates as the
governing controls. The methods of optimal con-
trol theory may be used to define the "Hamil-
tonian" for the problem as the total time deriva-
tive of the payoff along an optimal path. The

Summer 1973

Hamiltonian can be expressed i n polar coordi-
na tes as

max H = max [X, ± X + XOI = O

(4)
OEA , 8 «A , «B

This fundamental equation provides an im-
pli cit description of the optimal maneuvers,
and o . Substituting into this equation from
Eqs. (1) and (2) gives the controls for ships A and
B in terms of X = [Ày, X5 , XeJ, as follows:

«A = S!li (X5 + Xo)

(5)
«B = sign X

The adjoint vector sometithes called a La-
grange multiplier) X(t) can be shown to satisfy
the equation

= aH/ox (6)

where the state vector is XT = [r, , 0]. That is,
Xr = aH/ar,X, = aIl/âandXo = all/ao.
The terminal boundary conditions for this equa-
tion are most easily expressed in polar coordi-
nates as

= [X, , , X0l = [1, 0, 0], (7)

5flCC tile performance criterion is r(tj) r1
which is independent of the bearing and heading
angles. Therefore, the arguments in Eq. (5) are
equal to zero when the time-to-go, r, is zero.
The retrograde time derivatives are then needed
to determine the maneuvers immediately before

= O. Using Eqs. (6) and (7), we find

= sin + -( sin (Oj - 0f)
(s)

= y sin (Oj -

where the superscript circle (lenOtes a deriva-
tive with respect to the time-to-go, r. That is, for
example, = d.rdr = dx/dt, since r = t - t.

The two terminal conditions of Eq. (3) are asso-
ciated with the following strategies:

f ces 4v

«A = «fi = sign 4v

O = + cotC2 (-): (9)

= sign 4v,
* 'l'ue signurn fnnctio is defined as « = sign (I =

a = ±1, unless a = 0, in Which case it is
il101efifled.
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unless cus = 7 < i. lu this case, it is easy
to prove that B's optimal strategy may be o =
O. corresponding to straight-line motion.

The terminal maneuvei for identical ships are
easily stated: Each ship is turning away from t/i
other at the time of minimum range. When the
solutions are expressed in retrograde time, it is
possible to learn where any terminal condition
roust have originated. In the non-cooperative
case, Uß = O by assumption, and here A is turn-
ing away from B when t = 11.

L., When the :..hips are identical, it follows that
w 1, ail the øn1y ojitiiniil i niletiveN arc

\ s

B

LA

a) Large Initial Range b) Small Initial Range
Fig. 7--Dispersal Point l'rajectorics, Non-Cooperative Case (O 600).

sharp right or left turns, according to Eq. (9).
For a specific choice of initial heading angle, the
lines separating the various regions can be deter-
mined by using the solutions to Eq. (1), with
o and o as determined by Eq. (9). Thus, if

O, the turn rates are the same, as shown in
Fig. 6(b) and 6(c). When O = O, the turn rates
are opposite, as illustrated in Fig. 6(a).

For any choice of terminal range, the solutions
to Eqs. (1) are expressible in terms of z1, Y!,
Oj and r. The two geometric constraints

+ y/ = r1 and 8(,) are then imposed
on these relations. The parameter r can be ehm-
mated, si that when O is fixed, lori of the forni
fx, y, rj) O are determined. l'huse foci have

'nl-
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b) ARBR c) ALBL

Fig. 6Optimal Terminal Maneurer« for Identical Ships
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the geornei nc form shown in Fig. 3, where all of
the maneuver conhl)in:Itious of Fig. 6 are used.
The heavy lines of Fig. 3 denote the so-called
"dispersal" lines, for which two different sets of
maneuvers are optimal.

In the non-cooperative case, a similar analysis
leads to the determination of a dispersal line for
ship A, at a specific value of the heading. That is,
a terminal range r1 is chosen, and the heading
angle O is fixed. The relative position is then ex-
pressible parametrically as x(T), y(r), for a given
value of the terminal bearing. As in the coopera-
tive case, when ship B is located where two of
these bei intersect, the ship A can turn either
way. This is illustrated in Fig. 7 for an initial
heading of 600. The initial relative positions here
can he read from Fig. 5(a).
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