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Abstract

Tivasivis MANEUVERs are determined for each
of two potentially colliding ships, sueh that their
miss distance is maximized. These maneuvers
are irequently contrary to the established rules
of the road. It is assumed that the ship speeds
ave constant during the encounter, and that the
turi-rates of the ships are bounded between sym-
metriedl himits, corresponding to hard right ane
hard left turns. The optimal turn directions are
found to be explicit funetions of the range, bear-
ing and heading between the two ships. The co-
operative case, when both ships maneuver, and
the non-cooperative case, when ouly one ship
muneuvers, are both anaivzed. Examples of the
aptimal maneuvers for two identical ships are
presented in detail.

Iniroduction

Some seven per cent of the world’s maritime
Heet was involved in a two-ship coliision in 1870
fef. 1). As traffic densities and shap dimensions
ineresse, We can expect this alirming figure 0
rise oroportionally, unless substantial improve-
ments are made in both the international colii-
siot avoidance regulations and ihe associated

equipment. VWhile the regulations are due ior

evision in 1972, 10 is expecied that these miies
will contitue to deal principally with the respon-
Chilitles Tor mancuvering, rather than with the
sollisioneavoidanes maneuvers themselves.

The maritine resulations for collision preven-
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tion relate to many aspecis of the two-ship en-
counter (Ref. 2). The specification of evasive
maneuvers, however, hus generally been based on
ignoring the ship dynamies and on applying
intuitive reasoning to specific relative geometries
(Refs. 3-7). While these maneuvers can provide
safe clearance when the initial range is large, the
resulting miss distance may be unacceptably small
for other initial geometries. In fact, cases can be
found in which the recommended maneuvers
actually lead to a collision when more realistic
ship dynamics arve assumed.

For example, consider two ships having equal
speeds and maximum turn rates, located relative
to each other as shown in Fig. 1 (a). Assume that
the two identical ships have minimum turn midii
equal to 4000 f1., and suppose that they are first
aware of ench other when ship B is 1600 it. o the
left and 3280 ft. aliead of ship A, and headed fo
A’s right. Reference 5 cites the following regula-
tion governing this situation:

“When two vessels ure proceeding in =uch
directions a8 10 nvolve risk of collision, unless
one is u hampered vessel, each shall alter
course or speed or both so as W eause the e
of sight to the other to rotate in an anti-clock-
wise direction.”

Assuming that the speeds cunnot be sig-
1

nificantly altered, the above regulation requires
that both ships marn hard right, in order to cause
a eoumterclockwise rotation of both linez of sight.
As shown in Fig. 1(b), the resulting motion muy
1&.’1(’1 o0& collision.

On the other hand, the evusive muneuyvers de-

termined by the methoa presented in ihis paper

require both ships to turn lefi, which produees the
motion of Fig. 1{¢). Here the
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g';—-‘ 1. The equations of motion for each ship
]

Ship A

a) Initfa) Conditfon

b} Meneuvers of Raf. § c) Optimel Manauvers

Fig. 1 —Ship Motion for Two Sels of Maneuvers.

clockwise, and the minimum value of the range
is 2000 ft. This dramatic example, which is by
no means artificial or contrived, illustrates the
practical implicatious of the present mathematieal
approich fo the determination of the “optimal”
or “best” collision-avoidance maneuvers.,

The present analysis models the transient
portion of the two-ship encounter, and emphasis
is placed on determining the turn directions which
shoulkd be used by the ships in order to best avoid
a collision. Here the “best” maneuvers are defined
as those which maximize the miss-distance, or
the separation at minimum range. This simple
performance index permits a quantitative com-
parison of any two sets of maneuvers. It is used
to defermine those maneuvers which are “op-

simal”, in the sense that the miss-distance is

maximized. When a collision is truly iraminent,
this index accurately reflects the concerns and
interests of the personnel aboard both ships.

Method of Analysis

The “optimal” evasive maneuvers can be
determined in at least two ways, which are briefly
described us follows:

(Rei. 8) including realistic transient effects
caused by the rudder deflections (controls),
can be used in a trial-and-error procedure
with different relative initial conditions.
Fuch trial uses a specific set of controls and
the resulting miss-distance is found by
integrating forward the fwo sets of equa-
tions of motion unfil the range between the
ships 1s a minimum. The best control se-
quences for each inifial condition are those
which vield the greatest miss-distance.

2. The dynamic equations of the ships are
simplified so as to include only the principal
effects of the controls, and the equations of
motion are expressed in an axis system
which gives the motion of one ship relative
to the other. For this simplified model, ana-
lytical methods are used io find the controls
of both ships at the time of minimum range
(i.e., at termination of the evasive maneu-
vers). When the equations of relative motion
are integrated backwards in time, using
these controls, a path is determined along
which the terminal relative condition couid
have originated.

The first approach has at leust two disad-

vantages. The computational load quickly be- -

comes very great for multiple initial conditions
even when attention is restricted to specifie
ships. Furthermore, it is possible to overlook
cerfain sets of maneuvers which might yield
greater miss distances than those resulting from
the assumed maneuvers. The second approach,
however, leads to conclusions which are as valid
as the equations used to approximate the motion.
If the simplified equations provide an adequate
approximation to the actual motion, it is safe to
conclude that the derived maneuvers are nearly
optimal in a practical sense. Thus, the second
approach based on simplified dynamics has been
chosen as the hasis for the analysis of this paper.

The method of determining the optimal colli-
sion avoidance maneuvers is based on “optimal
control theory.” In recent years, technigues based
on this theory (Ref. 9) have been developed for
analyzing problems having the following two
characteristies:

1. The time-variation of the variables (i.e.,
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the “state”) defining the dynamic system
i= implied by the equations of motion. These
differential equations have forcing func-
tions, or “econtrols”, fo be determined.

2. The performance of the system in response
1o any control varation is measured by a
given “payofi” criterion, which is an index
to be maximized by the choice of control.
Constraints on the stafe or the controls are
accounted for in this maximization.

In the collision-avoidance problem, as is pres-
ently explained, the controls are the turn-rates
of the two ships (due to rudder deflections).
The payoff is the miss-distance separating the
ships at the time of closest approach,

A detailed mathematical deseription of the
motion of & fypical ship in response to changes
in the rudder setling is very complex. For
present purposes, however, the short-term motion
of theship can be represented by 4 constant-speed
model, for which Jateral accelerations are the only
means of control (Ref. 3). Speed changes are
assumed to be negligibie, and therefore each ship
can maneuver only by changing its heading.
These assumptions reflect the fact that normal
forces aecting on a ship in a tum are typically
much larger than the available axial forces which
would cause changes in speed. The turn rates of
bath ships are assumed to be bounded beiween
symmetrical limits, corresponding to hard left
or hard right tums. A ship’s path corresponding
10 a specific constant twn rate is therefore a
circular are, and the path itself is smooth, even
when the rudder switches from hard left to hard
right.

The motivation for the above choice of dy-
namie model is that the relative motion is de-
scribed by only three variables, which are the
range, bearing and heading of one ship relative
to the other defined in (Fig. 2). Despite the
simplicity of this model, it is found that the
optimal maneuvers must be determined by nu-
merical computation for & specific pair of ships.

The differentinl equations of relative motion
give the time derivatives of the position and head-
ing of one ship relative to the other, in terms of
the turn rates of the two ships. These equations
are presented in the Appendix. The equations ure
simplified by normalizing the units of length and
time; i.e., so that the faster ship (Ship A) hus
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Fig. 2—Geomelry of the Two-Ship Encounter.

unit speed and unit maximum tun rate. The
slower ship (Ship B) then has the dimensionless
speedy = V3/V4 < 1, and a maximum turn
rate equal 1o @. The maximum miss-distance
achievable from a given relative position aud
heading is denoted by 7y, and this has also been
normalized by the minimum turn radius of the
faster ship.

In the “cooperative” collision avoidance situa-
tion, both ships maneuver so as to maximize the
miss-distance, and for this problem the tum
rates of both ships are considered as available
controls. In the “non-cooperative’ problem, it is
assumed that only one of the ships is capable of
evasive maneuvers, while the other ship follows
a straight path. A significant result of this study
is a demonstration of the effect of cooperation on
the avoidance maneuvers and the resulting miss-
distance which can be achieved from a given
initial relative position and heading. In the co-
operative case, the normalized controls (turn
rates) to be determined are o4 aud op, which
have magnitudes no greater than unity. Thus,
for example, ¢4, = -1 correspouds to a hurd
right turn for ship A. The non-cooperative case is
analyzed under the assumption that ship B does
not maneuver during the encounter, and there-
forege = 0.

As shown in the Appendix, the turn directions
of the ships at the time of closest approach can
be easily determined mathematically, and these
mancuvers are exactly as would be expected
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intuitively, The retrogrude solutions* to the
equations of motion are then used with these
terminal controls to find where any specifie ter-
minal condition could have originated.

Numerical Results for ldentical Ships

Quantitative results for this model of the colli-
sion-avoidance problem require that the speeds
and maximum turn-rates of the ships be specified
numerically, For purposes of illustration, these
parameters are chosen to be those of two identical
ships: i.e,, ¥ = @ = 1. Results of the analysis
are NOwW Ziven as of)timul maneuver strategies
for both ships, in the cooperative case, and for one
ship, in the noncooperative ease. These results
were obtained using the optimal control technique
just discussed. The mathematical details are
presented in the Appendix,

Cooperative Cuse

In the cooperative case, both ships maneuver
so as to maximize the final missdistance. As
shown in the Appendix, both ships turn hard
right or hard left until the range-rate is zero.
The dependence of the maneuvers on the relative
position is shown in Fig. 3, for several values of
the relative heading @ in the range 30° to 180°.
The evasive turn directions of the ships are in-
dicated by the subseripts “B” and “L”. Thatis, a
typical notation in this diagram is “ApBp".
This notation indicates that Ship A (located at
the origin of this relative axis system) is to turn
hard right while B turns hard left, whenever
ship B i located in this region relative to Ship
A. Relative positions to the right of the diagonal
line through the origin are those for which the
range-rate is positive, and for which maneuvers
are therefore unnecessary.

The contours of constant 7, shown in Fig. 3
are the normalized maximum miss-distances
which ean be obtained when both ships maneuver
as indicated; for example, if ship B is initially
located on the contour r; = 1, the final miss-
distance can be no greater than one minimum
turn-radius, and will be less than this value if

* “Retrograde™ is used to mean “backwards-
time’’, i.e., the independent variable of the dif-
ferentinl equations is the “time-to-go”™ until the
range s 1 minimum.
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either ship devintes from its optimal tum
maneuver,

It is seen that for ench rvelative heading (except,
f = 0° and 180°), the plane of positions of ship
B relative to ship A may be divided into three
regions. These will be referred to as “maneuver
regions,” since the optimal maneuver for each
ship depends on the region in which B is located
relative to . At the intersection of these regions,
the same miss-distance results from use of any
of the three maneuver strategies. This intersec-
tion is referred to as a dispersal point (Ref. 10).
Possible paths from the “dispersal point” are
illustrated in Fig. 4 for the initial heading 8 = 120°
(the initial position can be read from TFig. 3(d)).

Non-Cooperative Case

The non-cooperative case is analyzed by assum-
ing that ship B does not maneuver, but instead
travels in a straight path on the surface of the
sea, with a3 = 0, Relative to the cooperative
case, it is found that for some positions, a differ-
ent evasive maneuver may be indicated for ship
A. The optimal collision avoidunce maneuver for
one ship then depends upon whether or not the
other ship is eooperative.

Numerical results for the non-cooperative cuse
are shown in Fig. 5. Evasive maneuvers for ship
A are seen to be nearly independent of whether
or not B cooperates. That is, the line separating
the maneuver regions for ship A has approxi-
mately the same location regardless of B's co-
operation. However, the increase in miss distance
due to B's cooperation can be appreciable, as
shown by comparing the rp countours of Fig.
5 (1) to those of Fig. 3 (b). For example if ship I3
is initially located near the point & = =.9,
¥y = .5, 0 = 60° the miss-distance for the co-
operafive case is given by Fig. 3(b) as r; = 8.
If B does not maneuver from this initial relative
position, Fig. 5 (a) shows that the non-cooper:-
tive miss-distance is approximately r, = .3,
or about 609 of the value for the cooperative
case.

The constant-heading diagrams of Figs. 3 and
5 can also be used to determine the miss-distance
which results if neither ship maneuvers. In this
case, the heading remains fixed and I¥'s relative
motion is a straight path, perpendicular to the
line ¥ = 0, which passes diagonally through the
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origin in these figures. In particular, the straight
line segment of Fig. 3 which separates the region
“ApBgp” from the region “ArB.” is a locus of
initial conditions leading to a collision if neither
ship turns, ie, il 04 = o = 0.

Summary of Results

Optimal collision avoidance maneuvers have
been found for a simplified mathematical model

B
=3
,a‘
/

/
A

0 My

EN
\\IA | I{

b) ABy ¢) Agg

Fig. 4—Dispersal Point Trajeclories, Cooperative
Case (8, = 120°).

a) 8 = 60°
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of the two-ship encounter. The ecriterion maxi-
mized by the choice of turn directions was the
miss-distance. Both cooperative and non-coopera-
tive cases have been examined, with results
presented for the special case of identical ships.
The analytical methods used here modeled the
relative molion, or the set of fulure relative posi-
tions of the ships. This dynamic approach is in
contrast to the intuitive maneuvers based on the
present relative position, and given in the ref-
erences as recommended ‘“Rules of the Road”.

The avoidance maneuvers recommended in
Ref. 2-6 were specified as functions only of the
bearing of the threatening ship. We have shown
here, however, that the optimal evasive maneu-
vers also depend upon the relative range and
heading. Normalized diagrams were presented
for the case of identical ships which show the
optimal turn maneuvers of the ships and the
resulting miss-distance.* It was demonstrated
that initial conditions exist for which a collision
can be avoided only if turns in the directions of
the optimal maneuvers are used. It was also
found that these maneuvers are not necessarily
unique. That is, certain relative positions exist
for which more than one set of maneuvers is
optimal. These multiple-maneuver or dispersal
points help to explain the underlying tactical

* While results are given here only for two iden-
tical ships, it is known that the evasive maneuvers
also depend on each ship’s speed and maximum
turn rate.

1.5
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Fig. 5—Oplimal Maneuvers and Miss-Dislances for Identical Ships, Non-Cooperative Casc.
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difficulties in solving the collision avoidance
problem,

Appendix

Equations jor Relative Ship Molion and Terminal
Conditions

Under the assumptions given in the body of
the paper, the position and heading of ship B
relative to ship A obey the following normalized
differential equations:

& = —oay + ysin é
§=—1+ oazx+ 7 cos @ (1)
9._—‘—(4‘}'@0'3

Here, z, y, and @ are the position and heading
variables shown in Iig. 2. The slower ship B has
the speed ¥ £ 1 and a maximum turn rate equal
to w. The controls o4 and wop are respectively
the normalized turn rates of 4 and B, which are
bounded in magnitude;ie., —1 <o, 4,05 < + 1.
The position equations can also be written in
polar coordinates as

F= —cos¢+ ycos (0 — ¢) ,

¢ = —ox + [sineg + ysin (0 — @)|/r

For the simplest version of the collision avoid-
ance problem, the quantity to be maximized is
the miss-distance, r(;) = ry. The time of closest
approach, ¢, is given implicitly by Eq. (2) as

7lly) = —cos ¢y 4+ yeos (O —¢y) =0

That is, when the range-rate is zero, each termi-
nal bearing is associated with two values of rela-
tive heading, which are

O = ¢y = cos™? I:‘EES;?!:I (3)

For the case of identical ships,y = 1 and 8y.= 0
orf; = 2¢y.

Necessary Conditions for Optimal Trajeclories

The problem of maximizing the miss-distance
ean be posed as a free-time, terminal-payoff type
(Ref. ), with either-or both turn rates as the
governing confrols. The methods of optimal con-
trol theory may be used to define the “Humil-
tonian” for the problem as the total time deriva-
tive of the payoff along an optimal path. The

Summer 1973

Hamiltonian ean be expressed in polar coordi-
nates as
max H = max [\F + Mg -+ o] = 0
(4)
OA ,TB04 ,08
This fundamental equation provides an im-
plicit deseription of the optimal maneuvers, ¢ ,
and op. Substituting into this equation from
Egs. (1) and (2) gives the controls for ships A and
B in terms of A\ = [A,, Ay, Ne], as follows*:

—sign (A + Xo)

sign s

TA

(5)

op

The adjoint vector (sometimes called a La-

grange multiplier) A(f) can be shown to satisfy
the equation

AN = —aH [oz (6)

where the state vector is 27 = [r, ¢, 8]. That is,
A, = —0H /or, ks = —3H [d¢pand \g = —0H /6.
The terminal boundary conditions for this equa-
tion are most easily expressed in polar coordi-
nates as

h"'“{*:.#") = Iar y Mg s R*I = [1, 0, 0]| (7)

since the performance criterion is r(ly) = 7y,
which is independent of the bearing and heading
angles, Therefore, the arguments in Eq. (5) are
equal to zero when the time-to-go, 7, is zero.
The retrograde time derivatives are then needed
to determine the maneuvers immediately before
* = 0. Using Eqs. (6) and (7), we find

“M.{!_r} = gin ¢y + v sin (6, — oy) )
N 8
Ne(ty) = —v sin (07 — @)
where the superseript circle denotes a deriva-
tive with respect to the time-to-go, =. That is, for
example, ¥ = dr/dr = —dz/dl,since 7 = t; — [.
The two terminal conditions of Eq. (3) are asso-
ciated with the following strategies:

co
8 = ¢r — cos™! (*-s—"f):

¥
Gy = 0g = '—Sigﬂ¢f
A (9)
0y = ¢7 + cos™ (———-{)
¥

g4 = —ag = —sign ¢y,

* The signum function is defined as ¢ = sign a =
a@/la| = =1, unless a = 0, in which cuse it is
undefined.
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Fig. 6—Optimal Terminal Maneuvers for Identical Ships.
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Fig. T.—Dispersal Point Trajectories, Non-Cooperative Case (6, = 60°).

unless cos ¢y = v < 1. lu this ease, il is casy
to prove that B's optimal strategy may be oy =
0. corresponding to straight-line motion.

The terminal maneuvers {or identical ships are
easily stated: Each ship is turning away from the
other at the time of minimum range. When the
solutions are expressed in retrograde time, it is
possible to learn where any terminal condition
must have originated. In the non-cooperative
cuse, op = 0 by assumption, and here 4 is turn-
ing away from B whent = ¢;.

Maneuver Regions, Identical Ships

When the ships are identical, it follows that
v = w = 1, and the only optimal maneuvers are

sharp right or left turns, nccording to Eq. (0).
For a specific choice of initial heading angle, the
lines separating the various regions can be deter-
mined by using the solutions to Eq. (1), with
o4 and oz as determined by Eq. (9). Thus, if
#; # 0, the turn rates are the same, as shown in
Fig. 6(b) and 6(c). When 6, = 0, the turn rates
are opposite, as illustrated in Fig. 6(a).

For any choice of ferminal range, the solutions
to Egs. (1) are expressible in terms of z7, yy,
6y and 7. The two geometric constraints
Vo + yt = ryand 0;(¢,) are then imposed
on these relations. The parameter 7 ean be elim-
inated, so that when @ is fixed, loei of the form
S, u, rp) = 0 are determined. These loei have
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the geometric form shown in Fig. 3, where all of References
the maneuver combinations of Fig. 6 are used. 1. Anon., Revision of the Collision Regulations—

The heavy lines of Fig. 3 denote the so-called
“dispersal” lines, for which two different sets of
maneuvers are optimal.

In the non-cooperative case, a similar analysis
leads to the determination of a dispersal line for
ship A, at a specific value of the heading. That is,
a terminal range ry is chosen, and the heading
angle @ is fixed. The relative position is then ex-
pressible parametrically as z(7), y(7), for a given
value of the terminal bearing. As in the coopera-
tive case, when ship B is located where two of
these loci intersect, the ship A can turn either
way. This is illustrated in Fig. 7 for an initial
heading of 60°. The initial relative positions here
can be read from Fig. 5(a).
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