TECHNICAL NOTES AND CORRESPONDENCE

Optimal Excitation Control for Power System Stability

Abstract—A method is presented for finding the closed-loop time
optimal excitation control for a power system by applying Pontry-
agin’s minimum principle. Numerical results are presented for single
machine-infinite bus problems implementing such control.

InTrRODUCTION

Stability from the power system point of view is the ability
of synchronous machines to remain in synchronism. Stability may
be classified as transient or large disturbance stability and as dy-
namic or small disturbance stability. With the introduction of high-
speed excitation of synchronous generators, it has been found [1],
[2] that an auxiliary signal in addition to normal voltage regulator
action is necessary to improve dynamic stability. Since the equa-
tions governing the power system dynamics are of high order, a
closed-loop excitation control is difficult to obtain. A method of
deriving a “time optimal control” for ensuring dynamic stability
of a single machine infinite-bus power system is described here.

ANALYSIS

For small disturbances, we get a system of linear time-invariant
ordinary differential equations
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where 7, (r = 1, 2, 3) are the field, direct axis armature, and quadra-
ture axis armature currents, respectively, & is the rotor angle (rad)
and n and # are the normalized velocity and acceleration of the
machine, respectively. The control wu(t), normalized output voltage
of the exciter, is assumed to be a piecewise continuous function of
time and constrained in magnitude such that Iu(i)] < 1. The coef-
ficients a,, (r, ¢ = 1,---,5) depend on synchronous machine and
transmission line parameters and also on the operating point.
Equations (2) and (3) are known as swing equations.

For stable operation of the generator, » and # should decrease
to zero in minimum time following a disturbance, while the rotor
angle § should remain between 0 and =/2. Since for small distur-
bances, rotor angle will not exceed this range, final rotor angle can be
considered free.

The optimization problem can be stated as: Find the admissible
control u(t) that transfers the system (1)-(3) from the set of given
initial states {1'1(0), 2(0), 73(0), 8(0), n(O)} to the desired final states
{"(t/) = 0; Ty Tacepy sy Biep free} %0 as to minimize the cost
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It is also desired that n(f;) = 0. The terminal time ¢y > iy is free.

To the best knowledge of the authors, the available techniques
for determining the time optimal control for this system involves
iteration, and hence are costly in terms of computing time and
implementation.

The disturbances that appear in a power system are generally
not known in advance. Some of the coefficients a., (r, ¢ = 1, -+, 5)
depend on system resistance, reactance, and also on receiving end
voltage. These have to be measured immediately after a disturbance
appears on the system. Since the control must act within a very
small fraction of a second to stop first-swing instability for large
disturbances, a control obtained by standard optimization tech-
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Fig. 1. A portion of L(#) and optimal control «(f).

niques is not implementable. On small disturbances this time limita-
tion is not as severe. A method of determining the time optimal
control direetly as a function of the states and other measurable
quantities is proposed here.

Step 1: Differentiating (3) with respect to time and substituting
(1) in it, we get

7t = aglant + Gt + mats + a1 + bu(t))
+ asant -+ ante + axnis + awd 4+ bu(t))

+ ass{ants + apte + asts -+ 038) (5)
or
#i = [(an0u + Gstn 1 65n0s)h + (@adiz - Qs + dsds)i

+ (astis + anges + 0nass)is + (05014 + ase@es + a5z )d)
+ [(asby + asb)u()]. (6)

@51, Use, and a5z are constants and b; = 0 for the case considered.
Equation (6) is rewritten as

7 = L(1),75,93,8) + bu(l). 7N
Since arguments of Z change with respect to time, we write
o= L) + bult) (8)
where we assume that
L/ < 1. (9)

Step 2: With the known initial values of 7, 4, 45, and §, we calculate
initial value of L(t), say Ly. We assume L(¢) will remain constant at
this value (Fig. 1). The optimization problem can be restated as
follows.

Given the system

o= ul(t), U1 min S ul(t) S U1 max (10)

where

w(t) = Lo + bu(t), (10a)

find the admissible control that transfers system (8) from the given
initial states Ny (in the » — # plane) to the origin in the minimum
possible time. The switch curves (Fig. 2) for the double integral plant
[8] is given by
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Step 3: The switch curve (11) decides the optimal dummy control
u,(t) which in turn gives optimal u(¢) by relation (10a). The control
u(t) is used to solve the system of (1)-(3) for a small increment of
time. At the end of the first interval, the value of L(¢#) is recalculated
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Fig. 2. Moving switeh curves in the phase plane.

using the new value of 4, 75, 75, and 8. Suppose that the states of
system (8) at { = ¢ are .V; and actual value of L(¢) has changed
from L, to L;.

Step 4: The time optimal control is now found again using the
constant value of L; for L(¢). The process is continued until the
desired final states are reached. At ¢ = tp, the switch eurve is given
for L(t) = L_p by i

#?

L Tesm G C < 0}. (12)

4P = {(n,7‘z) ton

Note that if at any stage L(t) does not.change from the previous
value, it is not necessavy to recalculate v.

If we consider L(t) [L(#, 12, 73, §)] we find that L(¢) is not an explicit
function of n. So for & hypothetical double integral plant (8), L(t)
can be considered as an additive disturbanece to the input bu(%).
Oldenburger [4] considered a second-order system similar to (S)
with an arbitrary disturbance L(¢), and obtained the switching
curve (12) L, (p = 1, 2, - -, P) replaced by L({) with the help of
geometrical construction. He remarks that if the term L(¢) does not
satisfy inequality (8), then the system (8) is uncontrollable. How-
ever, he concludes that if (8) is not satisfied for only a small period of
time followed by a long controllable section, the scheme will give a
suboptimal solution that also will converge. Solution of system (S)
with the control scheme obtained by (12) would be suboptimal since
L(¢) is assumed constant in each subinterval. But (12) shows that
only the value of L(t) in the interval {{,_s, t;} (Fig. 1) is needed to
determine the switching of the optimal control u(t). Since this is not
known in advance, all the switch curves 4% ~%,---, v* ! are to be
caleulated. The time-optimal control for system (1)-(3) (which
is normal) is bang-bang (by Pontryagin’s minimum principle), i.e.,
except at the switch points where the control is +1 or — 1. The value
of L(t) helps determine the sign of the control at sample points &,
t, ete. So in Fig. 1, irrespective of the variation of L(f) over the
subintervals {lo, &} - - - {£t:_s, fe1}, the time optimal control is 1.
The correct switching might occur anywhere in the interval {¢,_s,
ts} due to the variation in L(¢). But since the subintervals can be
made as small as numerieal integration procedures would allow with
sufficient accuracy, the error involved in switching is negligible.
Again, the solution is time optimal over each subinterval so it will
be optimal over the whole interval [5].

Fig. 2 shows a series of switch curves limited to a small region
for the variation of L(t). First switching of u(¢) oceurs when the
trajectory reaches +°. Fig. 3 shows a deadbeat type of response
obtained for a step increase of input torque by the use of the control
scheme derived. The system is stabilized in 0.34 s and the control
switches twice. Simulation of the system by Runge~Kalta integration
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Fig. 3. Linearized system, 10 percent torque siep. (a) Rotor angle-time charae-

teristics. (bb) Phase plane.

with a step size of (0.0005 = required about 0.85 min of computation
time on an IBM /360. In application this, of course, is not needed.

CONCLUSIONS

This correspondence shows that a closed-loop optimal excitation
control can be realized which is fast and promises considerable
advantage in the improvement of reliability and reduction of costs
in a power system. The idea may be extended to the nonlinear
system also.
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A Numerical Solution of the Matrix Equation
=¢ P+ S

Abstract—A simple solution for the above matrix equation is
given for the case when ¢ is in companion form. If ¢ is not in com-~
panion form, then only 5 2/3 n® multiplications are necessary for the
required transformations and equation solution. Thus this corre-
spondence offers an efficient computational alternative to methods
already published.

The matrix equation P = ¢P¢! + 8, with P and § positive definite
matrices, has important applications in the design of linear discrete
systems [1]-[3] and thus a number of papers have been published on
its numerical solution [4]-[6].

A direct solution can be obtained by rewriting the equation as
n(n 4+ 1)/2 linear equations in the unknown elements of the sym-
metric matrix P

Ap = s 1)
where p is a vector of the unknown elements written in the order

P¢ = pu,Pu, -+ ¢ PreyPo P2, 0 P20t Py

sis a vector of the corresponding elements of S, and 4 is an n(n 4 1)/2
X n{n + 1)/2 matrix formed from products of the elements of the ¢
matrix. This matrix is conveniently represented by the partitioned
matrix

AU A1z A13...41n
A21 AZZ AZn

A= )
Anl Y-

where the dimension of each A7 submatrix is (n — I 4+ 1) X
(n — J 4 1). The elements a,,,,’7 of the submatrix A7 are given by
the formulas

A pictaqior = (ubi; + 1idir)Ki-ia—j,
t=1—>mn, =J—=n (3)
where
Ky 5.5 = 1/2, I = 2orJ = j (when the two terms in the
brackets are equal)
=1, otherwise.

The method is, however, impractical with large systems as it
requires n*/4 storage words; thus an iterative solution given by

Py, = ¢*Pu(¢') + Pr #)

is usually resorted to. This has been used extensively by the Cam-
bridge Control Group. Experience has shown that satisfactory
convergence is usually obtained within 12 iterations (requiring
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more than 12n3 multiplications) but some problems have required as
many as 35 (iterations were terminated when ||[P — Pil|/[|P] <
0.001).

The direct method becomes more attractive if the ¢ matrix is in
canonical form; the resulting 4 matrix will then be sparse, requiring
little storage space and few multiplications for solution.

The companion form is attractive as it can be obtained by a
series of elementary tranformations (using the method of Danilevsky
[71). An efficient method of utilizing the companion form has been
given by Molinari [6]. An alternative method that may in some cases,
be more numerically robust follows.

If ¢ is a companion matrix

0 0 0 . M . [44]
10 - - - o
010 .

¢ = g
o - . - 1 an

then the A matrix in (2) is of the form shown in Fig. 1 fora 5 X 5
matrix. Thus only n(n + 1)/2 multiplications and additional words
of storage are required. Moreover, this matrix is easily triangularized
into an upper triangular matrix of the partitioned form

Ull Uln
0 [ez Usze
O 0 U33 U3n
U = . (5)
0 Unn
where
10 0wl
10 urpt?
Ui =
Unall
1 A
and for J > 1
00 0wl "
0 ur
Ul = :
6 ... und? |

The elements of the partitioned matrices may be obtained from the
sequential formulas.

ForI=1,J=1—-n1t1=1—n

' = — Q1,9
where
QUui)=1 J=4i—1
= a; J=n

Forl]=2—nJ=I—>ni=1I-n
wl = dIIL(I,2) (6)
where

A = w09+ und U (@ — wp "WYY — QU E)er



