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TECHNICAL  NOTES AND CORRESPORDEKCE 

Optimal  Excitation Control for Power System Stability 

A & ~ ~ Y Q c ~ - A  method is presented for finding the closed-loop time 
optimal excitation control for a power system by applying Pontry- 
agin’s minimum principle. Numerical results are  presented for single 
machme-infinite bus ‘problems  implementing such control. 

INTRODUCTION 
Stability  from  the power system  point of view is the ability 

of synchronous  machines to  remain  in synchronism. St.abilit.y may 
be classified as transient or large  dist.urbance  stabilit.y and as dy- 
namic or small disturbance  stability.  With  the int.roduct.ion of high- 
speed  excitation of synchronous  generators, it has  been  found [I], 
[2] that an  auxiliary  signal in addit.ion 60 normal voltage regulat,or 
action is necessary to improve d p a m i c  stability. Since the equa- 
t,ions governing t,he power system dynamics are of high order,  a 
closed-loop excit.ation control is difficult to obtain. -4 method of 
deriving  a “time optimal  control” for ensuring  dynamic  stabilit,y 
of a single machine infinite-bus power system is described here. 

rlNALYSIS 

For small  disturbances, we get a  system of linear  time-invariant. 
ordinary  different,ial  equations 

3 

ir = aTQiQ + aT46 + b,u(l), ( r  = 1,2,3) (1) 

6 = won (2 1 

n = a.& + aszit f a&, (3 1 

where i, ( r  = 1, 2, 3) are t,he field, direct axis armature, and  quadra- 
ture axis armature currents,  respectively, 6 is t,he rotor angle (rad), 
and n and n are  the normalized velocity and acceleration of the 
machine, respectively. The control u(t) ,  normalized output.  voltage 
of the exciter,  is assumed to be a piecewise continuous  function of 
time  and constrained in magnitude  such that. (u(l)l 5 1. The coef- 
ficients a, (r,  p = 1, . . . , 5 )  depend on synchronous  machine and 
transmission line parameters  and also on t.he operating  point. 
Equations (2) and (3) are known as mirz.g equations. 

For  stable operation of the generator, n and k should  decrease 
to zero in minimum t.ime following a  disturbance, while the rotor 
angle 6 should remain  between 0 and 7r,/2. Since for small dist.ur- 
bances, rotor angle will not exceed this range, final rotor  angle can be 
considered free. 

The optimiza6ion problem can be stated  as:  Find  the admissible 
control .u(t) that transfers the syst.em (1)-(3) from the  set of given 
init.ia1 states { i l ( O ) ,  i q ( O ) ,  i 3 ( 0 ) ,  SfO), n(O)} to  the  deL <ired final states 
(net,, = 0 ;  i l i t , ) ,  i’(t,), i 3 ( t , ) ,  6 i t l )  free} so as to minimize the cost 
functional 

q =  1 

J = l,: dt .  (4) 

It, is also desired that k ( t f )  = 0. The terminal time t f  > to is free. 
To t.he best knowledge of the aut,hors, the available  techniques 

for  determining the  time optimal cont,rol for t.his system involves 
iterat.ion, and hence are costly in terms of computing time  and 
implementation. 

The dist,urbances t.hat. appear in a power system  are  generall~r 
not known in  advance. Some of the coefficient6 arq ( r ,  p = 1, . . . , 5 )  
depend on system resist.ance, reactance, and also on receiving end 
voltage. These  have t.o be  mesured immediately after a dishrbance 
appears on the system. Since the control must, act within a very 
small  fraction of a second to  stop first-swing instability  for large 
disturbances,  a  control  obtained by standard opt.imixation tech- 
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Fix. 1 .  :I portion of L(L) and optimal control u(t) .  

niques is not implementable. On small  disturbances this  time  limita- 
t.ion is not  as severe. -4 method of determining  the  time  optimal 
control  directly as a  function of the .states and  other measurable 
quantities is proposed here. 

Step 1: Differentiating ( 3 )  with respect. to time  and substitubing 
(1 j in it, we get 

Step 2: With  the known initial  values of i1, it, i 3 ,  and 6, we calculate 
initial  value of L(t) ,  say L o .  We assume L( t )  will remain constant at 
thk value (Fig. 1).  The optimization problem can be  restated as 
follows. 

Given the  system 

= ul(t), XI min I ul(t) I U I  max (10) 

where 

U . l ( t )  = Lo + bu(t), (loa) 

find t.he admissible control  t,hat, hnsfers  system ( 8 )  from the given 
iuitial states :Vo (in the n. - k plane)  to t,he origin in t,he minimum 
possible t.ime. The  snitch curves (Fig. 2)  for the double integral  plant 
[a]  is given by 

Step 3: The swit.ch curve (11) decida t.he optimal dummy control 
u l f t )  which in turn gives optimal u ( t )  by relation (loa).  The control 
u(t) is used to solve the  system of ( l t ( 3 )  for a small  increment, of 
time. At. the end of t.he &st intewal,  the value of L( t )  is  recalculated 



n 

I 
Fig. 2. Moving  switch curves  in the  phase plane. 

using t,he new value of il, I?, i,, and 6. Suppose t.hat the  states of 
system 6 )  at. t = tl are S I  and act.nal va.lue of L( t )  has changed 
from Lo to L.1 .  

Step 4: The  time opt.ima1 control is now found again using the 
constant  value of L.1 for L(t) .  The process is  continued  until the 
desired final stat.es are  reached. At. t = t,, the switch  curve  is given 
for L(t)  = L, by 

-,p = (n,li) : 12 - - I i t 2  

2[L,  + b Sgn { i t ) ]  

N0t.e that if at  any  stage L( t )  does not.change from the previous 
value, i t  is not necessary to recalculate y. 

If we consider L(t)   [L(i , ,  i2,  i3, S)] we find t,hat. L( t )  is not an explicit 
funct.ion of n. So for a hypothetical double integral plant, (S), L ( t )  
can be considered as an  additive disturbance to  the input. b u ( f ) .  
Oldenburger [4] considered a second-order system similar to (S) 
v&h an arbitrary  disturbance L(t) ,  and  obtained  the switching 
curve (12) L,  ( p  = 1, 2, . . . , P )  replaced by L(t)  wit.h the  help of 
geometrical constmction. He remarks t.hat if t.he t.erm L( t )  does not. 
satisfy  inequality (S), then t.he syst.em (8) is  uncontrollable. HOD-- 
ever, he concludes that if (S) is not sat.isfied for only a small  period of 
t.ime followed by a long cont.rollable section, t.he scheme will give a 
suboptin~al solution that, also will converge. Solution of syst,em ( S )  
with  the control  scheme  obtained by (12) would be  suboptimal since 
L(t)  is assumed constant in  each subint.el?ral. But. (12) show that. 
only the value of L( t )  in t.he interval { L 1 ,  t,} (Fig. 1 )  is needed to 
det.ermine the swit,ching of the opt,imal  control u(t). Since this is not 
known in  advance, all the switch  curves yo, Y’, . . . , y‘-’ are  to be 
calculated. The time-optimal  control for system (1)-(3) (which 
is normal) is bang-bang (by Ponlryagin’s minimum principle), i.e., 
except  at. the switch points where the cont.rol is + 1 or - 1. The value 
of L(t)  helps det.ermine the sign of t.he control at sample  points to ,  
tl, etc. So in Fig. 1, irrespective of the  variation of L( t )  over the 
subintervals { to,  t l }  . . . {f.-., the  time opt.ima1 control is t l .  
The correct snitching might. occur anywhere  in the int,erval { L l ,  

t,) due t.0 the  variation in L(t) .  But since  t,he subintervals can be 
made as small as nunlerical integration procedures would allow with 
sufficient accuracy, t.he error  involved in switching is negligible. 
Again, the solution  is time optimal over each subinterval so i t  Rill 
be opt,imal over the whole interval [ 51. 

Fig. 2 shows a series of switch  curves  limited to a small region 
for the variation of L(t) .  First,  switching of u(t)  occurs when the 
trajectory reaches ys. Fig. 3 shows a deadbeat  type of response 
obtained for a step increase of input  torque  by  the use of the cont.ro1 
scheme  derived. The syst,em  is st.abilized in 0.34 s and t.he cont.ro1 
switches t.wice. Simulation of t,he system  by Runge-Kalta integration 

= 0, b < 0 ) .  (12) 

. “ = + I  
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Fig. 3. Linearized *>-stem. 10 percent torque step. (a) Rotor  anple-time charac- 
teristics. (1,) Phase plane. 

with a st,ep size of 0.0005 s. required  about, 0.83 min of comput.ation 
time on an IBLIr360. In applicat,ion t.his, of course, is not needed. 

CONCLUSIONS 
This correspondence shows that a closed-loop optimal excitat.ion 

cont.ro1 can be realized which is fast and promises considerable 
advantage in the  improv~ment of reliability and reduction of costs 
in a power system. The idea may  be extended to t.he nonlinear 
system also. 
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A Numerical Solution of the Matrix  Equation 
P = C $ P c p ' + S  

I Absfrucf-A simple  solution for  the above matrix equation is 
given for  the  case when 6 is in companion form. If 6 is  not in com- 
panion form, then only 5 2/3 n3 multiplications are necessary  for the 
required  transformations  and equation solution. Thus this corre- 
spondence  offers an efficient computational alternative  to  methods 
already published. L 

The mat,rix equat.ion P = +P+t + S, with P and S positive definite 
matrices, has important applications  in the design of linear  dbcret.e 
systems [1]-[3] and t.hus a number of papers have been published on 
its numerical  solution [4]-[6]. 

-4 direct  solution  can be obtained  by rewrihg  the equation as 
n(n f 1)/2 linear equations  in the unknown elements of the sym- 
metric matrix P 

Ap = s (1) 

where p is  a vector of the unknown elements written in the order 

more than 1Zn3 multiplications) but some problems have required as 
many as 35 (iterations were terminated when ( I T '  - PkII/IIPII < 
0.001). 

The direct  method becomes more attractive if the Q matrix is in 
canonical form;  the resulting A matrix d l  then be sparse, requiring 
lit,tle  storage  space and few multiplications  for solution. 

The companion form is at.tractive as it  can  be obtained by a 
series of elementary  t.ranformations (using the method of Danilevsky 
[7] ). An efficient met.hod of ut.ilizing the companion form has been 
given by Molinari [6]. An alternat,ive  method that may in some cases, 
be more  numerically robust follows. 

If 9 is a companion matrix 

o o o . . .  (I1 

9 =  1; ; :  - .  -] 
1 an 

then  the A mat.rix in (2) is of the form shown in Fig. 1 for a 5 X 5 
mat.rix. Thus only n(n + 1)/2 multiplications and addit,ional words 
of storage are required. Moreover, this matrix is easily triangularized 
int.0 an upper triangular matrix of the  partitioned  form 

Ull . . . 
0 UZ2 

0 0  u33 

u= L 
[ i 2 1  A2Z A 2 ]  

All A12 A13 . . . A  ln 

A =  

An1 . .. . ..Ann 

where the dimension of each AIJ submatxix is (n - I + 1) x 
(n - J + 1). The elements a,,,1J of t,he submatrix: AzJ are given by 
the formulas 

a l J i + i - z , l + j - J  = (&IJ'$ij + @ I j & J ) K Z - i , J - j ,  

i = I -, n, j = J + (3) The elements of the partitioned  matrices may  be  obtained  from  the 
sequential  formulas. 

where 

K Z - ; , J +  = 1/2, I = i or J = j (when the  two t,erms in the 
For1  = 1, J = l - + n , i =   l + n  

brackets are  equal) u I J  
- Q U j 4 ~ 1  

= 1, otherwise. where 

The method is, however, impractical with large  systems as it 
requires n4/4 storage  words; thus  an it.erative  solution given by 

Q(1,i) = 1, J = i - 1 

- - ai, J = n. 

is  usually  resorted to.  This has been used  extensively by t,he Cam- 
bridge Control  Group.  Experience has shown that  satisfactory U I J  = diZJL(I,i) 
convergence is usually obtained within 12 iterations (requiring 

where 
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