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Abstract 

Execution of a large trade by traders always comes at a price of market impact which can both 

help and hurt the effective execution trade. A trading signal may help attract counterparties to 

reduce the time it takes to complete the trade and the trading cost. On the other hand, it may also 

attract parasitic/opportunistic traders who make the completion less likely or more costly. One 

possible solution which market design offers may include dynamic order submission strategies or 

trading off the exchange because such strategies limit the amount of information that is revealed 

about their trading intentions. But in the age of sophisticated automated trading the efficient 

strategy to avoid adversely moving the share price due to negative market impact, one can uses 

algorithmic logic to slice-up a Parent orders into tiny pieces (Child orders) across brief time 

bucket over execution horizon to make it look like they are retail. Also, to prevent pattern 

recognition and manipulation by parasitic traders, only part of the order is displayed at the 

trading space. We in this paper model optimal size of expected execution Child order which 

takes account of minimum market impact with reference to display size of the order in the dark 

pools environment. 
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1. Introduction 

Most individual investors around the world and especially in US, access the financial markets 

through their pension plan or mutual fund. Large financial intermediaries serve as their trustees 

and manage huge pools of money. Once these fund managers decide to buy or sell a stock to 

reposition their portfolio, they need to be able to trade in size. But the changed market structure 

didn’t allow these investors to execute large trade orders. The proliferation of retail and 

algorithmic trading and recent government regulations have driven the average execution size on 

US exchanges from more than 2,000 shares down to about 340 shares. Also execution of large 

orders will lead to much fluctuation in the prices of equities. To avoid adversely moving the 

share price, institutions uses algorithmic logic which slice-up a Parent orders into tiny pieces 

(Child orders) across brief time bucket over execution horizon to make it look like they are retail. 

Trading in general markets can be defined as result of a successful bilateral search, in which 

sellers look for suitable buyers and buyers look for suitable sellers. The facilitation of trade 

becomes easy and efficient when traders display their trading intentions to the market. Thus the 

trader has to get ‘proactive’, exposing his interest actively to the market to attract possible 

trading counterparts. However, for large traders, disclosing trading interests can be quite costly 

as well. Sometimes, “parasite” traders (Harris, 1997) might somehow anticipate a big trader’s 

desperateness to execute a position. They take away liquidity on the opposite side in the hope the 

big trader – in his urgent need to execute - will trade with them on better prices anyway. These 

cause great losses to big traders and market impact. Thus Traders, in particular big need to 

control their order exposure and its related market impact. The one possible solution to attract 

liquidity and encourage trading which markets provide to traders is the strategic freedom to hide 

their trading intentions. 

2. Objective 

The objective and contribution to academic space through this paper is to find optimal execution 

size and display. Here, without loss of generality we consider a trader who wants to sell a parent 

order with a definite display size at some price. With this initial background we lay down limit 

order book dynamics which is discussed in detail in subsequent section. We then specify the 

order precedence rules (Harris, 1997) to explain precise order flow in terms of sell order and a 



market buy order. This helps us to model the placement order, which in turn give the display 

size.   

3. Optimal Order Model 

3.1 Limit Order Book Dynamics 

Let us consider a trader who wants to sell an order of size, say N and display size Δ at the price 

level .The corresponding sell-side of the limit order book with the price levels  is given 

by a sequence of positive real numbers. At time  the limit order book state is described by the 

total sell-side hidden  and displayed depth  at the respective price level . We denote the 

sum of both quantities by  and call it the total depth at the price level . 

Occasionally we will refer to the depths at the price levels as visible respectively “hidden 

liquidity”. We call the quantity ∑  the cumulative depth up to . Now with the 

background of limit order book dynamics, we will first specify the precedence rules for orders in 

the limit order book, then we continue to explain the precise order flow dynamics in terms of sell 

orders arriving at time  and a market buy orders arriving at time . 

3.1.1 The Order Precedence Rules 

Order-driven market uses trading rules to arrange their trades. In the limit order book markets 

trades among different orders are arranged according to a Precedence Rule-based order-

matching system (Harris, 1997). Orders with highest precedence get executed first and stay in the 

order book until they get fully executed or canceled. In order to determine the precedence among 

orders, first orders get ranked according to their primary precedence rule. If two orders have the 

same precedence, then the secondary precedence rule is adopted and the priority ordering 

procedure continues in the same manner. In most markets the primary precedence rule is price 

priority that is buy orders that bid the highest prices and sell orders that offer the lowest prices 

rank highest on their respective sides. Notice that market orders always rank highest because 

they can trade at all prices. Display Precedence-rule is used as the secondary precedence rule for 

taking account for hidden or partially hidden order, which basically means that displayed orders 

have priority over hidden orders. If one order is partly undisclosed and partly displayed, the 



market treats the two parts separately. In most cases, the third precedence rule obeys Time 

Priority that is orders with same primary and secondary precedence amounting to the same price 

level and same display status get precedence according to their submission time: Earlier 

submitted (orders) have precedence over the rest orders (First-in-First-Out). As per present 

market structure we will use precedence rule in the following order: price, display and time 

priority. 

3.1.2 Order Submission  

Let us consider that at initial time , the trader (seller) submits an order (Child) of size , where 

its displayed share size by Δ at the price level . As the trader cannot display more than the total 

order size, so 0 Δ . 

 

 

Order Submission 

 
Figure 3.1: At time , the trader sells order at the price level . The Child order size of the order is  share 

and its displayed (red colored) size is Δ shares. The remaining (light colored) Δ belongs to 

Child order hidden part. Liquidity before submission in limit order book: Hidden  (light blue 

colored) and Visible  (blue colored) depth at price level . Displayed share , Δ  have priority 

over hidden one , Δ ). 

 

 

 

 



 After Order Submission 

 

 
 
Figure 3.2: The Child order splits into two parts in presence hidden liquidity. At time , the trader sells order 

at the price level  . The hidden depth  (light blue colored) slips in between the visible and 

hidden part of Child order. 
 

The hidden and visible parts of Child order arrange at the price level according to the precedence 

rule. More precisely, its visible part arranges behind the visible depth  (since it arrived later 

than the shares that already stand in the book, including ), then the hidden depth  and finally 

the hidden part of the Child order. This one arranges behind the hidden depth  because it has 

lower time priority, just as the displayed part of the Child order had against the visible depth . 

Thus we can write the priority arrangement at the price level  at time  as the 

sequence  , Δ, , Δ  .  

3.1.3 Competing Orders 

As our trader is certainly not the only one who wants to sell shares, he/she has to compete with 

other traders. We account for arrival of other sells order at time  at each price  with 

total size of  share. Considering true market condition we allow arrival of hidden liquidity and 

denote  the ratio of displayed liquidity among the arriving sell orders at the price level . Thus 

the respective visible share volume  arriving at price level  at time  can be written 

.  (the superscript d denoting the “display” status) and accordingly the hidden share 

volume  . 1 . 



Competing Sell Orders Arrival 

 

 
Figure 3.3: Competing sell orders arriving at time , arrange according to the priority rules: Incoming (green-

colored) visible orders with size  slip in front of the hidden depth at the respective price level. 

Incoming hidden liquidity (light green colored) has the worst priority and keeps to be the last in the 

priority queue at the respective price level. The “alien” liquidity between the Child order visible 

and hidden parts amounts to   shares in total. Whereas the total volume of shares that have 

higher priority than the (visible) Child order equals  shares 

 



The precedence arrangement of the order arriving at  is done in total analogy with the arrival 

case. We already spotted that at time  the Child order splits in two parts in the sense that there 

is ”alien” liquidity, that has higher priority than the visible Child order part, but less than the 

hidden Child order part. The total volume of this liquidity is denoted by . Thus the 

size of liquidity volume  at time  consists of three parts, the initial liquidity at initial time 

∑ , the total size of orders that additional arrives at time , ∑  and finally 

the visible depth , hence . 

 

Quantities  Descriptions 

 Ratio of displayed sell order volume arriving at the price level  

at time . 

  . 1  Total hidden order volume arriving at price level  

at time . 

.  Total displayed sell order volume arriving at price level  

at time . 

   Total sell order volume arriving at price level  

at time . 

 Total initial depth at time  at price level . 

 Cumulative depth “in front of” at time  at price level . 

 Arriving cumulative sell order volume “in front of” at time  at 

price level . 

 Total size of the queue (share volume) at time  that has higher 

priority than the Child order. 

 Total size of the queue at time  that has lower priority than the 

visible part of Child order, but higher priority than its hidden part. 
Table 3.1: Main quantities in the limit order book. 

 

 

 



3.1.4 Market Order Arrival and Execution 

In the earlier section we took into account of arrival of competing (sell) orders by the liquidity 

provider-side at time . As, no liquidity stays for longer time, in the next time step    we 

now incorporate the arrival of the liquidity consumer. 

 

Arriving Market Order 

 

 
Figure 3.4: The Market Buy order size  

is too small to execute shares 

of the Child order.  

Hence V = 0. 

                           Figure 3.5: The Market Buy order size x is 

large enough to execute shares 

of the visible Child order.  

Hence . 

 

 

Let us assume that at time   buy order consumption with the total size of  arrives. In this case 

limit order book situation is as follows: In the front of the visible Child order,  shares have 

higher priority, hence they will be executed first. Thus if the market buy order size is sufficiently 

small, i.e.  no Child shares will get executed, i.e. V = 0 (see figure 3.4), V denoting the 

Child orders execution size at time . If the market buys order obeys Δ, it will 

execute  Child shares (see Figure 3.5), since out of  executed shares  don’t 

belong to the Child order as illustrated in Figure 3.5. 



 

 
Figure 3.6: The Market Buy order size  

is too small to execute shares 

of the Child order.  

Hence V = Δ . 

Figure 3.7: The Market Buy order size x is 

large enough to execute shares 

of the visible Child order. 

Hence . 

 

In case of  Δ  Δ (see Figure 3.6), the buy order is bale to execute all 

order up to visible Child order part, but not the following hidden order of size , since it has 

even lower priority than . For larger market buy order size,  Δ  

 (see Figure 3.7) the market buy order is able to execute also shares of the hidden part of the 

Child order; however it is not able to execute all hidden Iceberg shares, according to its size. 

 

Child order gets executed, i.e. , when buy order size obeys   .Thus, for 

every choice of the market buy order size 0, ∞  we can assign a value, the Child execution 

volume , which we can formulate as follows 

 



0,                               
,                 ∆

                  ∆,                ∆ ∆
,         ∆ 
,                

                                                        3.1       

 

 is the number of executed shares of the considered Child order at time . We also notice 

that  depends on the market order size, which is a random variable (   Ω) and 

the two order volumes  and  , which themselves depend on the random order arrival sizes 

 and , hence  is itself a random variable, i.e. . So, equation (2.1) 

is definition of the Child execution size  at time , given that it was submitted at time . For 

sake of convenience and calculating the optimal execution order, we define subsets of the 

probability space Ω that are related to the cases that are distinguished in the definition of V in 

(3.1). 
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Also, we can see that 
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and same time interval in the interval ( ∞, ,( , ∆),( ∆, ∆),(

∆, ),[ , ∞  are disjunct. Hence the market buy order size  can 

never be in two of these intervals at the same time. Consequently the sets  ( 0,1,2,3,4 ) are 

disjunct as well. Hence the sets  establish a partition of the sample space Ω, 

 

                                           

Ω                                                                                                                       3.4  

 

We can also infer from subset  ( 0,1,2,3,4 ) and definition of  that, 

 

Ω| 0  

Ω|0 ∆  

Ω| ∆                                                                                                                     3.5  

Ω|∆  

Ω|  

 

It is now easy to draw analogous conclusion for the other sets in (3.5) as well. Therefore, all in 

all we have 

 

Ω| 0  

Ω|0 ∆  

Ω| ∆                                                                                                                     3.6  

Ω|∆  
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3.1.5 Order Size 

 

We assume that the order sizes ,  and  are random variables on a suitable probability 

space Ω, , P , where  denotes the market buy order size arriving at time ,  denotes the 

total sell share arriving at the price level  at time  and  ∑ .The assumptions which 



we will use to get optimal execution size, regarding the order sizes ,  and  with respect to 

the Child order submission price level  are as follow: First, we assume that the order sizes ,  

and  are statistically independent. Second assumes order sizes to be exponentially distributed 

with corresponding densities , , : 
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Where, ,  ,  are order flow parameters. 

 

The exponential assumption seems to be a reasonable and defendable first approach to order size 

distributions. Due to the presence of large traders for example, or herding behavior the relative 

frequency of large order sizes is much greater, than the exponential distribution can account for. 

Indeed it has been found by several studies, that the market order size for instance obeys a power 

law ((Gopikrishnan, 2003), (Maslow, 2001)). 

 

3.1.6 Market Impact Parameters 

 

Naturally, displaying trading intentions in the order book will in general have an impact on the 

market, since the limit order book is public and accessible to market participants. For example, 

consider the arrival of Child order with a big display size ∆. It might force other liquidity 

suppliers to be more aggressive in the face of a big displayed Child order, since posting orders 

behind (less aggressive) the big Child order amounts to correspondingly higher execution risk, 

which in turn causes liquidity supply to decrease. 

 



In our model, a straightforward way of incorporating a mechanism of Market Impact is to make 

the parameters that control the liquidity supply and the liquidity consumption (the order flow 

respectively) dependent on the Child orders display size ∆. We consider the case where display 

of trading intention is penalized by the liquidity supplier side; more precisely we consider the 

(sell-) order flow in front of the Child order submission price level to depend on the display 

size ∆, i.e. ∆ , while keeping other flow order parameters( , ) constant. Therefore, 

functional dependency for the Market Impact model can be written as: 

 

∆ ∆              1, , 0                                                                              3.8     

 

Where,  is Market Sensitivity or the Market Impact Parameter  

 

We can see that functional dependency indeed penalize display in the above mentioned case. So, 

if the issuer of the Child order intends to display more, he/she incurs more liquidity/shares 

arriving at better price levels in front of him, lowering his own Child order execution 

performance in turn. 

 

The word Market Impact is used in the sense that conveying information to other market 

participants influences the markets behavior and in turn affects one’s own trading outcome. This 

form of market impact is specifically related to traders on the liquidity supply side, since they 

incur market impact by mere displaying trading interests. Contemporary literature in 

Mathematical Finance that covers aspects of Market Impact considers mainly the liquidity 

consumer side ((Almgren, 2003), (Obizhaeva, 2006)).   

 

3.2 The Child Order Expected Execution Size 

 

A trader who is willing to execute (sell, buy) shares in a market will want to know how much he 

is able to execute within a prespecified trading horizon. Therefore the expected execution size 

(until the end of the trading horizon) is an important and first measure of the traders execution 

risk. 



 

In the context of our model set up we will thus consider the expected execution volume  

with respect to a Child order of total size , display size ∆  and within the given trading horizon 

, .To find expected execution volume , we consider the sets  ( 0,1,2,3,4 ) where 

disjunct partition of the sample space Ω (see 2.4), hence we have 
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where we used the fact that 0 holds for all  (see 2.1). To simplify matters, we thus 

first go over to compute the  in order to obtain the full execution volume . 
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Proof. We notice that,  the execution volume  obeys   (see 2.1) and  

Ω ∆ . Now, 
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Lemma 2. 
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Proof. We notice that,  the execution volume  obeys ∆ (see 3.1) and  

Ω ∆ ∆ . Now, 
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where we used analogous argumentation for first five steps as in the proof to the previous 

lemmas (see lemma 1  for example). 

 



Lemma 3. 
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Proof. To ease notational burden we introduce the abbreviation H . Also, we can 

see that  the execution volume  obeys  (see 3.1) and that  

Ω ∆  holds. We have thus 
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Lemma 4. 
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Proof. Like other lemmas we notice that  holds for , while the subset  follows  

Ω . In the same fashion as in the previous lemmas we 

continue to write 
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where we used analogous argumentation for the first five steps as in the proof to the previous 

lemmas (see lemma 1 for example). 

 

According to (3.9) and the lemmas 1, 2, 3 and 4 the following gives expected execution size for 

Child order.  
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  is a measure-of-goodness for the execution performance of the child order under given 

market conditions and order-specific parameters (total order size, display size, submission level 

and trading time horizon). 

3.3 Optimal Display 

For the sake of simplicity, let us consider Z  be traders objective function for 

determining optimal display size ∆ , which requires solving Z ∆ 0 for ∆. In the face of the 

fact, that this equation incorporates exponentials terms in combination with rational expressions, 

solving this equation algebraically is not possible. To find optimal display, we, instead of 

considering objective function Z, consider the approximation of Z. For that, taylor expansion up 

to order two is considered. 

Z ∆ Z 0 Z 0 ∆
1
2 Z 0 ∆ O ∆  

Z ∆ Z ∆ O ∆                                                                                                                      3.19  

Z ∆ Z 0 Z 0 ∆
1
2 Z 0 ∆ O ∆  

Where, Z denotes approximate execution child order. 

We denote  ∆  as approximate optimal display, and ∆ 0, . For any maximum located 

at∆ 0,  the following must hold.  

∆ Z 0 Z 0 ∆ 0 

   ∆
Z 0
Z 0                                                                                                                        3.20  

4. Optimal Order and Display Property 

In the sense of our optimal model, an order of size N submitted at time  to the price level , 

give rise to quantity called expected execution size Z. Under the given setting we derive optimal 

display size, with respect to traders trading objective, namely to execute as much possible within 

trading horizon. Since Z will naturally depends in multifarious ways on the market and its 



property, so do the optimal display size ∆ . For the trader who uses slicing of the order, for 

instance to reduce his market impact, it is thus of utmost interest to understand properly the 

optimal display strategy’s dependence on the market. In this section, we answer the above raised 

question through simulations. 

4.1 Discrete Child Order 

For understating the property of the optimal order which mathematically is discrete, we have run 

 =5,000 simulation for the execution process of the Child order keeping market and the other 

parameters fixed. We then counted the frequency of the Child order execution. In this case 

(Figure 4.1), we assumed the display size Δ = 40 and total order size  = 100. It is clearly 

observed that Child order is indeed executed at this size. 

 

 

Figure 4.1: Discrete Child Order 

Parameters: =100, =0, =0, =100, Δ=40, =500, =600, =100, =0, =5, =0.05 

4.2 Display Dependency on Liquidity 

The very glance of the Z, tell us that in order to determine the optimal display  ∆   at the time 
 of the submission, the traders doesn’t need to care about how much liquidity sits in front of 

the Child order price level. Traders can either ignore the displayed depth also. It also tells us that 
whole limit order book depth (at time  ) doesn’t affect the  ∆  once the price is fixed. But all 



this doesn’t mean that liquidity in front of Child order will not have effect on the expected 
execution order. In fact the Z values clearly shows that the expected execution size decreases 
with increase in liquidity in  and  (equally observed in Figure 4.2) 
 

 
Figure 4.2: Liquidity Independence 

Parameters: =0, =500, =600, =600, =0, =400, =0, =3, =0.00001 

 

But the above results doesn’t capture the case of hidden liquidity  at the price level  . The 
mathematical intuition suggests that hidden liquidity forces the traders to increase his/her 
disclosure to the market (numerically Figure 4.3) 



 

Figure 4.3: Hidden Liquidity forces Visibility 

Parameters:: =0, =0, 400, =500, =600, =600, =0, =0, =2 

 

4.4 Market Sensitivity 

The whole point of order slicing and optimal display was to mitigate ones trading intensions and 
as a results to avoid unfavorable market impact costs. Putting it in another way, optimal display 
will heavily depends on market sensitivity .We generally expect,the higher the market 
sensitivity the smaller the optimal display size. And indeed this notion is substantiated by the 
following Figure 4.4. In the given figure, the colored diagram shows expected execution size Z 
in dependence of the display size ∆ and the market sensitivity  (optimal display is colored in the 
dark red). 



. 
Figure 4.3: Market Sensitivity and Optimal Display 

Parameters:: =0, =0, =500, =600, =600, =0, =200.5, =2, =0.005 

5. Conclusions 

So far literature on theoretical model of child orders, that may appropriately answer the all the 

question for effective execution order is very scarce. The literature which talk about child order 

execution size, hidden liquidity and depth are is of empirical nature (Mak, 2000). This makes the 

work of designers of algorithmic traders really hard to find out execution size without any 

mathematical models. Though this is present in the professional world of algorithmic trading but 

quiet unknown in academic space. We in this thesis have extended the empirical studies to 

theoretical model which can be used to check execution size and display effect on hidden 

liquidity. While mathematically modeling the expected execution size of Child order, we skip the 

assumption of time-continuity (Poisson arrival), but we reduce the arrival of other traders orders 

to two time points. Hence we accounted for liquidity supply and liquidity demand, but by 

reducing this to two discrete time points, we believe that we simplified the model significantly. 



We also took account of hidden liquidity in our model, but practically it is very difficult to access 

the same. Therefore we need in incorporate some parameters which can take account of 

accessible hidden liquidity. For the sake of simplicity we have relaxed many assumptions to 

emphasize the models possible relevance for application purposes. The work can be further 

extended by simulating effect on order and display size relation to limit order parameters, market 

sensitivity, hidden and display liquidity, total order size etc. In our thesis though we have not 

taken into consideration of optimal time of execution in light of hidden liquidity, it is one 

important part of trading strategy.  
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