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Optimal execution with multiplicative price impact∗

Xin Guo† and Mihail Zervos‡

Abstract. We consider the so-called “optimal execution problem” in algorithmic trading, which is the problem
faced by an investor who has a large number of stock shares to sell over a given time horizon and
whose actions have impact on the stock price. In particular, we develop and study a price model that
presents the stochastic dynamics of a geometric Brownian motion and incorporates a log-linear effect
of the investor’s transactions. We then formulate the optimal execution problem as a degenerate
singular stochastic control problem. Using both analytic and probabilistic techniques, we establish
simple conditions for the market to allow for no arbitrage or price manipulation and develop a
detailed characterisation of the value function and the optimal strategy. In particular, we derive an
explicit solution to the problem if the time horizon is infinite.
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1. Introduction. We consider an investor who has a large number of stock shares to sell
within a given time frame. Rapid selling of the stock may depress the stock price, while
slicing the big order into many smaller blocks of orders to be executed sequentially over time
may take too long to realise. Such an investor is therefore faced with the problem of how to
slice the order, when to trade and at what price, etc. This problem, known as the “optimal
execution problem” in algorithmic trading, is concerned with finding a trading strategy that
maximises an appropriate objective function. A key issue of the problem is concerned with
modelling the price impact of stock transactions.

The study of the optimal execution problem was initiated by Bertsimas and Lo [8] who
analysed a discrete random walk model and by Almgren and Chriss [5, 6] and Almgren [4]
who considered continuous time Bachelier-type models with additive price impact. Since
then, the area has attracted considerable interest; an incomplete list of notable contributions
in the mathematics literature includes Huberman and Stanzl [21], He and Mamaysky [20],
Obizhaeva and Wang [25], Almgren and Lorenz [7], Engle and Ferstenberg [13], Schied and
Schöneborn [29], Alfonsi, Fruth and Schied [1, 2], Schied, Schöneborn and Tehranchi [30],
Predoiu, Shaikhet and Shreve [27] and Løkka [23].

Modelling stock prices by an arithmetic Brownian motion / random walk with additive
impact of large stock sales is a common feature in the references on the optimal execution
problem discussed above. An intriguing consequence of this modelling approach is that optimal
strategies turn out to be more or less static or deterministic. Such strategies may lead to
predictable trading patterns, which can give rise to market manipulation with techniques
such as predatory trading (to this end, see the game formulations studied by Schied and
Schöneborn [28] and Moallemi, Park and Van Roy [24]). Recent work by Schied, Schöneborn
and Tehranchi [30], Gatheral and Schied [17] and Predoiu, Shaikhet and Shreve [27] has
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revealed that such deterministic optimal strategies can be recovered by a simple argument
involving an integration-by-parts calculation and an appropriate Euler-Lagrange equation,
establishing an effective equivalence between minimising costs and minimising the price impact
of trading strategies.

Beyond the context of Bachelier-type models, Gatheral and Schied [17] studied a continu-
ous time Black and Scholes-type model with additive price impact. Discrete time models with
multiplicative price impact have been considered by Bertsimas and Lo [8] and Bertsimas, Lo
and Hummel [9]. Also, Forsyth, Kennedy, Tse and Windcliff [14, 15] proposed a continuous
time Black and Scholes-type model with multiplicative price impact and derived its Hamilton-
Jacobi-Bellman (HJB) equation using heuristic arguments, which they studied by means of
numerical techniques. In these references, it is argued that such models are more natural than
ones with additive price impact because, e.g., they do not allow for strictly negative prices
with non-zero probability.

In this paper, we study the optimal execution problem in the context of a continuous
time model with multiplicative price impact. To the best of our knowledge, this model is the
very first one in the continuous time optimal execution literature involving singular control
rather than absolutely continuous control: this setting does not restrict stock transactions to
be realised at a rate over time; instead, it allows for block sales of stock. The objective of the
paper is to exhaustively study the model’s analytical properties. The development of further
realistic and applicable models can be motivated by the one we study here (see Remark 1 for
such a generalisation).

In particular, we consider an investor who holds Yt ≥ 0 shares of stock at time t, not
including any transactions made at t. The investor can buy or sell any amount of shares at
any time, but short-selling is not allowed. We denote by ξs

t (resp., ξb
t ) the total amount of

shares the investor has sold (resp., bought) up to time t, so that

Yt = y − ξs
t + ξb

t ,

where y ≥ 0 is the number of shares held by the investor at time 0.

We assume that, in the absence of any transactions, stock prices follow a geometric Brow-
nian motion. Also, we assume that (a) the price impact of small transactions is proportional
to the stock price at which they are executed as well as proportional to their size, and (b) the
price impact of a large transaction is the same as that of any number of smaller transactions of
the same total size that are executed at the same time. In §2, we show that such requirements
give rise to the stock price dynamics

dXt = µXt dt− λXt ◦s dξs
t + λXt ◦b dξb

t + σXt dWt,

where λ > 0 is a constant and the operators ◦s, ◦b are defined by (2.5)–(2.6) below. Effectively,
this is a model with multiplicative price impact: the impact of a transaction is additive to
the logarithm of the stock price (see (2.7) below). There are several possible generalisations
of these dynamics that exhibit resilience, namely, allowing the effect of transactions on the
stock price to fade over time (we briefly discuss one in Remark 1).

The investor has a horizon T ∈ (0,∞], by which time, she exits the market by clearing all
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her shares. The investor’s objective is to maximise the performance criterion

E

[∫
[0,T ]∩R+

e−δt
[
Xt ◦s dξs

t −Xt ◦b dξb
t − Cs dξ

s
t − Cb dξ

b
t

]]

over all admissible strategies (ξs, ξb). Here, the constant δ ≥ 0 reflects the investor’s im-
patience, while the constants Cs, Cb ≥ 0 provide for a bid-ask spread or for proportional
transaction costs. The choice δ = 0 is the most natural one if the time horizon T is very
short. We allow for choices δ > 0 because these might be appropriate for execution problems
lasting several days (see Lebedeva, Maug and Schneider [22] for real-world examples of such
executions) and are essential for a non-trivial solution if T =∞. Also, strictly positive values
of Cs, Cb can arise from the existence of a bid-ask spread. Indeed, if we interpret Xt as the
mid-price of the stock price at time t, then we can view Xt − Cs (resp., Xt + Cb) as the bid
(resp., ask) price of the stock at time t. Such a modelling context has been considered in the
literature, e.g., by Cont and de Larrard [10] who, based on empirical evidence, assume that
the bid-ask spread is equal to one tick.

The performance criterion we have adopted is the expected revenue one featuring in the
models studied, e.g., by Bertsimas and Lo [8] and Gatheral [16]. Other choices of perfor-
mance criteria that have been considered in the literature include the mean-variance one in
Almgren and Chriss [5, 6], the expected utility one in Schied and Schöneborn [28] and the
mean-quadratic variation one in Forsyth, Kennedy, Tse and Windcliff [14]. Such alternative
performance indices give rise to several variants of the model we study that could be the sub-
ject of future research. It is worth noting that Gatheral and Schied [18] have argued that a
risk-neutral expected revenue or cost optimization objective is a reasonable choice, especially
in contexts where market regularity conditions should be independent of investor preferences.

Mathematically, the optimisation problem above takes the form of a singular stochastic
control problem. Its Hamilton-Jacobi-Bellman (HJB) equation is a degenerate parabolic (if
T <∞) or elliptic (if T =∞) PDE with state-dependent gradient constraints. Although the
literature of singular stochastic control is rich and long, we are unaware of any results that
characterise the value function or the optimal strategies in a context similar to the one we
consider here; models that are closest to the one we analyse have been studied by Shreve and
Soner [31, 32], Davis and Norman [12], Zhu [33], Ocone and Weerasinghe [26] and Dai and
Yi [11].

Our analysis involves probabilistic as well as analytic techniques. A brief summary of our
main results is as follows. First, we show that, if we allowed for asymmetric price impact of
buying and selling, then the market would present arbitrage opportunities (see Definition 3.2
and Proposition 3.4.(I)-(II)). On the other hand, we prove that there are no arbitrage oppor-
tunities in the model with symmetric price impact that we consider (see Proposition 3.6.(I)).
In the spirit of Huberman and Stanzl [21], we define a price manipulation to be a round-trip
trade, namely, a 0 net buying and selling trading strategy, that results in a strictly positive
expected revenue (see Definition 3.3). It is worth noting here that the definitions of arbitrage
and price manipulation that we have adopted involve no discounting, namely, δ = 0, because
the choice of a discounting rate characterises specific investors rather than the market itself.
We show that there is no price manipulation if and only if µ = 0 (see Proposition 3.4.(III)
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and Proposition 3.6.(II)). This result is not surprising: given its definition and the symmetric
nature of the market in terms of buying and selling, one can argue that a price manipulation
cannot exist if and only if the stock price process is a martingale in the absence of transactions
by a big investor. Indeed, in any model incorporating no price impact, the strategy that buys
(resp., short-sells) one share of stock at time 0 and then sells it (resp., buys it back) at time
1 is a price manipulation if the stock price is a submartingale (resp., supermartingale) such
as, e.g., a geometric Brownian motion with strictly positive (resp., negative) drift. Although
absence of a price manipulation is a desirable property of a model involving very short time
scales (such as seconds or minutes), it could be viewed as rather restrictive for models in-
volving long time scales (such as days or weeks) where the time-value of money and issues
involving investor preferences come into play. From a mathematical perspective, our results
are consistent with the ones of Huberman and Stanzl [21] and Gatheral [16], who showed that
permanent price impact must be linear and symmetric to exclude price manipulation in the
zero-drift models with additive price impact that they studied.

In our analysis of possible arbitrage opportunities and price manipulation, we naturally
consider trading strategies that involve short-selling subject to the constraint that short po-
sitions are bounded by a constant. On the other hand, we assume that short-selling is not
permitted in our analysis of the optimal execution problem itself (see however the paragraph
above the statement of Proposition 3.5). In this context, we first prove that the investor would
be able to realise arbitrarily high expected payoffs by means of simple round-trip trades if her
discounting rate were strictly less than the drift of the stock price (see Proposition 3.4.(IV)).
To avoid unrealistic trivialities, we therefore assume that δ ≥ max{µ, 0}. In this case, we show
that the optimal liquidation strategy involves no buying of shares (see Proposition 3.5.(I)),
namely, there is no transaction-triggered price manipulation in the sense of Alfonsi, Schied
and Slynko [3].

In the case when T < ∞, we prove a verification theorem (Proposition 4.1) that relates
an appropriate solution to the problem’s HJB equation to the problem’s value function. Such
a solution to the HJB equation, which can be computed numerically offline, fully determines
the optimal liquidation strategy. Indeed, its nature is such that the state space splits in two
regions, the “waiting” one and the “selling” one. Beyond a possible sale of an appropriate
amount of stock that positions the state process at the boundary of the two regions at time
0, the optimal strategy involves minimal action to keep the state process inside the closure of
the waiting region and takes no action while the state process is in the interior of the waiting
region.

If T = ∞, then we derive the solution to the problem in an explicit form (see Proposi-
tion 5.1). An interesting feature of this solution is that an optimal strategy may not exist even
though the value function is finite (see Proposition 5.1.(II)). If it exists, the optimal strategy
can be described informally as follows (see also Figure 1). If the stock price is below a critical
level F◦, then it is optimal to take no action. If the stock price at time 0 is above F◦, then
it is optimal to either sell all available shares immediately or liquidate an amount that would
cause the stock price to drop to F◦ and then keep on selling until all shares are exhausted by
just preventing the stock price to rise above F◦.
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2. The market model and the control problem. We fix a filtered probability space
(Ω,F ,Ft,P) satisfying the usual conditions and carrying a standard (Ft)-Brownian motion
W .

We denote by Yt the total number of shares held by the investor at time t. Also, we denote
by ξs

t (resp., ξb
t ) the total number of shares that the investor has sold (resp., bought) up to

time t, so that Yt = y − ξs
t + ξb

t , where y ≥ 0 is the number of shares held by the investor
at time 0. We assume that ξs and ξb are (Ft)-adapted increasing càglàd processes such that
ξs

0 = ξb
0 = 0. Also, we assume that the investor does not simultaneously buy and sell. In

particular, we restrict our attention to strategies (ξs, ξb) such that

if we define ξt = ξs
t − ξb

t , then ξ̌t = ξs
t + ξb

t for all t ≥ 0, (2.1)

where ξ̌ is the total variation process of ξ.
The investor’s aim is to liquidate all share holdings by a time horizon T ∈ (0,∞]. We

therefore consider trading strategies (ξs, ξb) such that

YT+ = 0, if T <∞, and lim
T→∞

YT = 0, if T =∞. (2.2)

In the absence of any transactions from the investor, we model the stock price by the
geometric Brownian motion X0 given by

dX0
t = µX0

t dt+ σX0
t dWt, X0

0 = x > 0, (2.3)

for some constants µ and σ 6= 0. We assume that small transactions made by the investor
affect the share price proportionally to its value. In particular, if the investor sells (resp.,
buys) a small amount ε > 0 of shares at time t, then the share price exhibits a jump of size

∆Xt = Xt+ −Xt = −λεXt (resp., ∆Xt = Xt+ −Xt = λεXt) ,

for some constant λ > 0, where we have assumed that X is càglàd. In this context, a small
sale (resp., buy) of size ε > 0 is associated with the expressions

Xt+ = (1− λε)Xt ' e−λεXt

(
resp., Xt+ = (1 + λε)Xt ' eλεXt

)
.

If we view the sale of ∆ξs
t shares as N individual sales of ε = ∆ξs

t/N shares each, then, for N
large enough, we obtain

Xt+ = e−λNεXt = e−λ∆ξstXt.

Similarly, we can see that buying ∆ξb
t shares is associated with the jump Xt+ = eλ∆ξstXt.

In view of the above considerations, we model the stock price dynamics by the stochastic
equation

dXt = µXt dt− λXt ◦s dξs
t + λXt ◦b dξb

t + σXt dWt, (2.4)

where

Xt ◦s dξs
t = Xt d(ξs)c

t +
1

λ
Xt

[
1− e−λ∆ξst

]
= Xt d(ξs)c

t +Xt

∫ ∆ξst

0
e−λu du (2.5)
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and

Xt ◦b dξb
t = Xt d(ξb)c

t +
1

λ
Xt

[
eλ∆ξbt − 1

]
= Xt d(ξb)c

t +Xt

∫ ∆ξbt

0
eλu du, (2.6)

where the process (ξs)c (resp., (ξb)c) is the continuous part of the process ξs (resp., ξb). Using
Itô’s formula, we can verify that the solution to (2.4) is given by

Xt = x exp

((
µ− 1

2
σ2

)
t− λξs

t + λξb
t + σWt

)
= X0

t exp
(
−λξs

t + λξb
t

)
(2.7)

where X0 is the solution to (2.3).

If we consider the sale of ∆ξs
t shares at time t as equivalent to the sale of N packets of

shares of small size ε = ∆ξs
t/N , then we can see that such a sale should result in a revenue of

N−1∑
j=0

e−λjεXtε '
∫ ∆ξst

0
Xte

−λu du =
1

λ
Xt

[
1− e−λ∆ξst

]
.

In view of this observation and a similar one concerning the buying of ∆ξb
t shares at time t,

we associate the performance criterion

IT ,x,y(ξ
s, ξb) =

{
JT ,x,y(ξ

s, ξb), if T <∞,
lim supT→∞ JT,x,y(ξ

s, ξb), if T =∞,
(2.8)

with each liquidation strategy (ξs, ξb), where JT,x,y(ξ
s, ξb) is defined by

JT,x,y(ξ
s, ξb) = E

[∫
[0,T ]

e−δt
[
Xt ◦s dξs

t −Xt ◦b dξb
t − Cs dξ

s
t − Cb dξ

b
t

]]
,

for (T, x, y) ∈ R+ × R∗+ × R+
1. Here, the discounting rate δ ≥ 0 reflects the investor’s

“impatience”, while the constants Cs, Cb ≥ 0 may account for a constant bid-ask spread or
provide for proportional transaction costs.

The investor’s objective is to maximise IT ,x,y(ξ
s, ξb) over all liquidation strategies (ξs, ξb).

Accordingly, we define the problem’s value function v by

v(T , x, y) = sup
(ξs,ξb)∈AT,y

IT ,x,y(ξ
s, ξb),

where AT ,y is the family of all admissible strategies, which is introduced by the following
definition.

Definition 2.1. Given a time horizon T ∈ (0,∞] and an initial holding of y ≥ 0 shares, the
family AT ,y of all admissible liquidation strategies is the set of all pairs (ξs, ξb) composed by

1Throughout the paper, we use the notation R+ = [0,∞) and R∗+ = (0,∞).
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(Ft)-adapted increasing càglàd processes ξs and ξb such that ξs
0 = ξb

0 = 0, (2.1) and (2.2) hold
true, and

Yt = y − ξs
t + ξb

t ≥ 0 and E
[
e4λξbt+

]
<∞ for all t ∈ [0, T ] ∩ R+. (2.9)

We denote by As
T ,y

the family of all processes ξs such that (ξs, 0) ∈ AT ,y.
The integrability assumption that we make in (2.9) is quite general and ensures that the

optimisation problem is well-posed. In particular, it would plainly be satisfied if we imposed
an upper bound on the process ξb, which would rule out unbounded total buying and selling
over a finite time horizon. On the other hand, the inequality Yt ≥ 0 for all t ≥ 0 reflects the
idea that the possibility of short-selling is not permitted.

In the next assumption we summarise the possible values that the various constants we
have considered may take.

Assumption 1. µ, σ 6= 0, δ ≥ max{µ, 0} and λ > 0 are constants.
Remark 1. In the model that we have developed, transactions made by the investor have a

permanent impact. There are several extensions of the model that can accommodate transient
impact. For instance, we can replace the dynamics given by (2.7) by Xt = X0

t e
Zt , where

Zt = −λ
∫

[0,t[
G(t− s) d

[
dξs
s − dξb

s

]
,

for some kernel G. In this context, if we choose G(t− s) = e−γteγs, for some constant γ > 0,
then

dZt = −γZt dt− λ dξs
t + λ dξb

t .

In such extensions, the resulting optimisation problem’s state space would involve four vari-
ables (namely, t, x, y and z) instead of three (namely, t, x and y). We leave this as well as
other extensions accommodating resilience of the stock price for future research. �

3. Study of the market and preliminary results. In this section, we establish a range of
results that characterise the market we study as well as some estimates we will need. To this
end, we first consider the so-called round-trip trades, which are trading strategies that involve
0 net buying or selling of shares over a given finite time horizon. It is worth noting that the
inequality in (3.1) is an admissibility condition that requires the maximum number of stock
shares that a round-trip can be short to be bounded by a constant.

Definition 3.1. An admissible round-trip trade with time horizon T ∈ R∗+ is any pair (ζs, ζb)
of (Ft)-adapted increasing càglàd processes such that ζs

0 = ζb
0 = 0,

ζs
T+ = ζb

T+ and sup
t∈[0,T ]

(
ζs
t+ − ζb

t+

)
≤ Γ, (3.1)

for some constant Γ > 0, which may depend on the trading strategy itself.
Our first result shows that the model we consider would be unviable if we allowed for

asymmetric impact of buying and selling. In particular, we prove that, if we model the stock
price dynamics by

dXt = µXt dt− λXt ◦λs dξs
t + κXt ◦κb dξb

t + σXt dWt, (3.2)
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where ◦λs (resp., ◦κb) is defined by (2.5) (resp., (2.6) with κ in place of λ), for some κ 6= λ, then
the market may present arbitrage opportunities in the following sense.

Definition 3.2. The market allows for arbitrage opportunities if there exists a round-trip
trade with resulting revenue that is positive and strictly positive with strictly positive proba-
bility, namely, if there exists a round-trip trade (ζs, ζb) such that

R(ζs, ζb) =

∫
[0,T ]

[
Xt ◦λs dζs

t −Xt ◦κb dζb
t − Cs dζ

s
t −Xt dζ

b
t

]
≥ 0 (3.3)

and P
(
R(ζs, ζb) > 0

)
> 0.

We also prove that price manipulation exists if and only if µ 6= 0.
Definition 3.3. A price manipulation is a round-trip trade (ζs, ζb) resulting in a strictly

positive expected revenue, namely, E
[
R(ζs, ζb)

]
> 0, where R is defined by (3.3). An

unbounded price manipulation is a sequence of round-trip trades (ζs,n, ζb,n) such that
limn→∞ E

[
R(ζs,n, ζb,n)

]
=∞.

In these definitions, we have taken δ = 0 because the choice of a discounting rate is
investor specific. In this way, the existence or not of arbitrage and / or price manipulation
characterises a market of risk-neutral investors as a whole.

The next result, which is complemented by Proposition 3.6 below, is concerned with these
issues. We also show here that the investor’s optimisation problem would be trivial if the
investor’s discounting rate δ were strictly less than the stock price drift µ, which we have
excluded as a possibility in Assumption 1.

Proposition 3.4. The following statements are true:
(I) If the price process dynamics are given by (3.2), for some κ > λ > 0, then the market
presents arbitrage opportunities and arbitrarily high risk-free profits can be realised by simple
round-trip strategies.
(II) If the price process dynamics are given by (3.2), for some λ > κ > 0, then the market
may present arbitrage opportunities.
(III) Suppose that the price process dynamics are given by (3.2), for some κ = λ > 0, namely,
by (2.4). If µ < 0, then price manipulation may exist, while, if µ > 0, then unbounded price
manipulation exists.
(IV) Consider the optimal execution problem formulated in §2, in which, the price process
dynamics are given by (3.2), for some κ = λ > 0, namely, by (2.4). If 0 ≤ δ < µ in violation
of Assumption 1, then round-trip trades involving no short-selling can realise arbitrarily high
expected payoffs and

v(T , x, y) =∞ for all (T , x, y) ∈ R+ × R∗+ × R+. (3.4)

Proof. Suppose that the price process dynamics are given by (3.2) for some κ > λ and
let (%n) be any sequence of strictly positive numbers such that limn→∞ %n = ∞. Given
ε ∈ (0, (κ− λ) ∧ λ), we define the (Ft)-stopping time

τ = inf

{
t ≥ 0

∣∣∣ X0
t

x
/∈
[
λ+ ε

κ
,

λ

λ− ε

]}
∧ 1 > 0,
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and we note that
κX0

τ − λx
λx

≥ ε

λ
and − κX0

τ

λx
≥ − κ

λ− ε
. (3.5)

The round-trip trade (ζs,n, ζb,n) that buys %n shares at time 0 and then sells them at time
τ ∈ (0, 1] results in the revenue

R(ζs,n, ζb,n) = −1

κ
x [eκ%n − 1] +

1

λ
X0
τ e
κ%n
[
1− e−λ%n

]
− (Cb + Cs) %n

=
1

κ

[
1 +

κX0
τ − λx
λx

eκ%n − κX0
τ

λx
e(κ−λ)%n

]
x− (Cb + Cs) %n

(3.5)

≥ 1

κ

[
1 +

ε

λ
eκ%n − κ

λ− ε
e(κ−λ)%n

]
x− (Cs + Cb) %n.

The last expression tends to ∞ as n→∞, and (I) follows.
To show (II), we assume that the price process dynamics are given by (3.2) for some κ < λ,

we define the (Ft)-stopping time

τ =

{
t ≥ 0

∣∣∣ X0
t

x
/∈
[
κ+ ε

λ
,

κ

κ− ε

]}
∧ 1 > 0,

for some ε ∈ (0, (λ− κ) ∧ κ), and we note that

λX0
τ − κx
κx

≥ ε

κ
and − λX0

τ

κx
≥ − λ

κ− ε
. (3.6)

The round-trip trade (ζs, ζb) that short-sells % > 0 shares at time 0 and then buys them back
at time τ ∈ (0, 1] results in the revenue

R(ζs, ζb) =
1

λ
x
[
1− e−λ%

]
− 1

κ
X0
τ e
−λ% [eκ% − 1]− (Cs + Cb) %

=
1

λ

[
1 +

λX0
τ − κx
κx

e−λ% − λX0
τ

κx
e−(λ−κ)%

]
x− (Cs + Cb) %

(3.6)

≥ 1

λ

[
1 +

ε

κ
e−λ% − λ

κ− ε
e−(λ−κ)%

]
x− (Cs + Cb) %.

The coefficient of x in the last expression is strictly positive for all % > 0 sufficiently large.
Given any such %, the revenue R(ζs, ζb) is strictly positive for all x sufficiently large, and the
claim that the market may present arbitrage opportunities follows.

To see (IV), suppose that δ < µ and consider the round-trip trade that buys % > 0 shares
at time 0 and sells them at time T > 0. This strategy has expected payoff

− 1

λ
x
[
eλ% − 1

]
+

1

λ
E
[
e−δTX0

T e
λ%
] [

1− e−λ%
]
−
(
Cb + e−δTCs

)
%

=
1

λ
xeλ%

[
1− e−λ%

] [
e(µ−δ)T − 1

]
−
(
Cb + e−δTCs

)
%,

which tends to ∞ as %→∞. In particular, (3.4) holds true.
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To prove (III), suppose first that µ < 0. The round-trip trade (ζs, ζb) that short-sells
% > 0 shares at time 0 and buys them back at time T > 0 results in the expected revenue

E
[
R(ζs, ζb)

]
=

1

λ
x
[
1− e−λ%

]
− 1

λ
E
[
X0
T e
−λ%
] [
eλ% − 1

]
− (Cs + Cb) %

=
1

λ
xe−λ%

[
eλ% − 1

] [
1− e−|µ|T

]
− (Cs + Cb) %,

which is strictly positive for all % > 0 provided x is sufficiently large. On the other hand, if
µ > 0, then the round-trip trade (ζs, ζb) we considered in the proof of (IV) above results in
the expected revenue

E
[
R(ζs, ζb)

]
=

1

λ
xeλ%

[
1− e−λ%

] [
eµT − 1

]
− (Cb + Cs) %,

which tends to ∞ as %→∞ for all x and T .
We now switch our attention to the actual optimal execution problem. It is worth recalling

that, contrary to our analysis thus far, short-selling is not permitted in this problem. However,
a simple inspection of the proof of part (IV) reveals that its conclusions remain true if short-
selling is indeed allowed. Furthermore, it is worth noting that if the conditions of parts (III)
and (IV) are both satisfied, then every admissible liquidation strategy is optimal.

Proposition 3.5. Consider the optimal execution problem formulated in §2. Given a time
horizon T ∈ (0,∞] and any (x, y) ∈ R∗+ × R+, the following statements are true:
(I) The optimal liquidation strategy involves no buying of shares, namely,

v(T , x, y) = sup
ξs∈As

T,y

IT ,x,y(ξ
s, 0). (3.7)

In particular, the market does not allow for transaction-triggered price manipulation.
(II) The value function satisfies

1

λ
x
[
1− e−λy

]
− Csy ≤ v(T , x, y) ≤ 1

λ
x
[
1− e−λy

]
(3.8)

for all T ∈ (0,∞] and (x, y) ∈ R∗+ × R+.
(III) If Cs = 0, then it is optimal to sell all shares at time 0 and the value function is given
by v(T , x, y) = 1

λx
[
1− e−λy

]
for all T ∈ (0,∞] and (x, y) ∈ R∗+ × R+.

(IV) Suppose that δ = µ ≥ 0. If T ∈ R∗+, then it is optimal to sell all available shares at T .
On the other hand, if T =∞, then selling all available shares at time n = 1, 2, . . . provides a
sequence of ε-optimal strategies. In this case, the value function is given by

v(T , x, y) =

{
1
λx
[
1− e−λy

]
− e−δTCsy, if T ∈ R∗+,

1
λx
[
1− e−λy

]
, if T =∞,

(3.9)

for all (x, y) ∈ R∗+ × R+.
Proof. Given a liquidation strategy (ξs, ξb) ∈ AT ,y, we define

ξ̃s
t = sup

0≤u≤t

(
ξs
u − ξb

u

)+
, for t ≥ 0, (3.10)
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and we note that
ξ̃s
t ≤ sup

0≤u≤t
ξs
u = ξs

t for all t ≥ 0. (3.11)

In view of (2.9), we can see that

y ≥ ξs
t − ξb

t for all t ∈ [0, T ] ∩ R+ ⇒ y ≥ sup
0≤u≤t

(
ξs
u − ξb

u

)+
= ξ̃s

t for all t ∈ [0, T ] ∩ R+.

Also, (2.2) and this observation imply that, if T <∞, then

y = ξs
T+
− ξb

T+
≤ ξ̃s

T+
≤ y ⇒ ỸT+ = y − ξ̃s

T+
= 0,

while, if T =∞, then

y = lim
T→∞

(
ξs
T − ξb

T

)
≤ lim

T→∞
ξ̃s
T ≤ y ⇒ lim

T→∞
ỸT = lim

T→∞

(
y − ξ̃s

T

)
= 0.

It follows that (ξ̃s, 0) ∈ AT ,y, namely, ξ̃s ∈ As
T ,y

. For future reference, we also note that (3.11)

implies that∫
[0,T ]

e−δt d
(
ξs
t − ξ̃s

t

)
= e−δT

(
ξs
T+ − ξ̃s

T+

)
+ δ

∫ T

0
e−δt

(
ξs
t − ξ̃s

t

)
dt ≥ 0. (3.12)

In view of the observations that

de−λξ
s
t = −λe−λξst d(ξs)c

t − e−λξ
s
t

[
1− e−λ∆ξst

]
= −λe−λξst ◦s dξs

t ,

deλξ
b
t = λeλξ

b
t d(ξb)c

t + eλξ
b
t

[
eλ∆ξbt − 1

]
= λeλξ

b
t ◦b ξb

t ,

which follow from Itô’s formula and (2.5)–(2.6), and the calculation

d
(
e−δtXt

)
= d

(
e−δtX0

t e
−λ(ξst−ξbt )

)
= − (δ − µ)e−δtX0

t e
−λ(ξst−ξbt ) dt+ e−δtX0

t e
λξbt de−λξ

s
t

+ e−δtX0
t e
−λξst deλξ

b
t + σe−δtX0

t e
−λ(ξst−ξbt ) dWt,

which follows from an application of the integration by parts formula, we can see that, given
any T ∈ [0, T ] ∩ R+,∫

[0,T ]
e−δt

[
Xt ◦s dξs

t −Xt ◦b dξb
t − Cs dξ

s
t − Cb dξ

b
t

]
= −

∫
[0,T ]

e−δt
[

1

λ
X0
t e
λξbt de−λξ

s
t +

1

λ
X0
t e
−λξst deλξ

b
t + Cs dξ

s
t + Cb dξ

b
t

]
= − δ − µ

λ

∫ T

0
e−δtX0

t e
−λ(ξst−ξbt ) dt+

x

λ
− 1

λ
e−δTX0

T e
−λ(ξsT+−ξ

b
T+)

−
∫

[0,T ]
e−δt

[
Cs dξ

s
t + Cb dξ

b
t

]
+
σ

λ

∫ T

0
e−δtX0

t e
−λ(ξst−ξbt ) dWt. (3.13)



12 Xin Guo and Mihail Zervos

In view of these identities, the assumption that δ ≥ µ, the definition (3.10) of ξ̃s and (3.12),
we can see that∫

[0,T ]
e−δt

[
Xt ◦s dξs

t −Xt ◦b dξb
t − Cs dξ

s
t − Cb dξ

b
t

]
≤ − δ − µ

λ

∫ T

0
e−δtX0

t e
−λξ̃st dt+

x

λ
− 1

λ
e−δTX0

T e
−λξ̃sT+

−
∫

[0,T ]
e−δtCs dξ̃

s
t +

σ

λ

∫ T

0
e−δtX0

t e
−λ(ξst−ξbt ) dWt,

=

∫
[0,T ]

e−δt
[
X̃t ◦s dξ̃s

t − Cs dξ̃
s
t

]
+
σ

λ

∫ T

0
e−δtX0

t

(
e−λ(ξst−ξbt ) − e−λξ̃st

)
dWt, (3.14)

where X̃ is the solution to (2.4) with ξ̃s and 0 in place of ξs and ξb, respectively.
Using Itô’s isometry, Hölder’s inequality and (2.9) in Assumption 1, we calculate

E

[(∫ T

0
e−δtX0

t

(
e−λ(ξst−ξbt ) − e−λξ̃st

)
dWt

)2
]

=

∫ T

0
E
[(
e−δtX0

t

(
e−λ(ξst−ξbt ) − e−λξ̃st

))2
]
dt

≤ 2

∫ T

0
E
[(
X0
t e
λξbT+

)2
]
dt+ 2

∫ T

0
E
[(
X0
t

)2]
dt

≤ 2

∫ T

0

√
E
[
e4λξbT+

]
E
[(
X0
t

)4]
dt+ 2

∫ T

0
E
[(
X0
t

)2]
dt

<∞. (3.15)

Therefore, the stochastic integral in (3.14) defines a square-integrable martingale and has 0
expectation. Taking expectations in (3.14), we therefore obtain

JT,x,y(ξ
s, ξb) ≤ E

[
−δ − µ

λ

∫ T

0
e−δtX0

t e
−λξ̃st dt+

x

λ
− 1

λ
e−δTX0

T e
−λξ̃sT+ −

∫
[0,T ]

e−δtCs dξ̃
s
t

]

= E

[∫
[0,T ]

e−δt
[
X̃t ◦s dξ̃s

t − Cs dξ̃
s
t

]]
= JT,x,y(ξ̃

s, 0),

and (3.7) follows (see also (2.8)). Furthermore, the expression for JT,x,y(ξ̃
s, 0) provided here

implies the upper bound in (3.8) as well as establishes (III) because, if Cs = 0, then it is
plainly maximised by the choice ξ̃s

t = y for all t > 0 that corresponds to selling all shares at
time 0. On the other hand, the lower bound in (3.8) is just the payoff of the strategy that
sells all shares at time 0.

Finally, suppose that δ = µ ≥ 0. Taking expectations in (3.13), we obtain

JT,x,y(ξ
s, ξb) = E

[
x

λ
− 1

λ
e−δTX0

T e
−λ(ξsT+−ξ

b
T+) −

∫
[0,T ]

e−δt
[
Cs dξ

s
t + Cb dξ

b
t

]]
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If T < ∞, then this expression and the fact that ξs
T+
− ξb

T+
= y imply that it is optimal to

sell all available shares at time T and

v(T , x, y) =
x

λ
− 1

λ
E
[
e−δTX0

T

]
e−λy − e−δTCsy =

1

λ
x
[
1− e−λy

]
− e−δTCsy.

On the other hand, if T = ∞, then we can see that selling all available shares at time
n = 1, 2, . . . provides a sequence of ε-optimal strategies once we combine the observation that
these strategies have expected payoffs such that

lim
n→∞

(
1

λ
E
[
e−δnX0

n

] [
1− e−λ%

]
− e−δnCsy

)
=

1

λ
x
[
1− e−λ%

]
with the upper bound in (3.8).

Remark 2. For future reference, we note the following estimate that we can derive using
the integration by parts formula and Itô’s isometry in the same way as in (3.13) and (3.15):
given a time horizon T ∈ (0,∞], a strategy ξs ∈ As

T ,y
and any time T ∈ [0, T ] ∩ R+,

E

[
sup
t∈[0,T ]

∣∣∣∣∣
∫

[0,t]
e−δt [Xt ◦s dξs

t − Cs dξ
s
t ]

∣∣∣∣∣
]

≤ E

[∫
[0,T ]

e−δtXt ◦s dξs
t

]
+ Csy

= E
[
−δ − µ

λ

∫ T

0
e−δtX0

t e
−λξst dt+

x

λ
− 1

λ
e−δTX0

T e
−λξsT+

]
+ Csy

≤ x

λ
+ Csy. (3.16)

Using Proposition 3.5, we now establish the following result that complements Proposi-
tion 3.4.

Proposition 3.6. Consider the market model developed in §2 and recall Definitions 3.2
and 3.3. The following statements are true:
(I) The market does not allow for arbitrage opportunities.
(II) If µ = 0, then there exists no price manipulation.

Proof. To establish (II), we assume that µ = 0 and we show that every round-trip trade
has negative expected execution payoff. To this end, we consider any round-trip trade (ζs, ζb)
with time horizon T ∈ R∗+ and we define the liquidation strategy (ξs, ξb) ∈ AT ,Γ by

ξs
t =


ζs
t , if t ≤ T,
ζs
T+, if t ∈ (T, T ],

Γ, if t > T ,

and ξb
t =

{
ζb
t , if t ≤ T,
ζb
T+, if t > T,

(3.17)

where T = T + ε, for some ε > 0, and Γ > 0 is any bound as in (3.1). This strategy puts us in
the context of an investor who starts with Γ shares, follows the round-trip trade up to time
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T and then sells all available shares Γ at a later time T . The expected revenue resulting from
the execution of the round-trip trade is

E
[
R(ζs, ζb)

]
≤ E

[∫
[0,T ]

[
Xt ◦λs dζs

t −Xt ◦λb dζb
t

]]

= E

[∫
[0,T ]

[
Xt ◦λs dξs

t −Xt ◦λb dξb
t

]]
− 1

λ
E
[
XT

] [
1− e−λΓ

]
(3.8)

≤ 1

λ
x
[
1− e−λΓ

]
− 1

λ
E
[
X0
T
e
−λ(ζsT+

−ζbT+ )
] [

1− e−λΓ
]

=
1

λ
x
[
1− e−λΓ

]
− 1

λ
E
[
X0
T

] [
1− e−λΓ

]
= 0,

and (II) follows.
To show (I), we argue by contradiction and we assume that there exists a round-trip trade

(ζs, ζb) with time horizon T ∈ R∗+ satisfying the requirements of Definition 3.2. We then
define the probability measure Q on (Ω,F) by

dQ
dP

∣∣∣∣
FT

= exp

(
− µ2

2σ2
T − µ

σ
WT

)
,

and we note that
dXt = −λXt ◦s dξs

t + λXt ◦b dξb
t + σXt dW

Q
t ,

where (WQ
t , t ∈ [0, T ]) is the Q-Brownian motion defined by WQ

t = µ
σ t+Wt. The equivalence

of P and Q implies that

R(ζs, ζb) ≥ 0, Q-a.s., and Q
(
R(ζs, ζb) > 0

)
> 0.

Therefore, EQ
[
R(ζs, ζb)

]
> 0. It follows that (ζs, ζb) is a price manipulation in a setting with

µ = 0, which contradicts (II), and the proof is complete.

4. The finite time horizon case (T <∞T <∞T <∞). In view of Proposition 3.5.(I), we expect that
the value function v of the stochastic control problem formulated in §2 identifies with an
appropriate solution w : R+ × R∗+ × R+ → R to the HJB equation

max

{
−wt(t, x, y) + Lw(t, x, y), −λxwx(t, x, y)− wy(t, x, y) + x− Cs

}
= 0, (4.1)

with boundary condition

w(0, x, y) =
1

λ
x
[
1− e−λy

]
− Csy, (4.2)

where

Lw(t, x, y) =
1

2
σ2x2wxx(t, x, y) + µxwx(t, x, y)− δw(t, x, y). (4.3)
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To obtain qualitative understanding of this equation, we consider the following heuristic argu-
ments. Suppose that, at a given time, the investor’s horizon is t > 0, the share price is x > 0
and the investor holds an amount y > 0 of shares. At that time, the investor is faced with
two possible actions. The first one is to wait for a short time ∆t and then continue optimally.
Bellman’s principle of optimality implies that this possibility, which is not necessarily optimal,
is associated with the inequality

v(t, x, y) ≥ E
[
e−δ∆tv(t−∆t,X∆t, y)

]
.

Applying Itô’s formula and dividing by ∆t before letting ∆t ↓ 0, we obtain

−vt(t, x, y) +
1

2
σ2x2vxx(t, x, y) + µxvx(t, x, y)− δv(x, y) ≤ 0. (4.4)

The second possibility is to sell a small amount ε > 0 of shares, and then continue optimally.
This action is associated with the inequality

v(t, x, y) ≥ v(t, x− λxε, y − ε) + (x− Cs)ε.

Rearranging terms and letting ε ↓ 0, we obtain

−λxvx(t, x, y)− vy(t, x, y) + x− Cs ≤ 0. (4.5)

The Markovian character of the problem implies that one of these two possibilities should be
optimal and one of (4.4)–(4.5) should hold with equality at any point in the state space. It
follows that the problem’s value function v should identify with an appropriate solution w of
the HJB equation (4.1). Also, the boundary condition in (4.2) follows from the requirement
that the investor must liquidate all share holdings at the end of the planning horizon.

We now prove a verification theorem that associates a smooth solution to the HJB equation
(4.1)–(4.2) with the control problem’s value function and can be used to identify an optimal
liquidation strategy. To this end, we consider the sets

W =
{

(t, x, y) ∈ [0, T ]× R∗+ × R+ | −wt(t, x, y) + Lw(t, x, y) = 0
}
,

S =
{

(t, x, y) ∈ [0, T ]× R∗+ × R+ | λxwx(t, x, y) + wy(t, x, y)− x+ Cs = 0
}
,

and we call them the “waiting” region and the “selling” region, respectively, consistently with
the heuristics that we have discussed above. Also, we note that the inequalities in (4.6) are
consistent with the bounds (3.8) that the value function satisfies.

Proposition 4.1. Consider the optimal execution problem formulated in §2. Given a time
horizon T ∈ (0,∞), suppose that a function w : [0, T ]× R∗+ × R+ → R is a C1,2,1 solution to
the HJB equation (4.1)–(4.2) such that

−Csy ≤ w(t, x, y) ≤ 1

λ
x for all (t, x, y) ∈ [0, T ]× R∗+ × R+. (4.6)

If, for all initial conditions (x, y) ∈ R∗+ × R+, there exists ξs? ∈ As
T ,y

such that

(X?
t , Y

?
t ) ∈ W for all t ≥ 0, P-a.s., (4.7)

ξs?
t+ =

∫
[0,t]

1{(X?
t ,Y

?
t )∈S} dξ

s?
t for all t ≥ 0, P-a.s., (4.8)
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where X? and Y ? are the share price and shares held processes associated with the liquidation
strategy (ξs?, 0), then w identifies with the value function v of the stochastic control problem
formulated in §2. In particular,

v(T , x, y) = sup
ξs∈As

T,y

JT ,x,y(ξ
s, 0) = w(T , x, y) for all (x, y) ∈ R∗+ × R+, (4.9)

and (ξs?, 0) is an optimal liquidation strategy.
Proof. We have established the first identity in (4.9) in Proposition 3.5.(I). To prove the

second one, we fix any initial condition (x, y) ∈ R∗+ × R+ and any process ξs ∈ As
T ,y

. In view

of Itô-Tanaka-Meyer’s formula and the left-continuity of the processes X, Y , we can see that

e−δtw(T − t,Xt+, Yt+) = w(T , x, y) +

∫ t

0
e−δs

[
−wt(T − s,Xs, Ys) + Lw(T − s,Xs, Ys)

]
ds

+Mt −
∫ t

0
e−δs

[
λXswx(T − s,Xs, Ys) + wy(T − s,Xs, Ys)

]
d(ξs)c

s

+
∑

0≤s≤t
e−δs

[
w(T − s,Xs+, Ys+)− w(T − s,Xs, Ys)

]
,

where

Mt = σ

∫ t

0
e−δsXswx(T − s,Xs, Ys) dWs.

Combining this calculation with the observation that

w(T − s,Xs+, Ys+)− w(T − s,Xs, Ys)

= w(T − s, e−λ∆ξssXs, Ys −∆ξs
s)− w(T − s,Xs, Ys)

=

∫ ∆ξss

0

∂w(T − s, e−λuXs, Ys − u)

∂u
du

= −
∫ ∆ξss

0

[
λe−λuXswx(T − s, e−λuXs, Ys − u) + wy(T − s, e−λuXs, Ys − u)

]
du

and (2.5), we obtain∫
[0,t]

e−δs [Xs ◦s dξs
s − Cs dξ

s
s] + e−δtw(T − t,Xt+, Yt+)

= w(T , x, y) +

∫ t

0
e−δs

[
−wt(T − s,Xs, Ys) + Lw(T − s,Xs, Ys)

]
ds+Mt

+

∫ t

0
e−δs

[
−λXswx(T − s,Xs, Ys)− wy(T − s,Xs, Ys) +Xs − Cs

]
d(ξs)c

s

+
∑

0≤s≤t
e−δs

∫ ∆ξss

0

[
−λe−λuXswx(T − s, e−λuXs, Ys − u)

− wy(T − s, e−λuXs, Ys − u) + e−λuXs − Cs

]
du. (4.10)
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Since w satisfies (4.1) and admits the lower bound in (4.6), this calculation implies that∫
[0,t]

e−δs [Xs ◦s dξs
s − Cs dξ

s
s]− Cse

−δtYt+ ≤ w(T , x, y) +Mt for all t ∈ [0, T ]. (4.11)

In particular, ∫
[0,T ]

e−δs [Xs ◦s dξs
s − Cs dξ

s
s] ≤ w(T , x, y) +MT , (4.12)

because YT+ = 0. In view of (3.16) in Remark 2, (4.11) and the fact that Yt ∈ [0, y] for

all t ∈ [0, T ], we can see that inf0≤t≤T Mt is an integrable random variable. Therefore,
the stochastic integral M is a supermartingale. In light of this observation, we can take
expectations in (4.12) to obtain

JT ,x,y(ξ
s, 0) = E

[∫
[0,T ]

e−δs [Xs ◦s dξs
s − Cs dξ

s
s]

]
≤ w(T , x, y).

This inequality and the first identity in (4.9) imply that

v(T , x, y) ≤ w(T , x, y) (4.13)

because ξs ∈ As
T ,y

has been arbitrary.

If a strategy ξs? ∈ As
T ,y

is such that (4.7)–(4.8) hold true, then we can check that (4.1)–

(4.2), the upper bound in (4.6), (4.10) and the fact that Y ?
T+

= 0 imply that∫
[0,t]

e−δs [X?
s ◦s dξs?

s − Cs dξ
s?
s ] +

1

λ
e−δtX0

t e
−λξs?t+

≥
∫

[0,t]
e−δs [X?

s ◦s dξs?
s − Cs dξ

s?
s ] + e−δtw(T − t,X?

t+, Y
?
t+) = w(T , x, y) +M?

t ,

and ∫
[0,T ]

e−δs [X?
s ◦s dξs?

s − Cs dξ
s?
s ]

=

∫
[0,T ]

e−δs [X?
s ◦s dξs?

s − Cs dξ
s?
s ] + e−δTw(0, X?

T+
, 0) = w(T , x, y) +M?

T
,

instead of (4.11) and (4.12), respectively. The inequality here and (3.16) in Remark 2 imply
that sup0≤t≤T Mt is an integrable random variable. Therefore, M is a submartingale and we
can take expectations in the identity to obtain

JT ,x,y(ξ
s?, 0) = E

[∫
[0,T ]

e−δs [X?
s ◦s dξs?

s − Cs dξ
s?
s ]

]
≥ w(T , x, y),

which, combined with the first identity in (4.9) and (4.13), implies the second identity in (4.9)
as well as the optimality of (ξs?, 0).
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5. The infinite time horizon case (T =∞T =∞T =∞). Throughout this section, we write v(x, y)
instead of v(∞, x, y) and we assume that

µ < δ and Cs > 0 (5.1)

(we have solved the cases arising in the context of Assumption 1 when the problem data does
not satisfy these inequalities in Proposition 3.5.(III)–(IV)).

In light of the heuristics we considered in the previous section that explain the structure
of the HJB equation (4.1)–(4.2), we solve the stochastic control problem that arises when
T =∞ and (5.1) holds true by constructing an appropriate solution w : R∗+×R+ → R to the
HJB equation

max {Lw(x, y), −λxwx(x, y)− wy(x, y) + x− Cs} = 0, (5.2)

where L is defined by (4.3), with boundary condition

w(x, 0) = 0 for all x > 0. (5.3)

To this end, we look for a solution w to (5.2)–(5.3) that is characterised by a function F :
R+ → R+ that partitions the state space R∗+ × R+ into two regions, the “waiting” region W
and the “selling” region S, defined by

W =
{

(x, y) ∈ R∗+ × R+ | y > 0 and x < F (y)
}
∪
(
R∗+ × {0}

)
, (5.4)

S =
{

(x, y) ∈ R∗+ × R+ | y > 0 and x ≥ F (y)
}
. (5.5)

Inside W, w should satisfy the differential equation

1

2
σ2x2wxx(x, y) + µxwx(x, y)− δw(x, y) = 0.

The only solution to this ODE that remains bounded as x ↓ 0 is given by

w(x, y) = A(y)xn, (5.6)

for some function A : R+ → R, where n is the positive solution to the quadratic equation

1

2
σ2`(`− 1) + µ`− δ ≡ 1

2
σ2`2 +

(
µ− 1

2
σ2

)
`− δ = 0. (5.7)

For future reference, we note that n > 1 if and only if δ > µ. On the other hand, w should
satisfy

−λxwx(x, y)− wy(x, y) + x− Cs = 0, for (x, y) ∈ S, (5.8)

which implies that

−λxwxx(x, y)− λwx(x, y)− wyx(x, y) + 1 = 0, for (x, y) ∈ S. (5.9)
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To proceed further, we look for A and F such that w is C2,1. Such a requirement, (5.6)
and (5.8)–(5.9) yield the system of equations

−λnA(y)xn − Ȧ(y)xn + x− Cs

∣∣∣
x=F (y)

= 0,

−λn2A(y)xn−1 − nȦ(y)xn−1 + 1
∣∣∣
x=F (y)

= 0,

which is equivalent to

F (y) =
nCs

n− 1
=: F◦, (5.10)

Ȧ(y)Fn◦ = −λnA(y)Fn◦ + F◦ − Cs. (5.11)

In view of the boundary condition (5.3) and (5.6), we require that A(0) = 0 and we solve
(5.11) to obtain

A(y) = e−λny
∫ y

0
eλnu

1

n

(
n− 1

nCs

)n−1

du =
1

λn2

(
n− 1

nCs

)n−1

(1− e−λny). (5.12)

The analysis thus far has fully characterised w inside the waiting region W. To determine
w inside the selling region S, we consider the function Y defined by

Y(x) =
1

λ
ln

x

F◦
, for x > 0, (5.13)

and we note that

F◦ − x = −x
[
1− e−λY(x)

]
and y − Y(x) > 0 ⇔ x < F◦e

λy. (5.14)

In particular, we note that the restriction of Y in (F◦,∞) partitions the selling region into

S1 =
{

(x, y) ∈ R∗+ × R∗+ | x ≥ F◦ and y ≤ Y(x)
}
,

S2 =
{

(x, y) ∈ R∗+ × R∗+ | x ≥ F◦ and y > Y(x)
}

(see also Figure 1). The region S1 is the part of the state space where it is optimal to sell
all available shares at time 0. On the other hand the region S2 is the part of the state space
where it is optimal to sell an amount Y(x) of shares at time 0 and then sell continuously in
a manner such that the optimal joint process (X?, Y ?) is reflected in the line x = F◦ in an
appropriate oblong way until all shares are exhausted. These considerations and the structure
of the performance criterion that we maximise suggest that

w(x, y) =
1

λ
x
[
1− e−λy

]
− Csy, if (x, y) ∈ S1,

w(x, y) = w(F◦, y − Y(x)) +
1

λ
x
[
1− e−λY(x)

]
− CsY(x), if (x, y) ∈ S2.
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We conclude this discussion with the candidate for a solution to the HJB equations (5.2)–
(5.3) given by

w(x, y) =


0, if y = 0 and x > 0,

A(y)xn, if y > 0 and x ≤ F◦,
A(y − Y(x))Fn◦ + x−F◦

λ − CsY(x), if y > 0 and F◦ < x < F◦e
λy,

1
λx
[
1− e−λy

]
− Csy, if y > 0 and F◦e

λy ≤ x.

(5.15)

We can now prove the main result of the section, which shows that this function is indeed the
control problem’s value function and identifies an optimal liquidation strategy.

Proposition 5.1. Consider the optimal execution problem formulated in §2, and suppose that
T = ∞ and that (5.1) holds true. The function w defined by (5.15), where F◦, A are given
by (5.10), (5.12), is a C2,1 solution to the HJB equation (5.2) that identifies with the value
function v of the stochastic control problem. In particular,

v(x, y) = sup
ξs∈As

∞,y

I∞,x,y(ξ
s, 0) = w(x, y) for all (x, y) ∈ R∗+ × R+. (5.16)

Furthermore, if we define

ξs?
t = y ∧ sup

0≤s≤t

1

λ
[lnx+Bs − lnF◦]

+ , for t > 0, (5.17)

where

Bt =

(
µ− 1

2
σ2

)
t+ σWt, (5.18)

then the following statements are true:

(I) If µ− 1
2σ

2 ≥ 0, then (ξs?, 0) is an optimal liquidation strategy.

(II) If µ− 1
2σ

2 < 0, then (ξs?, 0) is not an admissible liquidation strategy. In this case, if we
define

ξs?j
t = ξs?

t 1{t≤j} + y1{j<t}, for t > 0 and j ≥ 1, (5.19)

then (ξs?j , 0) gives rise to a sequence of ε-optimal strategies.

Proof. In view of its construction, we will prove that w is C2,1 if we show that wy, wx and
wxx are continuous along the free-boundary F as well as along the restriction of Y in (F◦,∞).
To this end, we consider any (x, y) ∈ S2 and we use the ODE (5.11) that A satisfies as well
as the definition (5.13) of Y to calculate

wy(x, y) = Ȧ(y − Y(x))Fn◦ , (5.20)

wx(x, y) =
[
−Ȧ(y − Y(x))Fn◦ − Cs

] 1

λx
+

1

λ

= nA(y − Y(x))
Fn◦
x

+
1

λ

[
1− F◦

x

]
(5.21)
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and

wxx(x, y) = − nȦ(y − Y(x))Fn◦
1

λx2
− nA(y − Y(x))

Fn◦
x2

+
F◦
λx2

= n(n− 1)A(y − Y(x))
Fn◦
x2
− 1

λx2
[(n− 1)F◦ − nCs]

= n(n− 1)A(y − Y(x))
Fn◦
x2
, (5.22)

where the last identity follows thanks to (5.10). These calculations imply the required con-
tinuity results along F because limx↓F◦ Y(x) = 0. Also, these calculations, the observation
that

Ȧ(0) = lim
y↓0

Ȧ(y) = (F◦ − Cs)F
−n
◦ ,

which follows from (5.11) and the fact that A(0) = 0, imply that given any point x > F◦ and
any sequence (xn, yn) ∈ S2 converging to (x,Y(x)),

lim
n→∞

wy(xn, yn) = F◦ − Cs,

lim
n→∞

wx(xn, yn) =
1

λ

[
1− F◦

x

]
=

1

λ

[
1− e−λY(x)

]
and lim

n→∞
wxx(xn, yn) = 0.

These expressions are the same as the corresponding ones that we derive using the definition
(5.15) of w for a point x > F◦ and any sequence (xn, yn) ∈ S1 converging to (x,Y(x)), and
the required continuity results along the restriction of Y in (F◦,∞) follow.

By the construction and the C2,1 continuity of w, we will show that w satisfies the HJB
equation (5.2) if we prove that

−λxwx(x, y)− wy(x, y) + x− Cs ≤ 0 for all (x, y) ∈ W. (5.23)

1

2
σ2x2wxx(x, y) + µxwx(x, y)− δw(x, y) ≤ 0 for all (x, y) ∈ S. (5.24)

In view of (5.11), we can see that (5.23) is equivalent to

x− Cs

xn
≤ F◦ − Cs

Fn◦
for all x ≤ F◦,

which is true thanks to the calculation

d

dx

(
x− Cs

xn

)
=
n− 1

xn+1

(
nCs

n− 1
− x
)
> 0 for all x < F◦ =

nCs

n− 1
.

To prove (5.24), we first note that the quadratic equation (5.7), which n > 1 satisfies, and
the definition of F◦ in (5.10) imply that

δCs − (δ − µ)F◦ = −Cs(δ − µn)

n− 1
= −1

2
σ2nCs < 0. (5.25)
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Given any (x, y) ∈ S1, we use the fact that x ≥ F◦eλy to calculate

1

2
σ2x2wxx(x, y) + µxwx(x, y)− δw(x, y) = −δ − µ

λ
x
[
1− e−λy

]
+ δCsy

≤ −δ − µ
λ

F◦

[
eλy − 1

]
+ δCsy =: Q1(y). (5.26)

Also, we use the fact that n satisfies (5.7) to see that, given any (x, y) ∈ S2,

1

2
σ2x2wxx(x, y) + µxwx(x, y)− δw(x, y) = −δ − µ

λ
(x− F◦) + δCsY(x) =: Q2(x). (5.27)

In view of (5.25) and the definition (5.13) of Y, we can see that

Q1(0) = 0 and Q′1(y) = δCs − (δ − µ)F◦e
λy < 0 for all y ≥ 0,

and

Q2(F◦) = 0 and Q′2(x) = −δ − µ
λ

+
δCs

λx
≤ δCs − (δ − µ)F◦

λF◦
< 0 for all x ≥ F◦.

It follows that the right-hand side of (5.26) (resp., (5.27)) is negative for all y ≥ 0 (resp.,
x ≥ F◦), and (5.24) has been established.

We have established the first identity in (5.16) in Proposition 3.5.(I). To derive the second
one, we consider any strategy ξs ∈ As

∞,y. Arguing in the same way as in the proof of Proposi-
tion 4.1 up to (4.11)–(4.12) and using the positivity of w instead of the lower bound in (4.6),
we can show that ∫

[0,T ]
e−δt [Xt ◦s dξs

t − Cs dξ
s
t ] ≤ w(x, y) +MT . (5.28)

where

MT = σ

∫ T

0
e−δtXtwx(Xt, Yt) dWt. (5.29)

This result and (3.16) in Remark 2 imply that the random variable inft∈[0,T ]Mt is integrable
for all T > 0. Therefore, the stochastic integral M is a supermartingale. In light of this
observation, we can take expectations in (5.28) to obtain

I∞,x,y(ξ
s, 0) = lim sup

T→∞
JT,x,y(ξ

s, 0) = lim sup
T→∞

E

[∫
[0,T ]

e−δt [Xt ◦s dξs
t − Cs dξ

s
t ]

]
≤ w(x, y).

It follows that v(x, y) ≤ w(x, y) because ξs ∈ As
∞,y has been arbitrary.

To prove the reverse inequality and establish the optimality claims associated with (ξs?, 0),

where ξs? is given by (5.17), we first note that apart from a jump of size min

{
y, 1

λ

(
ln x

F◦

)+
}

=

min
{
y, (Y(x))+} at time 0, the process (lnx + B − λξs?, Y ? − ξs?) is reflecting in the line

x = lnF◦ in the direction defined by the vector (−λ,−1). In particular,

lnx+Bt − λξs?
t ≤ lnF◦ and ξs?

t − ξs?
0 =

∫
]0,t[

1{lnx+Bt−λξs?t =lnF◦} dξ
s?
s for all t ≤ τ∗,
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where τ∗ = inf{t ≥ 0 | ξs?
t = y}. In view of this observation and (2.7), if we denote by X?

and Y ? the price process and the remaining amount of shares process associated with (ξs?, 0),
then

(X?
t , Y

?) ∈ W and ξs?
t+ =

∫
[0,t]

1{(X?
t ,Y

?
t )∈S} dξ

s?
s for all t ≥ 0,

where the waiting region W and the selling region S are given by (5.4) and (5.5). Also, we
can check that the strategy (ξs?, 0) is admissible provided that limT→∞ Y

?
T = 0. In view of

(5.17)–(5.18), we can see that this is indeed the case if and only if µ − 1
2σ

2 ≥ 0 because a
Brownian motion with strictly negative drift has supremum over time that is an exponentially
distributed random variable.

In the same way as in the proof of Proposition 4.1, we now see that∫
[0,T ]

e−δt [X?
t ◦s dξs?

t − Cs dξ
s?
t ] + e−δTw(X?

T+, Y
?
T+) = w(x, y) +M?

T . (5.30)

where the local martingale M? is defined as in (5.29). In view of this identity, (3.16) and the
inequality

0 ≤ w(X?
t , Y

?) ≤ 1

λn2

(
n− 1

nCs

)n−1

Fn◦ , (5.31)

which follows from (5.12) and the definition (5.15) of w, we can see that the random variable
supt∈[0,T ]Mt is integrable for all T > 0. Therefore, M? is a submartingale, and we can take
expectations in (5.30) to obtain

JT,x,y(ξ
s?, 0) = E

[∫
[0,T ]

e−δt [X?
t ◦s dξs?

t − Cs dξ
s?
t ]

]
≥ w(x, y)− E

[
e−δTw(X?

T+, Y
?
T+)

]
. (5.32)

These identities and (5.31) imply that

I∞,x,y(ξ
s?, 0) = lim sup

T→∞
JT,x,y(ξ

s?, 0) ≥ w(T, x, y).

Combining this result with the inequality v(x, y) ≤ w(x, y) that we have established above, we
derive (5.16) as well as the optimality of (ξs?, 0), which is admissible if and only if µ− 1

2σ
2 ≥ 0.

If µ− 1
2σ

2 < 0, then we can use (5.32) to check that the strategy (ξs?j , 0) given by (5.19)
has payoff

I∞,x,y(ξ
s?j , 0) = lim sup

T→∞
JT,x,y(ξ

s?j , 0)

= E

[∫
[0,j]

e−δt [X?
t ◦s dξs?

t − Cs dξ
s?
t ]

]
+

1

λ
E
[
X?
j

[
1− e−λ(y−Y ?

j )
]]

≥ w(x, y)− E
[
e−δjw(X?

j+, Y
?
j+)
]
.

The inequality v(x, y) ≤ w(x, y) and the fact that the right-hand side of this expression
converges to w(x, y) as j → ∞ imply (5.16) and establish that (ξs?j , 0) is a sequence of
ε-optimal strategies.
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Figure 1. The regions providing the optimal strategy when T =∞. If the stock price takes
values in the “waiting” regionW, then it is optimal to take no action. If the stock price at time
0 is inside the “selling” region S1, then it is optimal to sell all available shares immediately.
If the stock price at time 0 is inside the “selling” region S2, then it is optimal to liquidate
an amount that would cause the stock price to drop to F◦ and then keep on selling until all
shares are exhausted by just preventing the stock price to rise above F◦.


