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Abstract: The electrical behaviour of a system, such as an electrode–tissue interface (ETI) or a
biological tissue, can be used for its characterization. One way of accomplishing this goal consists of
measuring the electrical impedance, that is, the opposition that a system exhibits to an alternating
current flow as a function of frequency. Subsequently, experimental impedance data are fitted to
an electrical equivalent circuit (EEC model) whose parameters can be correlated with the electrode
processes occurring in the ETI or with the physiological state of a tissue. The EEC used in this paper is
a reasonable approach for simple bio-electrodes or cell membranes, assuming ideal capacitances. We
use the theory of optimal experimental design to identify the frequencies in which the impedance is
measured, as well as the number of measurement repetitions, in such a way that the EEC parameters
can be optimally estimated. Specifically, we calculate approximate and exact D-optimal designs
by optimizing the determinant of the information matrix by adapting two of the most algorithms
that are routinely used nowadays (REX random exchange algorithm and KL exchange algorithm).
The D-efficiency of the optimal designs provided by the algorithms was compared with the design
commonly used by experimenters and it is shown that the precision of the parameter estimates can
be increased.

Keywords: optimal experimental design; bioimpedance; impedance spectroscopy; algorithm

1. Introduction

The electrical behaviour of cells, biological tissues, or electrode-tissue interfaces can
be used for their characterization [1–4]. One way to do this is by measuring the electrical
impedance, that is, the opposition that the system under study exhibits to an alternating
current flow as a function of frequency. Subsequently, experimental impedance data
are fitted to an electrical equivalent circuit (EEC), which is a mathematical model that
approximates the electrical behaviour of the system under study. Thus, the EEC parameters
give information about the physiological state of a tissue or about the electrode processes
occurring in the electrode-tissue interface (ETI). For instance, it is useful to know the
electrical/electrochemical behaviour of the ETI plays a significant role in the biopotential
measurements or also in the propagation of an applied stimuli. It should be mentioned
that the experimental impedance data are analysed by using an impedance function. This
impedance function can be proposed from a plausible physical theory (that predicts the
impedance) or from an EEC, that aids in the visualization of the physical processes occurring
in the system under study [1].

In this paper, we work with linear time-invariant (LTI) circuits, that is, LTI systems
that fulfil the properties of linearity and invariance in time, meaning that the superposition
and proportionality principles are hold. From the study of the circuit theory, a LTI circuit in
which the input i(t) is an electrical current (amperes), the output v(t) is a voltage (volts),
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and t is the time (seconds) can be described by an ordinary, linear differential equation
(ODE) with constant coefficients ai, bj ∈ R and order n for n, m ∈ N as [5]:

dnv(t)
dtn + an−1

dn−1v(t)
dtn−1 + · · ·+ a0v(t) = bm

dmi(t)
dtm + bm−1

dm−1i(t)
dtm−1 + · · ·+ b0i(t) (1)

Without loss of generality, we have assumed that an = 1.
Let us now consider the input i(t) = est, where s is a time-independent parameter.

It can be shown that the output (refer to Equation (1)) can be written as v(t) = Z(s)est,
where Z(s) is an impedance function (in units of ohms, Ω), which relates the voltage to
the current:

Z(s) =
bmsm + bm−1sm−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
(2)

The input given by est is extremely versatile. It allows us to obtain the forced response
to a constant input (s = 0) or to a sinusoidal input (s = jω, where j is the imaginary
unit and ω is the angular frequency in rad/s with ω = 2π f , where f is frequency in Hz).
This latter response is known as frequency response of systems, that is, the response of a
system to input sinusoids of different frequencies. Moreover, est constitutes a basis function
involving the Fourier series and the Fourier and Laplace transforms [5].

Note in particular that the parameter s in (2) can be interpreted as the variable that
appears in the Laplace transform or as the differential operator ( d

dt , typically denoted
by p) [6]. When s = jω, the circuit is operating at sinusoidal steady-state. Specifically,
by considering the Laplace transform of Equation (1), assuming zero initial conditions, we
can write V(s) = Z(s)I(s), where I(s) and V(s) are the Laplace transforms of the input
i(t) and the output v(t), respectively. Interestingly, the unit-impulse (i(t) = δ(t), I(s) = 1,
where δ(t) is Dirac delta function) response is V(s) = Z(s), that is, the Laplace transfom of
the voltage output equal the impedance Z(s).

Electrical impedance has been usually defined in the context of a single sinusoidal sig-
nal and phasor analysis [6]. The impedance Z(jω) at the frequency ω, is a complex number
whose magnitude and phase are |Z(jω)| and arg[Z(jω)], respectively. Equivalently, Z(jω)
can also be expressed in terms of its real and imaginary components, that is, the resistance
R(ω) and the reactance X(ω), respectively.

Z(jω) = |Z(jω)|arg[Z(jω)] = R(ω) + jX(ω) (3)

Note that for physical frequencies (s = jω), the impedance in Equation (2) can be
written according to Equation (3). Hereinafter, the impedance Z(jω) is also denoted
by Z(ω).

Regarding the sinusoidal signal, it should be mentioned that the square of the rms
(root mean square) value of a sinusoidal signal is the average power associated with
it, that is, the average power is concentrated at frequency ω. Importantly, the average
power associated with a periodic signal is the sum of the squared rms values (sum of the
average powers) of all its components (Parseval’s theorem for periodic signals). Therefore,
the power spectral density (which, when integrated over the whole spectrum frequency,
gives the total average power) for a periodic signal (power signal) consists of a series of
impulses [7].

In this paper, we focus on finding the input frequencies to the circuit which maximises
the amount of information obtained from an experiment, given that the true system is
a priori known. Optimal input designs concern finding the input signal, which assures
that the estimates become as good as possible. The use of optimal input signals will
increase the precision of the parameter estimators [8]. This problem, called optimal input
design, arises from the works of Mehra [9,10]. The theory of optimal design of experiments
for the construction of optimal input signals in control theory, involving the frequency
domain, can be found in [11–18]. However, its use for electrical impedance models has
been scarcely reported in the scientific literature. Considerations of optimal multisine input
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signals are analysed in [19–21]. Specifically, a D-optimal multisine excitation for broadband
impedance spectroscopy measurements is proposed in [20]. These optimal designs are
based on simple first-order LTI circuits, that is, they are described by an ODE of order 1.
The objective of this work is to design the D-optimal frequencies in which to carry out the
electrical impedance measurements to achieve the best statistical estimates. Specifically,
we calculate approximate and exact optimal designs by optimizing the determinant of the
information matrix by adapting the REX random exchange algorithm and KL exchange
algorithm. To the best of the authors’ knowledge, there is no previous report of modifying
those algorithms to calculate D-optimal designs in the frequency domain. In Section 2, we
provide an introduction to the D-optimal input design applied to the study of a simple
impedance model, which approaches the electrical behaviour of basic bio-electrodes or cell
membranes. The definition of the Fisher Information Matrix (FIM) and the spectral density
function are presented. Section 3 is devoted to the D-optimization criterion, the directional
derivative, the equivalence theorem and the two algorithms adapted. Finally, in Section 4,
we include a real application. The results obtained from an experimental test carried out
with the two algorithms adapted to compare the efficiency of the design commonly used by
experimenters with the D-optimal designs obtained from the algorithms are also discussed
in this section.

2. Optimal Experimental Design for the Identification of LTI Systems

In general, the procedure for the identification of a system can be divided into three
steps. The first one will be the experimental design, that is, planning and selecting the
input signals to be introduced into the model. The set where to take the observations is
known as the design space and is denoted by χ. From now on we will assume that it is a
compact set. Once the input signals have been selected within the design space, the second
step will be to collect data. The third step will be to estimate the parameters of the model.

2.1. Design of Experiments Background

Let χ be the compact design space and y(t) the response variable, assumed as a
random variable of a parametric distribution with a vector of parameters θ. We assume
that the observations y(t) verify the following model:

y(t) = η(t, θ) + ε(t) (4)

The model exhibits a random error ε and the function η is called the response surface and it
is a partially known function, that is, it is within a parametric set of functions where the
parameters θT = (θ1, . . . , θk) ∈ Rk are unknown and their specification determines η totally.
The response variable depends on the variable t, which we will call the independent or
design variable, which can be freely chosen by the experimenter.

We will say that an exact design, ξN is a collection of N different support points,
t1, t2, . . . , tN , where there could be repetitions. An approximate design, ξ, is a collection of
M different support points, t1, t2, . . . , tM, and weights, ξ(t1), ξ(t2), . . . , ξ(tM), that defines
a discrete probability at χ. If the design ξ has weight ξ(ti) at ti, i = 1, . . . , M and the total
number of observations made is N, approximately Nξ(ti) observations will be taken at ti,
i = 1, . . . , M. By choosing a sufficiently large N, it is possible to approximate a design with
these characteristics to an exact design. The approximations will be better the larger the
N [22].

One of the most important tools in the optimal experimental design is the FIM induced
by ξ. The variance-covariance matrix Var[θ̂] of the maximum likelihood estimator θ̂ can
be asymptotically approximated by the inverse of the FIM, M−1(ξ), and under certain
regularity conditions it reaches the lower limit of Cramer-Rao [23]. Once the estimator has
been specified, we can consider the optimal design problem, as the selection of predictors
that somehow lead to the minimization of the variance-covariance matrix Var[θ̂] ≈ M−1(ξ),
or equivalently to the maximization of M(ξ). Therefore, the objective of the optimal design
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of experiments will be to find the best of the designs that maximizes M(ξ) or minimizes
M−1(ξ) in some sense.

Optimal design theory was initially developed for linear models. However, in practice
it is common to find experiments where the response is explained from non-linear models in
the parameters to be estimated, as this case study. The most common method for analysing
data from a non-linear model is based on the use of the linear Taylor series approximation
of the response surface.

η(t, θ) ≈ η(t, θ(0)) + [∇θη(x, θ)|θ(0) ]
T(θ − θ(0)) (5)

where ∇θ denotes the gradient with respect θ and being θ(0) a prior value of θ, for example
an estimate calculated on the basis of an initial experiment or suitable values found in
the literature. Thus, the FIM will depend on the values of the unknown parameters and,
consequently, the optimal designs will also depend on these values,

M(ξ, θ) =
∫

ξ
∇θη(t, θ)∇T

θ η(t, θ)ξ(dt) (6)

2.2. Electrical Circuit Model

Let us consider the EEC of Figure 1A. It comprises a resistance R1 in series with the
parallel combination of a capacitor C and a resistance R2. Currents and voltages have
been labelled in each element. i(t) and v(t) are the current input and the voltage output,
respectively. iC(t) and iR2(t) are the currents flowing through the capacitor C and the
resistance R2, respectively. vC(t) is the voltage across C (the same than that of R2).

Figure 1. Electrical circuit model (A) and Nyquist plot (B).

The ODE of the EEC shown in Figure 1A is written as (refer to Appendix A)

dv(t)
dt

+ a0v(t) = b1
di(t)

dt
+ b0i(t), t ∈ [0, T] (7)

Let us define θT = (b1, b0, a0) for b1, b0, a0 ∈ R and k = 3 the unknown vector
parameters with 

b1 =R1

b0 =
R1 + R2

R2C

a0 =
1

R2C

(8)

As we saw in Section 1, the impedance from Equation (7) is obtained as

Z(s) =
b1s + b0

s + a0
(9)
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For physical frequencies s = jω, Equation (9) is written as

Z(ω) =
b1 jω + b0

jω + a0
(10)

where ω ∈ (0, ∞).
Figure 1B shows the Nyquist plot (−X(ω) vs. R(ω) in the complex plane). Equation (10)

sketches a semicircle, which intersects the real axis at R1 and R1 + R2, at the frequencies
ω = ∞ and ω = 0, respectively (ω is positive and increases counterclockwise). The maxi-
mum of −X(ω) vs. R(ω) is reached at ωmax = 1

R2C .
Now, let the parameter s (refer to Equation (9)) be considered the differential operator,

that is, p = d/dt (see above). The unknown parameters θ must be estimated from measures
of the form:

v(t) = Z(p)i(t) + ε(t) (11)

where Z(p) is a new differential operator [6] and ε(t) is a random error N(0, σ2) that
includes both the errors of the tests and the specification of the model. The Fourier
transform of Equation (11) is given by

V(ω) = Z(ω)I(ω) + E(ω) (12)

where V(ω) = F [v](ω) ∈ C, I(ω) = F [i](ω) ∈ C and E(ω) = F [ε](ω) ∈ C, with F the
Fourier transform.

It should be mentioned that the impedance of (9) can also be obtained by considering
the impedance of each of R1, R2 and C, that is, R1, R2 and 1

sC , respectively, resulting in
Z(s) = R1 + (R2 ‖ 1

sC ), ‖ denotes parallel, which gives Equation (9).

2.3. The FIM for the Electrical Circuit Model

In this section, we will consider that the input signal i(t) is a time stationary process
and we will go from the time domain to the frequency domain in order to apply the optimal
design theory for this type of LTI SISO (single-input, single-output) systems. In this domain,
the properties for the approximation of the information matrices used in the theory of the
optimal design of experiments, given by Kiefer-Wolfowitz [24], Karlin-Studden [25] and
Fedorov [26], are preserved. According to Mehra [9], if a SISO system is LTI, the number of
data points N is large and i(t) is a stationary process, the optimal inputs can be calculated
much more efficiently using frequency domain techniques.

Let Equation (10) be the impedance model to be estimated, where θ is the vector of
parameters of the impedance model defined in (8). Then,

∇θZ(ω) =


jω

jω+a0
1

jω+a0

− j(b1ω−b0 j)
(jω+a0)2

 (13)

By Parseval’s Theorem, we find that, for a continuous time model (10), the FIM in the
frequency domain is given by (refer to Appendix B)

M(Φ) =
1

2π

∫ +∞

−∞
M̃(ω, θ)Φ(ω)dω (14)

where Φ is the power spectral density of i(t) and M̃(ω, θ) is the single-frequency FIM,
which defines the information associated with the model (10) with respect to θ, defined as

M̃(ω, θ) = <
{
∇θZ(ω) · ∇θZ(ω)H

}
(15)
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where the superscript H denotes the conjugate transpose operator and <{z} is the real part
of the number z ∈ C. From the model (10), the single-frequency FIM as defined in (15) is

M̃(ω, θ) =


ω2

a2
0+ω2 0 ω2(b0−b1a0)

(a2
0+ω2)2

0 1
a2

0+ω2 − b1ω2+b0a0
(a2

0+ω2)2

ω2(b0−b1a0)

(a2
0+ω2)2 − b1ω2+b0a0

(a2
0+ω2)2

b2
1ω2+b2

0
(a2

0+ω2)2

 (16)

Note that in the frequency domain, the role of the probability measure is played by
the power spectral density function Φ. Therefore, Φ is the design measure (or design), ξ,
that we call in the context of design of experiments.

We define by Ξ the set of non-decreasing, continuous design measures of bounded
variation, corresponding to input power spectral density functions, that is,

Ξ =

{
Φ :

∫ ωE

ωI

Φ(ω)dω = 1
}

(17)

The design can be limited to a finite range [ωI , ωE], where ωI and ωE are the lowest and
highest angular frequencies, respectively, at which impedance has been measured. This
frequency range will be the design space χ.

3. Construction of D-Optimal Input Signals

Among a set of designs, it is not easy to decide which is “the best” of them. Therefore,
we need to choose a criterion, a scalar measure of the FIM, Ψ :M(Ξ) −→ R∪ {∞}, called
optimality criterion, that helps us to find the best design. The choice will depend on the
interests sought by conducting the experiment. A design that minimizes Ψ over all the
designs on χ is called an optimum design, that is

Φ∗ = arg min
Φ∈Ξ

Ψ[M(Φ)] (18)

The most popular criterion is D-optimality. This criterion consists of minimizing the
volume of the confidence ellipsoid of estimators of the parameters of the model, i.e., it
maximizes the determinant of the FIM. For a given θ(0), D-optimality is defined by the
criterion function:

ΨD[M(Φ)] = [det M(Φ)]−
1
k (19)

When an optimal design is sought among all approximate designs on the design space
and the design criterion is convex, it can be checked the optimality of a particular design
using the celebrated General Equivalence Theorem (GET) [24]. If the criterion function, Ψ,
is differentiable the GET has a friendly version. Thus, a design Φ∗D is ΨD-optimum if and
only if ∀ω ∈ χ, the dispersion function

d(ω, Φ∗D) = ∇θZ(ω)H M−1(Φ∗D)∇θZ(ω) = Tr
[
M−1(Φ∗D)M̃(ω, θ)

]
(20)

achieves its maximum values at the support points. In particular, for the D-optimum
criterion this condition proves the optimality of Φ∗D if and only if

d(ω, Φ∗D) ≤ k, ∀ω ∈ χ (21)

being k the number of the parameters of the model.
The GET allows us to check the optimality of a design, but it does not tell us how

to find it. However, this theorem is useful for building efficient algorithms that allow
computing optimal designs.

Another fundamental tool commonly used by the algorithmic techniques is the effi-
ciency of a design. This value is interpretated as the goodness of a design and is defined as
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E f fΨ(Φ) = Ψ[M(Φ)]/Ψ[M(Φ∗)], being Φ∗ the Ψ-optimal design. Thus the D-efficiency of
a design ΦD is computed as:

E f fD(ΦD) =

[
det M(ΦD)

det M(Φ∗D)

]− 1
k

(22)

If the criteron function has a homogeneity property, as in this case, there is a practical
statistical interpretation. Thus, if a design has 50 % efficiency, then half of the observations
with the optimal design will produce the same results with respect to the criterion function.
Although this quantity cannot be calculated when the optimal design is unknown, it is
possible to obtain lower limits of efficiency to make a stopping rule. An important bound
for the D-optimization criterion is the one proposed by Atwood [27]

E f fD(ΦD) ≥
k

maxω∈χ d(ω, ΦD)
(23)

Modified Algorithms

The search for analytical solutions for the problem of construction of optimal designs
turns out to be a difficult task and, in most of the real problems, it is not possible to calculate
analytically the designs under a certain criterion. There is a rich literature on numerical
computational algorithms proposed to obtain optimal designs under different scenarios.
In exact design problems, we do not have a convex optimization problem in general and, so,
finding optimal design is not an easy task because it is a discrete optimization problem and
there is no general analytical tool for confirming whether an exact design is optimal or not.
There are several numerical algorithms for finding optimal exact designs based on exchange
methods. In this paper, we proposed the Atkinson and Donev KL exchange algorithm [28]
to calculate exact D-optimal designs. The procedure starts with a non-singular random
design. Then, two sets of points are constructed from the dispersion function. One with K
“least promising” support points of the current design, for which exchanges are attempted.
The other one with L “most promising” candidate design points. Finally, it adds and deletes
observation points that lead to the greatest increase in the determinant of the FIM, under the
standard constraint of the required number of points and the maximum execution time of
the algorithm. Each exchange of improvement is executed immediately. Because this is
only a heuristic, it cannot be guaranteed to reach the global optimum, so it is convenient to
run the algorithm several times. The end result is the best design found in all runs.

For optimal approximate design problems, there are many analytic methods to con-
struct them. Due to the performance and the flexibility to be applied in a broad range of
problem structures and sizes, the randomized exchange algorithm (REX) [29] has been
considered in this work. The REX method, which is a simple batch-randomized exchange al-
gorithm, can be viewed as an efficient extension or combination of both the vertex exchange
method for D-optimality of Böhning [30] and the KL exchange algorithm. The procedure
begins with a random design of non-singular points and their respective proportions. Then,
a batch consisting of a pair of points is repeatedly selected: a random support point of the
current design, ωk, and a random design point, ωl , where optimal ratio exchanges between
these pairs are made. The batch selection depends on the dispersion function. The key to
making the optimal random exchanges of proportions between the selected batch is the
optimal step length value α∗k,l(ΦD) (see Appendix A in [29]), which gives the value to be
added or subtracted from the proportions of each observation point. Finally, it adds and
deletes observation points that lead to the largest increase in the efficiency bound. This
algorithm has a standard threshold constraint on the minimum design efficiency to stop
the computation. The limit used as the stopping rule is the Atwood limit (23).

These algorithms were adapted to involve complex variables. The matrix of Equation (13)
is given as input for both algorithms. We develop a complex type null matrix and then it
is completed by creating a loop, where each row of the complex null matrix is replaced
by the components of (13). Each row corresponds to a value of ω within χ previously
defined. Next, we adapt the definition of the single frequency FIM (see Equation (15)) and
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the dispersion function (20). Modified codes to adapt the algorithms to this case study can
be found in Appendix C.

The general procedure followed by these algorithms can be summarized as:

1. An initial design is chosen. In principle, it can be any arbitrary design, Φ(0)
D , such that

the criterion function for this design verifies [det M(Φ(0)
D )]−

1
k 6= 0.

2. A succession of designs Φ(1)
D , Φ(2)

D , . . . is obtained computationally in an iterative

way, where Φ(q+1)
D is calculated by slightly disturbing the previous design Φ(q)

D and

requiring that [det M(Φ(q+1)
D )]−

1
k 6= 0.

3. The process of generating the previous designs will end in the qth step after veri-

fying that the design Φ(q)
D obtained is close enough to the optimum according to a

stopping rule.

4. Real Applications

As mentioned earlier, biological tissues, cells, and ETIs can be characterized from
their electrical behaviour. Figure 2 shows a portion of tissue (group of similar cells) with
an implanted electrode. In general, the passive electrical behaviour of the tissue and
the ETI involve electrical capacitance (capacity to store charges) and resistance (ability
to oppose dc-current flow). Figure 2 also shows several basic EECs [1–4]. Intra- (pink
colour) and extracellular (blue colour) media are resistive parts (electrolyte solutions),
and thus are modelled by the resistances RI (Figure 2A) and RE (Figure 2B), respectively.
The passive electrical behaviour of a cell membrane (green colour) is described by a parallel
combination of a cell membrane capacitance CM and the membrane resistance RM (see
Figure 2C). A basic model of ETI is shown in the EEC of Figure 2D, that is, a double
layer capacitance CDL in parallel with the polarization resistance RP [1,3]. The EEC shown
in Figure 1A involves those of Figure 2C,D with an additional resistance R1. Moreover,
the impedance of the EEC of Figure 1A is equivalent to that proposed by Cole when the
biological tissue involves an ideal capacitance [2,4].

It should be mentioned that the optimal design of experiments is of great interest for
two main reasons: to obtain an optimal characterization of the process and to minimize the
measurement acquisition time.

Figure 2. Biological tissue and basic EECs for intra- (A), extracellular media (B), cell membrane (C),
and electrode-tissue interface (D).

4.1. Methods

The modified algorithms were applied to the circuit shown in Figure 1A. Let R1 = 100 Ω,
R2 = 106 Ω and C = 10−6 F the nominal values of the parameters and χ = [2π10−1, 2π10]
rad/s. For numerical study, we consider the frequency design space to be a set of grid
points spread equidistantly by 0.01.
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We have used the RStudio 1.3.1093 program to obtain the optimal designs. The Autolab
PGSTAT204 potentiostat/galvanostat (Figure 3A), equipped with the FRA32M module, was
used to perform the impedance measurements. The equipment, controlled by a computer
and NOVA electrochemistry software, is connected to a dummy cell containing the circuit
described above to perform the test (Figure 3B). We used sinusoidal current signals of 10−6

A peak amplitude.

Figure 3. Autolab PGSTAT potentiostat/galvanostat equipment (A) connected to the dummy cell
(B) containing the EEC.

The objective of this experimental test was to compare the efficiency of the classical
design commonly used by experimenters with the D-optimal designs obtained in the
adapted KL and REX algorithms. The classic design is based on measuring impedance at
certain frequencies equally spaced on a logarithmic scale. In particular

Φclassic = {2π10−1, 2π10−0.8, 2π10−0.6, . . . , 2π100.8, 2π10} (24)

where N = 11. For comparison purposes, the adapted KL algorithm was executed consid-
ering the same number of support points as the classic design (N = 11). In the case of the
REX algorithm, from a theoretical point of view, it is not necessary to set N. The algorithm
provides points and the proportions to be measured at those points. In order to be able to
compare the design obtained, the proportion was rounded to the nearest integer, that is,
if the design puts weight pi on ωi, i = 1, . . . , M and the total number of observations we
want is N = 11, then approximately N · pi observations will be taken at ωi, i = 1, . . . , M.

4.2. Results and Discussion

Figure 4 shows the Nyquist plot for the EEC of Figure 3B. Experimental impedance
data obtained for the frequencies of (24) draw a semicircle like that of Figure 1B. Subse-
quently, experimental data have been fitted to the EEC of Figure 1A and the values of its
parameters are given in Table 1.

In this experimental test, there was a prior knowledge of the EEC parameters with
a certain tolerance. In this case, the following initial values were considered to execute
the algorithms:

b1 = 10, b0 = 50500, a0 = 50 (25)

where R1 = 10 Ω, R2 = 1000 Ω and C = 20× 10−6 F. To avoid dependence on the value of
these parameters, a sequential approach was applied with the estimates obtained in the
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previous step. The stabilization of the process was fast (Table 1). Finally, the optimal design
obtained with the two algorithms was the following:

Φ∗D =

{
2π0.1 2π10

7 4

}
(26)

Figure 4. Nyquist plot obtained from the classic design.

Table 1. EEC parameters values estimated using the different optimal designs.

Design Iteration N R1, Ω R2, Ω C, F

Classic - 11 90.86 1.0103× 106 1.0750× 10−6

KL 1 11 263.9 1.0056× 106 1.0679× 10−6

KL 2 11 100.7 1.0061× 106 1.0745× 10−6

REX 1 11 99.62 1.0079× 106 1.0695× 10−6

The dispersion function (20), shown in Figure 5, reaches the maximums at the sup-
port points (that is, the extremes of the interval) and remains less than 3 (the number of
parameters) throughout the design space, so the design obtained is D-optimal.

Figure 5. Dispersion function for the D-optimal design for the EEC shown in Figure 1A. The abscissa
axis represents the logarithm of the frequency f ( f = ω/2π).
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Figure 6 illustrates the support points of the D-optimal designs obtained with N = 11
after executing the algorithms and the classic design. Table 2 shows the values of the
D-optimal criterion (19) for the designs obtained from REX, KL and classical. It is observed
that the values obtained with the algorithms are greater than the value obtained with
the classical design, therefore, the value of the D-optimal criterion has been maximized.
Optimal designs are an interesting tool to measure the value of an experimental design,
through efficiency. This efficiency is the percentage of observations that the optimal
design would need to achieve the precision of the experimental design being compared.
The efficiency (22) of the classic design is also presented in Table 2. This shows how the
same information can be obtained by reducing the number of experimental conditions by
using optimal inputs.

Figure 6. Support points of the D-optimal designs obtained by the adapted algorithms and the classic
design. The values on the points obtained with the algorithms (7 and 4) are the number of replicas of
each point.

Table 2. Criterion values.

Design ΨD[M(Φ∗
D)] E f fD(ΦD)

KL 2488.52
REX 2488.52

Classic 1632.01 0.65

Finally, a sensitivity study has been performed by analysing the fluctuations of the
efficiency values against the initial variations of the parameters. In particular, each initial
parameter was modified by ±20 % of the real values. The efficiencies of the designs
obtained have been calculated in relation to the 33 = 27 possible designs. For all cases,
as can be seen from Figure 7, the efficiency for both REX and the KL was never lower than
99.21 % and higher than 99.99 % for most variations.
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Figure 7. Efficiencies of the 27 possible designs.

5. Conclusions

This paper expands the existing tools to create optimal designs regarding SISO LTI
systems in the context of electrical impedance measurements, based on the frequency
domain description of an input signal. We have considered the most used optimization
criterion, D-optimality. Two algorithms (KL and REX) were modified to calculate D-
optimal designs and estimate the parameters of the EEC describing the electrical behaviour
of bioelectrodes, cell membranes, or biological tissues. We have checked that the efficiency
remains high for different initial values of the parameters. The estimation of the parameters
has also been discussed. The application of a sequential approximation with the estimates
obtained by means of least squares stabilize the process quickly. We have calculated the
D-optimal designs with the same number of points as those of the classical design to obtain
an efficiency comparison. It has been seen that optimal designs computed may save 35% of
the observations to get the same results as the classic design.

The generation of new results for the design of optimal input signals in impedance
models is very useful both in the characterization of biological tissues and the electrode–
tissue interface. Specifically, the KL exchange and random exchange REX algorithms that
we have adapted are a good option to be used by experimenters to obtain a good estimate
of the parameters with lower time-consuming.
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Appendix A. Obtaining the Differential Equation

Kirchhoff’s current law provides

i(t) = iC(t) + iR2(t) (A1)

Applying Kirchhoff’s voltage law, we obtain

vC(t) = v(t)− vR1(t) (A2)

As shown in Figure 1A, C and R2 are in parallel, and therefore have the same voltage
vC(t). Using the characteristic equations of the elements

vC(t) = R2iR2(t) (A3)

vR1(t) = R1i(t) (A4)

iC(t) = C
dvC(t)

dt
(A5)

Using the Equations (A3) and (A5) in Equation (A1), we obtain

i(t) = C
dvC(t)

dt
+

vC(t)
R2

(A6)

And, using Equations (A2) and (A4) in Equation (A6), we obtain

i(t) = C
dv(t)

dt
− CR1

di(t)
dt

+
v(t)
R2
− R1

R2
i(t) (A7)

Finally, dividing both members by C and rearranging we arrive at the ODE:

dv(t)
dt

+
1

R2C
v(t) = R1

di(t)
dt

+
R1 + R2

R2C
i(t), t ∈ [0, T] (A8)

Appendix B. Fisher Information Matrix of a LTI System

Appendix B.1. Time Domain

The impulse response fully characterizes LTI systems and allows the output of an LTI
system to be calculated against any input. As indicated above, an LTI circuit, with input i(t)
and output v(t), can be described by an ODE with constant coefficients (see Equation (1)).
The output v(t) of the continuous LTI system is given by a convolution integral:

v(t) = z(t) ∗ i(t) =
∫ +∞

−∞
z(t− τ)i(τ)dτ (A9)

where z(t) is the voltage response to a unit-impulse current at the input. Therefore, taking
into account that the FIM for a non-linear model has the form

M(i(t), θ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
∇θz(t− τ, θ)∇T

θ z(t− ν, θ)i(τ)i(ν)dτ dν dt

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
∇θz(τ, θ)∇T

θ z(ν, θ) i(t− τ)i(t− ν)︸ ︷︷ ︸
(?)

dτ dν dt
(A10)

The function (?) will be needed for the next subsection.

Appendix B.2. Frequency Domain

Assuming that i(t) is a time stationary process (the value of the covariance between
two periods depends only on the distance between these two periods of time) and applying
the limit to the function (?), we obtain the next
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lim
T→∞

1
2T

∫ T

−T
i(t− τ)i(t− ν)dt = lim

T→∞

1
2T

∫ T

−T
i(t)i(t + τ − ν) = Ri(τ − ν) (A11)

where the time period is t− ν− (t− τ) = τ − ν and Ri is the autocorrelation function of
the signal i(t).

The normalized FIM is defined as

M(Ri(τ)) = lim
T→∞

1
2T

M(i(t), θ)

= lim
T→∞

1
2T

∫ T

−T

∫ T

−T

∫ T

−T
∇θz(τ, θ)∇T

θ z(ν, θ)i(t− τ)i(t− ν)dτ dν dt

=
∫ ∞

−∞

∫ ∞

−∞
∇θz(τ, θ)∇T

θ z(ν, θ) lim
T→∞

1
2T

[ ∫ T

−T
i(t− τ)i(t− ν)dt

]
dτdν

=
∫ ∞

−∞

∫ ∞

−∞
∇θz(τ, θ)∇T

θ z(ν, θ)Ri(τ − ν) dτ dν

(A12)

The Wiener–Khinchin theorem establishes a relationship between the autocorrelation
function of a signal and its power spectral density function, that is, the Fourier transform
of the autocorrelation function Ri(τ) of a time stationary process is the function spectral
density Φ(ω) (F [Ri](ω) = Φ(ω)). Therefore, by Parseval’s Theorem, we find that the FIM
in the frequency domain is given by

M(F [Ri]) ≡
Notation

M(Φ) =
1

2π

∫ ∞

−∞
F
[
∇θz(τ, θ)

]
F
[
∇θz(ν, θ)

]
F (Ri(τ − ν))dω

=
1

2π

∫ ∞

−∞
<
{
∇θF

[
z(τ, θ)

]
∇θF

[
z(ν, θ)

]}
Φ(ω)dω

=
1

2π

∫ ∞

−∞
<
{
∇θZ(ω)∇θZ(ω)H

}
Φ(ω)dω

(A13)

where<{z} is the real part of the number z ∈ C,∇θ = ∂
∂θ and the superscript H denotes the

conjugate transpose operator. Indeed, the Fourier integral of z(τ, θ)z(ν, θ) is the function
Z(ω)Z(ω)H .

Appendix C. Modified Algorithm Codes

space <−seq ( 0 . 6 2 , 6 2 . 8 3 , by = 0 . 0 1 )
n <−length ( space )
m <−3
MATRIX_F <− matrix (0 ^ 1 i , n , m)

b1 <−100
b0 <−1000100
a0 <−1

j <−1
f o r ( i in space )
{
f <−funct ion ( x )
c ( complex ( r e a l =0 , imaginary=x )/ complex ( r e a l =a0 , imaginary=x ) ,
1/complex ( r e a l =a0 , imaginary=x ) ,
complex ( r e a l =b0 , imaginary=b1 * x )/
( complex ( r e a l =x , imaginary=−a0 ) ) ^ 2 )
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M_row <− f ( i )
MATRIX_F[ j , ] <− M_row
j <− j +1
}

Appendix C.1. REX

Modification of the FIM:

M <−( t ( s q r t (w. supp ) * Conj ( Fx . supp ) ) %*% ( s q r t (w. supp ) * Fx . supp ) )
M <−Re (M)

Modification of the dispersion function:

Mp <− matrix (NA, n , 1 )
f o r ( i in 1 : n ) {
Mpp <− Fx [ i , ] %*% t ( Conj ( Fx [ i , ] ) )
Mpp <− Re (Mpp)
Z <−solve (M+E ) %*% Mpp
t r a z a <−sum( diag (Z ) )
Mp[ i , ] <− t r a z a
}

Appendix C.2. KL

Modification of the FIM:

M1 <− t ( (w %*% one ) * F ) %*% Conj ( F )
M2 <− Re (M1)

Modification of the dispersion function:

H <− Conj ( F ) %*% solve (M2 + E )
H2 <− H * F
d . fun <− apply ( Re (H2) , 1 , sum)
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