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Functional magnetic resonance imaging (fMRI) technology is popularly
used in many fields for studying how the brain reacts to mental stimuli. The
identification of optimal fMRI experimental designs is crucial for rendering
precise statistical inference on brain functions, but research on this topic is
very lacking. We develop a general theory to guide the selection of fMRI
designs for estimating a hemodynamic response function (HRF) that models
the effect over time of the mental stimulus, and for studying the comparison
of two HRFs. We provide a useful connection between fMRI designs and
circulant biased weighing designs, establish the statistical optimality of some
well-known fMRI designs and identify several new classes of fMRI designs.
Construction methods of high-quality fMRI designs are also given.

1. Introduction. The present study concerns important issues on the design
of neuroimaging experiments where the pioneering functional magnetic resonance
imaging (fMRI) technology is employed to gain better knowledge on how our brain
reacts to mental stimuli. In such an fMRI study, a sequence of tens or hundreds
stimuli (e.g., images of 1.5-second flickering checkerboard) is presented to a hu-
man subject while an fMRI scanner repeatedly scans the subject’s brain to collect
data for making statistical inference about brain activity; see Lazar (2008) for an
overview of fMRI. The quality of such an inference largely hinges on the amount
of useful information contained in the data, which in turn depends on the selected
stimulus sequence (i.e., fMRI design). The importance of identifying high-quality
experimental designs for fMRI and gaining insights into these designs cannot be
overemphasized.

In a seminal work, Buračas and Boynton (2002) advocated the use of the maxi-
mal length linear feedback shift register sequences (or m-sequences) as fMRI de-
signs for a precise estimate of the hemodynamic response function (HRF); the
HRF models the effect over time of a brief stimulus on the relative concentration
of oxy- to deoxy-blood in the cerebral blood vessels at a brain voxel (3D im-
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age unit), and is often studied for gaining information about the underlying brain
activity evoked by the stimulus. The m-sequences have since then become very
popular in practice. They are also included as part of the “good” initial designs
in the computer algorithm of Kao et al. (2009) to facilitate the search of multi-
objective fMRI designs. The computational results of Buračas and Boynton (2002)
and Liu (2004) suggested that the m-sequences can yield high statistical efficien-
cies in terms of the A-optimality criterion; the A-criterion, which measures the av-
erage variance of parameter estimates, is a design selection criterion widely used
in many fields including fMRI [e.g., Dale (1999), Friston et al. (1999)]. By fo-
cusing on the D-optimality criterion, Kao (2014) proved the statistical optimality
of the binary m-sequences in estimating the HRF. As indicated there, the binary
m-sequences are special cases of the Hadamard sequences that can be generated
from a certain type of Hadamard matrices or difference sets (Section 2.3); all these
designs are D-optimal in the sense of minimizing the generalized variance of the
HRF parameter estimates. While these designs are expected to be A-optimal, there
unfortunately is no theoretical proof of this. One of our contributions here is to
address this void. We also identify some new classes of optimal fMRI designs for
the estimation of the HRF.

Another common study objective is on comparing HRFs of two stimulus types
(e.g., pictures of familiar vs. unfamiliar faces). Some computational results on
optimal fMRI designs for this study objective have been reported in Wager and
Nichols (2003), Liu (2004), Kao, Mandal and Stufken (2008), Kao et al. (2009)
and Maus et al. (2010). However, theoretical work on providing insightful knowl-
edge to guide the selection of designs is scarce. In their pioneering papers, Liu and
Frank (2004) and Maus et al. (2010) approximated the frequency of each stimu-
lus type that an A- or D-optimal fMRI design should possess. However, designs
attaining the optimal stimulus frequency can still be sub-optimal since the onset
times and presentation order of the stimuli play a vital role. Working on this re-
search line, Kao (2015) provided a sufficient condition for fMRI designs to be
universally optimal in the sense of Kiefer (1975), and proposed to construct opti-
mal designs for comparing two HRFs via an extended m-sequence (or de Bruijn
sequence), a Paley difference set or a circulant partial Hadamard matrix. A major
limitation of this recent contribution is that the proposed designs exist only when
the design length N is a multiple of 4. New developments on identifying optimal
fMRI designs for other practical N are called for.

We consider the two previously described design problems to target optimal
fMRI designs for the estimation of the HRF of a stimulus type and for the compar-
ison of two HRFs. Our main idea for tackling these design issues is by formulating
them into circulant biased weighing design problems. With this approach, we are
able to prove that the Hadamard sequences are optimal in terms of a large class of
optimality criteria that include both A- and D-criteria. This holds as long as the
design length N(= 4t − 1 for a positive integer t) of such a design is sufficiently
greater than the number of the HRF parameters, K . For given K , a lower bound of
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N for the design to be both A- and D-optimal is also derived. This bound is easily
satisfied in typical fMRI experiments. In addition, we adapt and extend previous
results on (biased) weighing designs to identify some optimal fMRI designs for
estimating the HRF when N = 4t and N = 4t + 1. These results are further ex-
tended to cases where the study objective is on the comparison of two HRFs. We
note that the designs that we present here exist in many design lengths for which
optimal fMRI are hitherto unidentified. These designs can be applied in practice
or serve as benchmarks to evaluate other designs; they help to enlarge the library
of high-quality fMRI designs.

The remainder of the paper is organized as follows. In Section 2, we provide
relevant background information and present our main results on optimal fMRI
designs for estimating the HRF. Our results on optimal fMRI designs for the com-
parison of two HRFs are in Section 3, and a conclusion is in Section 4. Some
proofs of our results are presented in the Appendix.

2. Designs for estimating the HRF.

2.1. Statistical model and design selection criteria. Consider an fMRI study
where a mental stimulus such as a 1.5-second flickering checkerboard image
[Boynton et al. (1996), Miezin et al. (2000)] or a painful heat stimulus [Worsley
et al. (2002)] is presented/applied to a subject at some of the N time points in
the experiment. Let yn be the measurement of a brain voxel collected by an fMRI
scanner at the nth time point, n = 1, . . . ,N . We consider the following statistical
model:

yn = γ + xnh1 + xn−1h2 + · · · + xn−K+1hK + εn, n = 1, . . . ,N.(2.1)

Here, γ is a nuisance parameter, h1 represents the unknown height of the hemody-
namic response function, HRF, at the stimulus onset time point and hk is the HRF
height at the (k − 1)th time point following the stimulus onset. The pre-specified
integer K is such that the HRF becomes negligible after K time points. The value
of xn−k+1 in model (2.1) is set to 1 if hk contributes to yn and xn−k+1 = 0 other-
wise, and εn is noise.

Our first design goal is to find an fMRI design, d = (d1, . . . , dN)T , that al-
lows the most precise least-squares estimate of the HRF parameter vector, h =
(h1, . . . , hK)T ; here, dn = 1 when a stimulus appears at the nth time point and
dn = 0 indicates no stimulus presentation at that time point, n = 1, . . . ,N . For
simplicity, we adopt the following assumptions from previous studies [Kao (2013)
and references therein]; see also Kao (2014, 2015) for discussions on these as-
sumptions. First, the last K − 1 elements of d are also presented in the pre-
scanning period, that is, before the collection of y1. With this assumption, the
value of xn in model (2.1) is dn for n = 1, . . . ,N , and xn = dN+n for n ≤ 0. In
addition, while additional nuisance terms may be included in the model at the
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analysis stage to, say, allow for a trend/drift of y = (y1, . . . , yN)T , we do not as-
sume this extra complication when deriving our analytical results on identifying
optimal designs. We also consider independent noise, but our results remain true
when cov(ε) = αIN + βjTN + jNβT , where ε = (ε1, . . . , εN)T , α is a constant, β
is a constant vector, IN is the identity matrix of order N , and jN is the vector of N

ones; see also Kushner (1997). Other correlation structures of ε such as an autore-
gressive process may be considered, and is a focus of our future study. We now
rewrite model (2.1) in the following matrix form:

y = γ jN + Xdh + ε,(2.2)

where Xd = [d,Ud, . . . ,UK−1d], and

U =
[

0T
N−1 1

IN−1 0N−1

]
.(2.3)

The information matrix for h is Mb(Xd) = XT
d (IN − N−1JN)Xd , where JN =

jN jTN . We also let M(Xd) = XT
d Xd . Our target is at a d ∈ D = {0,1}N that mini-

mizes some real function �{Mb(Xd)} of Mb(Xd). We consider the A-optimality
criterion, �A{M} = tr{M−1}/K for a positive definite M, and D-optimality cri-
terion, �D{M} = |M|−1/K . In addition, we adopt below some other notions of
optimality of designs and information matrices. Specifically, the universal opti-
mality described in Definition 2.1 is due to Kiefer (1975). The type 1 criteria
of Cheng (1978) with the version of Cheng (2014), the �p-optimality criteria
of Kiefer (1974) for p ≥ 0, and the (M,S)-optimality [Eccleston and Hedayat
(1974)] are also considered. Throughout this work, we set the criterion value to
+∞ for designs with a singular information matrix.

DEFINITION 2.1. A design d is said to be universally optimal over a design
class if it minimizes �{Mb(Xd)} for all convex functions � such that (i) �{cM} is
nonincreasing in c > 0 and (ii) �(PMPT ) = φ(M) for any M and any orthogonal
matrix P.

DEFINITION 2.2. A design d is said to be optimal over a design class
with respect to all the type 1 criteria if it minimizes �(f ){Mb(Xd)} =∑K

i=1 f (λi(Mb(Xd))) for any real-valued function f defined on [0,∞) such that
(i) f is continuously differentiable in (0,∞) with f ′ < 0, f ′′ > 0, and f ′′′ < 0 and
(ii) limx→0+ f (x) = f (0) = ∞. Here λi(Mb(Xd)) is the ith greatest eigenvalue of
Mb(Xd), i = 1, . . . ,K .

DEFINITION 2.3. A design d is said to be �p-optimal over a design class for
a given p ≥ 0 if it minimizes

�p

{
Mb(Xd)

} =

⎧⎪⎪⎨
⎪⎪⎩

∣∣Mb(Xd)
∣∣−1/K

, for p = 0;[
tr

{
M−p

b (Xd)
}
/K

]1/p
, for p ∈ (0,∞);

λ1
(
M−1

b (Xd)
)
, when p = ∞,
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where λi(Mb(Xd)) is defined as in Definition 2.2.

DEFINITION 2.4. A matrix M∗ is said to be (M,S)-optimal over a class M of
nonnegative definite matrices if (i) tr{M∗} = maxM∈M tr{M}, and (ii) tr{(M∗)2} =
minM∈Mm tr{M2}, where Mm ⊂ M consists of all the matrices having the same
trace as M∗.

Furthermore, we only consider optimality criteria � such that

if �(M1) ≤ �(M2), then �(cM1) ≤ �(cM2) for all c > 0.(2.4)

2.2. Circulant biased weighing designs. Our strategy for finding optimal
fMRI designs is by taking advantage of the link between these designs and circu-
lant biased weighing designs. A biased weighing design problem concerns the se-
lection of a design for efficient estimation of the weights of K objects in N weigh-
ings on a spring/chemical balance that has an unknown systematic bias. A spring
balance weighing design (SBWD) is specified by a W ∈ {0,1}N×K , where the
(n, k)th element of W indicates that the kth object is placed on the balance (1),
or absent (0) in the nth weighing. Such a design is called circulant if W is a
circulant matrix. The information matrix Mb(W) for the K weights is equal to
WT (IN − N−1JN)W. For each fMRI design d, the matrix Xd clearly defines a
circulant SBWD. Thus, the fMRI design issue formulated earlier is a sub-problem
of the optimal SBWD problem: selecting an optimal design among circulant SB-
WDs.

A chemical balance weighing design (CBWD) is specified by a W̄ ∈ {−1,0,

1}N×K , where the (n, k)th element of W̄ indicates that the kth object is placed on
the left pan (−1), right pan (+1), or absent (0) in the nth weighing. Each SBWD
matrix W can be transformed into a CBWD matrix W̃ via W̃ = ±(JN,K − 2W),
where JN,K = jN jTK ; that is, 0 and 1 are replaced by 1 and −1, or −1 and 1,
respectively. Given an fMRI design d ∈ D, let d̃ = ±(jN − 2d) and X

d̃
=

[d̃,Ud̃, . . . ,UK−1d̃], where U is defined as in (2.3); then, d̃ ∈ D̃ = {−1,1}N , and
X

d̃
is a circulant CBWD matrix. Specifically, if we write Xd as W, then X

d̃
= W̃.

Cheng (2014) showed that

Mb(W) = 1
4Mb(W̃) for all W ∈ {0,1}N×K.(2.5)

We thus have the following result.

LEMMA 2.1. For any � satisfying (2.4) and any W1,W2 ∈ {0,1}N×K ,
�(Mb(W1)) ≤ �(Mb(W2)) if and only if �(Mb(W̃1)) ≤ �(Mb(W̃2)). There-
fore, an fMRI design d∗ ∈ D is �-optimal for estimating the HRF if and only if

�
{
Mb(Xd̃∗)

} = min
d̃∈D̃

�
{
Mb(Xd̃

)
}

where d̃∗ = ±(
jN − 2d∗)

.
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Lemma 2.1 reduces the problem of finding optimal fMRI designs for estimating
an HRF to that of identifying optimal biased circulant CBWDs without zero en-
tries. In Section 3, we establish the connection of optimal designs for comparing
two HRFs to that of optimal biased circulant CBWDs allowing zero entries.

2.3. Main results. Following Lemma 2.1, we tackle our first fMRI design is-
sue by working on circulant CBWDs (Xd̃

for d̃ ∈ D̃) that contain no zero. We have
the following result for such CBWDs.

LEMMA 2.2. For d̃ ∈ D̃, M(X
d̃
) = XT

d̃
X

d̃
has diagonal elements equal to N

and off-diagonal elements congruent to N modulo 4. When N is odd, Mb(Xd̃
) 


M(X
d̃
) − N−1JK and the equality holds if jTN d̃ = ±1; here, 
 is the Löwner or-

dering, that is, M1 
 M2 if M2 − M1 is nonnegative definite.

PROOF. All the diagonal elements of M(X
d̃
) are clearly d̃T d̃ = N . In addition,

for q, r ∈ {−1,+1}, let n
(rq)
k be the number of times (d̃n−k, d̃n) = (q, r), where d̃n

is the nth element of d̃ for n = 1, . . . ,N , and d̃n is set to d̃N+n when n ≤ 0. We
have, for any i �= j and k = |i − j |, the (i, j)th element of M(X

d̃
) is n

(++)
k +

n
(−−)
k − (n

(+−)
k + n

(−+)
k ) = N − 4n

(−+)
k , and is thus congruent to N modulo 4.

Note that the above equality is a consequence of the fact that X
d̃

is a circulant
matrix. Moreover, Mb(Xd̃

) = M(X
d̃
) − a2N−1JK , where a = jTN d̃ with a2 ≥ 1 if

N is odd. Thus, M(X
d̃
) − N−1JK − Mb(Xd̃

) = (a2 − 1)N−1JK , and our claim
follows. �

We now provide some results for obtaining optimal circulant biased CBWDs
with no zero, and hence, optimal fMRI designs for estimating the HRF. For cases
with N = 4t − 1 (≥ 4), the following lemma due to Cheng (1992) is useful.

LEMMA 2.3. Let MN be a set of K-by-K symmetric and nonnegative def-
inite matrices, MN

m ⊂ MN be the set of matrices that have the maximum trace
over MN , and MN

ms be the set of M that minimize tr(M2) over MN
m . Sup-

pose AN = maxM∈MN tr{M} and BN = minM∈MN
m

tr{M2} are such that (a)

limN→∞ AN = ∞, and (b) for some L > 0, |BN − K−1A2
N | ≤ L for all N . In

addition, let λi(M) be as in Definition 2.2, and �(g){M} = ∑K
i=1 g(λi(M)) for a

real-function g satisfying the following two conditions: (i) g is thrice continuously
differentiable in a neighborhood of 1 with g′(1) < 0 and g′′(1) > 0 and (ii) for any
c > 0, there are constants α(c) > 0 and β(c) such that g(cx) = α(c)g(x) + β(c)

for all x. Then there exists an N0(K,g) such that whenever N ≥ N0(K,g), for any
M∗ ∈ MN

ms , we have �(g){M∗} < �(g){M} for all M /∈ MN
ms .
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We note that when g(x) = − logx, �(g) is equivalent to the D-criterion, or
equivalently, the �p-criterion in Definition 2.3 with p = 0. This and the other �p-
criteria satisfy conditions (i) and (ii) in Lemma 2.3; see also Cheng (1992). We thus
have the following result on �p-optimal circulant biased CBWDs and �p-optimal
fMRI designs for N = 4t − 1.

THEOREM 2.1. Let N = 4t − 1, p0 > 0, and d̃∗ ∈ D̃ be such that Mb(Xd̃∗) =
(N + 1)[IK − N−1JK ]. Then there exists an N0(K,p0) such that, whenever N ≥
N0(K,p0), d̃∗ is �p-optimal over D̃, and d∗ = (jN ± d̃∗)/2 is �p-optimal over
D for any p ∈ [0,p0].

PROOF. We first work on M(X
d̃
)−N−1JK for d̃ ∈ D̃. Following Lemma 2.2,

the diagonal elements of M(X
d̃
) − N−1JK are Nb = N − N−1, and the (i, j)th

element of this matrix is (ci,j − N−1) with ci,j = 3(mod 4) for i �= j . Thus,
tr{[M(X

d̃
) − N−1JK ]2} is minimized when ci,j = −1 for all i �= j . This implies

the (M,S)-optimality of M(X
d̃∗)−N−1JK over M̃b = {M(X

d̃
)−N−1JK |d̃ ∈ D̃}.

In addition, it can be seen that AN = KNb, and BN = KN2
b + (1 + N−1)2K(K −

1), where AN and BN are defined as in Lemma 2.3. Therefore, limN→∞ AN =
∞, and |BN − K−1A2

N | = |KN2
b + (1 + N−1)2K(K − 1) − KN2

b | = (1 +
N−1)2K(K − 1) is bounded above by a positive number for all N . Following
Lemmas 2.2, and 2.3, we then have, when N ≥ N0(K,p0) for some N0(K,p0),

�p0

{
Mb(Xd̃∗)

} = �p0

{
M(X

d̃∗) − N−1JK

}
≤ �p0

{
M(X

d̃
) − N−1JK

} ≤ �p0

{
Mb(Xd̃

)
}

for any d̃ ∈ D̃; here �p0 is defined as in Definition 2.3. The �p-optimality of d̃∗
over D̃ for p ∈ [0,p0] then follows from Corollary 3.3 of Cheng (1987) and the
fact that Mb(Xd̃∗) has two eigenvalues, with the smaller one having multiplicity 1.
Moreover, with Lemma 2.1, we obtain the �p-optimality of d∗ over D. �

In Theorem 2.2, we provide an N0(K,1) for a design to be �1-optimal (i.e.,
A-optimal). Our approach for deriving this bound for N is analogous to that of
Galil and Kiefer (1980), and Sathe and Shenoy (1989). A proof is provided in the
Appendix.

THEOREM 2.2. Consider the same conditions as in Theorem 2.1. Let N0(K,

1) be the greatest real root of the cubic function c(x) = 2x3 + (10 − 7K)x2 +
2(2K − 5)(K − 1)x + 4K2 − 7K . If K ≥ 4 and N ≥ N0(K,1), then d̃∗ is �p-
optimal over D̃, and d∗ is �p-optimal over D for 0 ≤ p ≤ 1.

Recently, Kao (2014) studied the efficiency of Hadamard sequences, dH , in es-
timating h of model (2.2). A Hadamard sequence is a binary sequence constructed
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from a normalized Hadamard matrix H ∈ {−1,1}(N+1)×(N+1) that contains a cir-
culant core H̃. Such an H is such that HHT = (N +1)IN+1, the elements of its first
row and column are all 1, and the bottom-right N -by-N sub-matrix H̃ is a circulant
matrix. These Hadamard matrices are known to exist when N is a prime, a product
of twin primes, or 2r − 1 for an integer r > 1. They can be easily generated by,
for example, the Paley, Singer, or twin prime power difference sets [Golomb and
Gong (2005), Horadam (2007)]. Any column of the circulant core H̃ is a vertex,
d̃H , of the hypercube D̃ = {−1,1}N , and dH = (jN − d̃H)/2 forms a Hadamard
sequence. The popularly used binary m-sequences [Buračas and Boynton (2002)]
can be constructed by the same method when N = 2r − 1, and are thus special
cases of dH . The dH has design length N = 4t − 1 for some integer t , and our re-
sults can be applied to establish the A- and D-optimality of these designs as stated
in the following corollary.

COROLLARY 2.1. A Hadamard sequences dH of length N is A- and D-
optimal for estimating the HRF if K ≥ 4 and N ≥ N0(K,1). Here, N0(K,1) is
defined as in Theorem 2.2.

PROOF. For dH , let d̃H = jN − 2dH . Then it can be seen from the construc-
tion of dH that X

d̃H
is a ciruclant matrix consisting of K distinct columns of

the circulant core of a normalized Hadamard matrix. Consequently, Mb(Xd̃H
) =

(N +1)[IK −N−1JK ]. Our claim then follows from Lemma 2.1 and Theorem 2.2.
�

Our results so far are for cases with N = 4t − 1. For N = 4t , if there exists a d̃
with Mb(Xd̃

) = NIK , then d̃ is universally optimal over D̃, and the corresponding

d = (jN ± d̃)/2 is universally optimal in estimating the HRF over all fMRI designs.
This fact follows directly from Proposition 1′ of Kiefer (1975). We note that d̃ is
universally optimal whenever the columns of X

d̃
are pairwise orthogonal, and are

all orthogonal to jN . The transpose of such a matrix X
d̃

is called a circulant partial
Hadamard matrix by Craigen et al. (2013). Clearly, the corresponding Xd with d =
(jN ± d̃)/2 forms a two-symbol, N -run, K-factor circulant orthogonal array (OA)
whose strength is ≥ 2; see Hedayat, Sloane and Stufken (1999) for an overview
of OAs. A circulant partial Hadamard matrix, and thus a circulant OA, can be
obtained by a computer search [Lin, Phoa and Kao (2014), Low et al. (2005)].
Here, we provide a systematic method for constructing a universally optimal d.

THEOREM 2.3. Let d1,g,H ∈ D be obtained by inserting a 0 to a run of g 0’s
in a Hadamard sequence dH . If K ≤ g + 1, then d1,g,H is universally optimal for
estimating h of model (2.2).

PROOF. Without loss of generality, we assume that a run of g 0’s appears in
the tail of dH , and d1,g,H is obtained by adding a 0 to this run of 0’s. Suppose
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K ≤ q + 1, and d̃1,g,H = jN − 2d1,g,H . It can be seen that X
d̃1,g,H

is an N -by-
K circulant orthogonal array whose columns are some K distinct columns of a
Hadamard matrix. �

For N = 4t + 1, Theorem 4.1 of Cheng (2014) provides a guidance on the se-
lection of �(f )-optimal biased CBWDs for any type 1 criterion �(f ). We describe
this result in Lemma 2.5 with our notation. It is interesting to note that, under
our setting, a simple alternative proof of Lemma 2.5 can be achieved by utilizing
Theorem 2.1 of Cheng (1980) that is slightly rephrased in Lemma 2.4 below.

LEMMA 2.4. Let M∗ be a symmetric matrix with eigenvalues λ1(M∗) >

λ2(M∗) = λ3(M∗) = · · · = λK(M∗) > 0 and M be a set of nonnegative definite
symmetric matrices. If the following conditions are satisfied, then �(f ){M∗} ≤
�(f ){M} for any M ∈ M and any type 1 criterion �(f ):

(a) tr{M∗} ≥ tr{M} for any M ∈ M;

(b) for any M ∈ M, tr{M∗} −
√

[K/(K − 1)][tr{(M∗)2} − (tr{M∗})2/K] ≥
tr{M} −

√
[K/(K − 1)][tr{M2} − (tr{M})2/K].

Note that since the condition limx→0+ f (x) = f (0) = ∞ is required in Defi-
nition 2.2, there is no need to verify (2.2) in Theorem 2.1 of Cheng (1980); see
Theorem 2.3 of Cheng (1978).

LEMMA 2.5. Let N = 4t + 1, and d̃∗ ∈ D̃ be such that Mb(Xd̃∗) = (N −
1)[IK + N−1JK ]. Then d̃∗ is optimal over D̃, and d∗ = (jN ± d̃∗)/2 is optimal for
estimating the HRF in terms of any type 1 criterion.

PROOF. From Lemma 2.2, we have that the diagonal elements of M(X
d̃
) =

XT

d̃
X

d̃
are N , and the off-diagonal elements are congruent to 1 modulo 4. In ad-

dition, Mb(Xd̃
) 
 M(X

d̃
) − N−1JK , and the equality holds when jTN d̃ = ±1. It

can then be easily seen that M(X
d̃∗) − N−1JK is (M,S)-optimal over M̃b =

{M(X
d̃
) − N−1JK |d̃ ∈ D̃}, and conditions (a) and (b) in Lemma 2.4 are sat-

isfied if we replace M∗, M and M there by M(X
d̃∗) − N−1JK , M(X

d̃
) −

N−1JK , and M̃b, respectively. Consequently, for any type 1 criterion �(f ), we
have �(f ){Mb(Xd̃∗)} = �(f ){M(X

d̃∗) − N−1JK} ≤ �(f ){M(X
d̃
) − N−1JK} ≤

�(f ){Mb(Xd̃
)}. The optimality of d̃∗ thus follows. By (2.5), this argument also

applies to d∗. �

We now provide a systematic method for constructing optimal fMRI designs for
cases with N = 4t + 1, followed by an example on an application of our results in
this section.
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TABLE 1
A Hadamard sequence dH , and a d1,g,H for estimating h with K ≤ 9

N Design

dH 151 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 1 1
1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 1 1

d1,g,H 132 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0
0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 1
0 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

THEOREM 2.4. Let d2,g,H ∈ D be obtained by inserting two 0’s to a run of g

0’s in a Hadamard sequence dH . If K ≤ g + 1, then d2,g,H is optimal for estimat-
ing h of model (2.2) for all type 1 criteria.

PROOF. With a similar argument as in the proof of Theorem 2.3, we have
that, when K ≤ g + 1 and d̃2,g,H = jN − 2d2,g,H , Mb(Xd̃2,g,H

) = (N − 1)[IK +
N−1JK ]. Our claim then follows from Lemma 2.5. �

EXAMPLE 2.1. Consider an experiment where the stimulus can possibly oc-
cur every 4 seconds. Then N = 4(38) − 1 = 151 corresponds to a 10-minute ex-
periment and K = 9 corresponds to a 32-second HRF. A dH = (d1,H , . . . , dN,H )T

can be obtained by a Paley difference set [Paley (1933)]. This is to set dn,H = 0 if
(n − 1) ∈ {x2 (mod N)|x = 1, . . . , (N − 1)/2} and dn,H = 1, otherwise. The ob-
tained design dH is presented in Table 1. It is both A- and D-optimal for estimating
h of model (2.2) since N > N0(K,1) = 21.34.

Following Theorem 2.3, we may insert a 0 to the longest run of 0’s in the dH

presented in Table 1 to yield a universally optimal design. The resulting design
can accommodate a K ≤ 8. For K = 9, we obtain a universally optimal d1,g,H

by extending a dH of length N = 131. This d1,g,H is presented in Table 1. We
also obtain a d2,g,H by inserting another 0 into the longest run of 0’s in d1,g,H .
Following Theorem 2.4, this d2,g,H is optimal for any type 1 criterion in estimating
h with K ≤ 9.

It is noteworthy that, by replacing 0 and 1 with 1 and 2, respectively, the d1,g,H

in Table 1 is equivalent to the design of the same design length in Table 3.1 of Kao
(2015). The use of such a design whose elements are 1 or 2 is discussed in the next
section.
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3. Designs for contrasts between HRFs. We now consider optimal fMRI
experimental designs for studies where the objective is on comparing HRFs of two
stimulus types. For this situation, Kao (2015) presented some optimal designs for
N = 4t by considering the following extension of model (2.2):

y = γ jN + Xu,1h1 + Xu,2h2 + ε,(3.1)

where hq = (hq1, . . . , hqK)T is the vector of the K unknown HRF heights of the
qth-type stimulus, Xu,q is the 0-1 design matrix obtained from the selected fMRI
design u = (u1, . . . , uN)T with un ∈ {0,1,2}, q = 1,2, and the remaining terms
are as in (2.2). Specifically, un = q > 0 indicates that a stimulus of the qth type
appears at the nth time point, and un = 0 if no stimulus is present. In addition,
for q = 1,2, Xu,q = [δq,Uδq, . . . ,UK−1δq], where U is defined in (2.3), and the
nth element of δq is 1 if un = q , and is 0 otherwise. The main interest lies in
ζ = h1 − h2, and we may rewrite model (3.1) as

y = γ jN + Euη + Fuζ + ε,(3.2)

where Eu = (Xu,1 + Xu,2)/2, η = h1 + h2, Fu = (Xu,1 − Xu,2)/2, and all the
remaining terms are as in (3.1). The aim is thus at obtaining a design u ∈ {0,1,2}N
so that �{Mu} is minimized, where Mu = FT

u (IN − ω{[jN,Eu]})Fu and ω{A} is
the orthogonal projection matrix onto the space spanned by the columns of the
matrix A. The following lemma can be easily proved.

LEMMA 3.1. For a given design u ∈ {0,1,2}N , let d̄u = (d̄u,1, . . . , d̄u,N)T ∈
D̄ = {−1,0,1}N be defined as d̄u,n = 0, 1 and −1 when un = 0, 1 and 2, respec-
tively. Then

Mu 
 FT
u

(
IN − N−1JN

)
Fu = XT

d̄u

(
IN − N−1JN

)
Xd̄u

/4,

where Xd̄u
= [d̄u,Ud̄u, . . . ,UK−1d̄u], and U is as in (2.3). In addition, Mu =

XT
d̄u

(IN − N−1JN)Xd̄u
/4 if u contains no zero.

Our approach for obtaining optimal fMRI designs for comparing HRFs is by
working on the upper bound of Mu provided in Lemma 3.1. Specifically, we would
like to obtain a d̄u ∈ D̄, or equivalently a circulant CBWD Xd̄u

∈ {−1,0,1}N×K ,
that minimizes �{Mb(Xd̄u

)}. As pointed out at the end of Section 2.2, unlike the
case of estimating an HRF, here we also need to consider circulant CBWDs with
zero entries. If the obtained d̄u contains no zero, then the corresponding u is �-
optimal. To identify such a d̄u, we consider the following lemma. For convenience,
we omit the subscript of d̄u hereinafter, but its dependence on u should be clear.

LEMMA 3.2. Suppose d̄ ∈ D̄ contains r zeros, and jTN d̄ = a. We have the
following results:
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(i) If N = 4t − 1, and Mb(Xd̄ ) = (N + 1)[IK − N−1JK ], then a2 = 1, r = 0,
and M(Xd̄ ) = XT

d̄
Xd̄ = (N + 1)IK − JK .

(ii) If N = 4t + 1, and Mb(Xd̄ ) = (N − 1)[IK + N−1JK ], then a2 = 1, r = 0,
and M(Xd̄ ) = (N − 1)IK + JK .

PROOF. We work only on (i) here. A similar argument can be applied to
prove (ii). For (i), we have Mb(Xd̄ ) = M(Xd̄ ) − (a2/N)JK = (N + 1)[IK −
N−1JK ]. Since each diagonal element of M(Xd̄ ) is an integer that is not greater
than N , it can be seen that a2 ≤ 1. If a = 0, then XT

d̄
Xd̄ = (N + 1)[IK − N−1JK ].

This leads to a contradiction since the diagonal elements of the latter matrix are
(N + 1)(1 − N−1). Therefore, a2 = 1, M(Xd̄ ) = (N + 1)IK − JK and r = 0. �

The first main result in this section is an extension of Theorem 2.1. We note that
N̄0(K,p0) in Theorem 3.1 may not be the same as N0(K,p0) in Theorem 2.1.

THEOREM 3.1. Suppose d̄∗ ∈ D̄ is a vector with N = 4t − 1 elements, and
it satisfies Mb(Xd̄∗) = (N + 1)[IK − N−1JK ]. For any positive number p0, there
exists an N̄0(K,p0) such that, if N ≥ N̄0(K,p0), then d̄∗ is �p-optimal over D̄
for any p ∈ [0,p0].

PROOF. Let r be the number of zeros in d̄ ∈ D̄. It is clear that tr{M(Xd̄ ) −
N−1JK} = (N − r) − K/N is maximized when r = 0. With Lemma 3.2, we
can easily see that M(Xd̄∗) − N−1JK is (M,S)-optimal over M̄b = {M(Xd̄ ) −
N−1JK}. Following Lemma 2.3 and Corollary 3.3 of Cheng (1987), d̄∗ is �p-
optimal over D̄ for p ∈ [0,p0] when N ≥ N̄0(K,p0) for some N̄0(K,p0). �

An explicit lower bound N0(K,1) for the A-criterion was given in Theorem 2.2.
We show in the following theorem that one can take N̄0(K,1) = N0(K,1).

THEOREM 3.2. Let d̄∗ ∈ D̄, where N = 4t −1, be such that Mb(Xd̄∗) = (N +
1)[IK − N−1JK ]. If K ≥ 4 and N ≥ N0(K,1), where N0(K,1) is as given in
Theorem 2.2, then d̄∗ is A-optimal (and �p-optimal for all p ∈ [0,1]) over D̄.

PROOF. By Theorem 2.2, it is enough to show that if K ≥ 4 and N ≥
N0(K,1), then for any d̄ ∈ D̄ that has at least one zero entry, �1{Mb(Xd̄∗)} ≤
�1{Mb(Xd̄ )}. If d̄ ∈ D̄ has at least one zero entry, then each diagonal entry
of Mb(Xd̄ ) is at most N − 1; thus �1{Mb(Xd̄ )} ≥ K/(N − 1). On the other
hand, since Mb(Xd̄∗) = (N + 1)[IK − N−1JK ] has two distinct eigenvalues
N + 1 and (N + 1)(N − K)/N , with multiplicity K − 1 and 1, respectively,
we have �1{Mb(Xd̄∗)} = (K − 1)/(N + 1) + N/[(N + 1)(N − K)]. It follows
that �1{Mb(Xd̄∗)} ≤ �1{Mb(Xd̄ )} provided (K − 1)/(N + 1)+N/[(N + 1)(N −
K)] ≤ K/(N − 1). The latter is the same as N ≥ 2K − 1. Therefore, it remains to
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show that 2K − 1 ≤ N0(K,1). Since N0(K,1) is the greatest real root of the cubic
function c(x) = 2x3 + (10 − 7K)x2 + 2(2K − 5)(K − 1)x + 4K2 − 7K , c(x) > 0
for all x > N0(K,1). One can verify that c(2K − 1) < 0 when K ≥ 4. It follows
that in this case 2K − 1 < N0(K,1). �

For N = 4t , circulant OAs or equivalently circulant partial Hadamard matrices
described in Section 2.3 can be used to construct d̄∗ that has Mb(Xd̄∗) = NIK .
Such a d̄∗ can be easily seen to be universally optimal in D̄.

Theorem 3.3 below helps to identify some optimal d̄ for N = 4t + 1. For deriv-
ing this theorem, we again consider Lemmas 2.4 and 2.5.

THEOREM 3.3. For N = 4t + 1, let d̄∗ ∈ D̄ have Mb(Xd̄∗) = (N − 1)[IK +
N−1JK ]. Then, d̄∗ is optimal over D̄ for any type 1 criterion.

PROOF. Mb(Xd̄∗) has two nonzero eigenvalues, and the smaller eigenvalue
has multiplicity K − 1. It can also be seen that condition (a) in Lemma 2.4 is
satisfied by d̄∗. In addition, tr{Mb(Xd̄∗)} = K(N − N−1), and tr{M2

b(Xd̄∗)} −
(tr{Mb(Xd̄∗)})2/K = K(K − 1)(1 − N−1)2. Thus, condition (b) of Lemma 2.4
is satisfied if and only if

K
(
N − N−1) − Ad̄ ≥

√
K

K − 1

[(
1 − N−1)√

K(K − 1) −
√

Bd̄ − A2
d̄

K

]
(3.3)

for d̄ ∈ D̄, where Ad̄ = tr{Mb(Xd̄ )}, and Bd̄ = tr{M2
b(Xd̄ )}. Clearly, (3.3) holds

for the class of d̄ ∈ D̄ that satisfy Ad̄ ≤ K(N − N−1) − √
K/(K − 1)(1 −

N−1)
√

K(K − 1) = K(N − 1). Thus, all d̄’s in this class are outperformed by
d̄∗ with respect to any type 1 criterion. For any other d̄, let r be the number of
zeros in d̄ and a = jTN d̄. Then we have Ad̄ > K(N − 1), and (1 − r − a2/N) > 0
since Ad̄ = K[(N − r) − a2/N ]. Consequently, r = 0, and d̄ contains no zero.
Following Lemma 2.5, d̄∗ is also optimal over the class of designs with no zero for
any type 1 criterion. Our claim then follows. �

With these results, we can derive the following theorem for identifying some
optimal fMRI designs for studying contrasts between two HRFs.

THEOREM 3.4. Suppose dH is a Hadamard sequence, d1,g,H is defined as in
Theorem 2.3, d2,g,H is as in Theorem 2.4, and Mu is the information matrix for ζ
in model (3.2) for a design u ∈ {0,1,2}N . We have the following results:

(a) Suppose N = 4t − 1, and u∗ = jN + dH or u∗ = 2jN − dH . If p0 > 0, p ∈
[0,p0], and N ≥ N̄0(K,p0) for some N̄0(K,p0) > 0, then �p{Mu∗} ≤ �p{Mu}
for any u ∈ {0,1,2}N ; here, �p is defined as in Definition 2.3. For K ≥ 4, we can
take N̄0(K,1) to be the N0(K,1) given in Theorem 2.2.
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(b) Suppose N = 4t , and u∗ = jN +d1,g,H or u∗ = 2jN −d1,g,H . If K ≤ g +1,
and � is any criterion satisfying the conditions in Definition 2.1, then �{Mu∗} ≤
�{Mu} for any u ∈ {0,1,2}N .

(c) Suppose N = 4t + 1, and u∗ = jN + d2,g,H or u∗ = 2jN − d2,g,H . If K ≤
g +1, and �(f ) is any type 1 criterion defined in Definition 2.2, then �(f ){Mu∗} ≤
�(f ){Mu} for any u ∈ {0,1,2}N .

PROOF. For all the designs u∗ in (a), (b) and (c), we have Mu∗ = XT
d̄u∗ (IN −

N−1JN)Xd̄u∗ /4, where d̄u∗ is defined as in Lemma 3.1. When u∗ = jN + dH (or,

resp., u∗ = 2jN − dH ), we have Xd̄u∗ = Xd̄H
with d̄H = jN − 2dH (or, resp., d̄H =

2dH − jN ). We thus have that, if N ≥ N̄0(K,p0) and p ∈ [0,p0], then

�p{Mu∗} = �p

{
Mb(Xd̄H

)/4
} ≤ �p

{
Mb(Xd̄u

)/4
} ≤ �p{Mu}

for any u ∈ {0,1,2}N . This completes the proof for (a). Similar arguments can be
used to prove (b) and (c) and are omitted. �

4. Conclusion. Neuroimaging experiments utilizing the pioneering fMRI
technology are widely conducted in a variety of research fields for gaining better
knowledge about human brain functions. One of the key steps to ensure the success
of such an experiment is to judiciously select an optimal fMRI design. Existing
studies on obtaining optimal fMRI designs primarily focus on computational ap-
proaches. However, insightful analytical results, while important, are rather scarce
and scattered. To address this important issue, we conduct a systematic and ana-
lytical analysis to characterize some optimal fMRI designs for estimating the HRF
of a stimulus type and for comparing HRFs of two stimulus types. Under cer-
tain conditions, we show that the popularly used binary m-sequences as well as
the more general Hadamard sequences are optimal in some statistically meaning-
ful senses. We also identify several new classes of high-quality fMRI designs and
present systematic methods for constructing them. These designs exist in many de-
sign lengths where good fMRI designs have not been reported previously. There,
however, are many research challenges that need to be overcome. For example,
our results provide good designs for design lengths of N = 4t − 1, 4t and 4t + 1.
A future research of interest is on identifying optimal fMRI designs for cases with
N = 4t + 2. In addition, our experience indicates that the designs that we present
here remain quite efficient under some violations of model assumptions [cf. Kao
(2014)]. Nevertheless, it still is of interest to analytically study optimal designs
for other situations (e.g., with an autoregressive error process). Extending current
results to cases with a greater number of stimulus types is also a future research
of interest. Many research opportunities exist in this new and wide-open research
area.
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APPENDIX: A PROOF OF THEOREM 2.2

For N = 3 (mod 4) ≥ 4 and K ≥ 4, we consider the following set of K-by-K
nonnegative definite matrices:


N,K = {
EK = (

(eij )
)
i,j=1,...,K |eij = 3 (mod 4) ∀i, j, eii = N,EK � N−1JK

}
,

where EK � N−1JK indicates that EK − N−1JK is positive definite. With
Lemma 2.2, it can be seen that M(X

d̃
) ∈ 
N,K for any d̃ ∈ D̃ having a nonsingu-

lar Mb(Xd̃
). The idea for proving Theorem 2.2 is then to show that an EK ∈ 
N,K

minimizing tr{[EK − N−1JK ]−1} is similar (with some permutations of rows and
columns) to a block matrix B ∈ 
N,K to be defined in Definition A.1 below. We
also will show in Lemma A.3 that, when the condition in Theorem 2.2 is sat-
isfied, we have tr{[M(X

d̃∗) − N−1JK ]−1} = minB∈B tr{[B − N−1JK ]−1}, where
B ⊂ 
N,K is the set of all block matrices. With these facts and Lemma 2.2, we
have

�1
{
Mb(Xd̃∗)

}
= �1

{
M(X

d̃∗) − N−1JK

} = min
Ek∈
N,K

�1
{
EK − N−1JK

}
(A.1)

≤ min
d̃∈D̃

�1
{
M(X

d̃
) − N−1JK

} ≤ min
d̃∈D̃

�1
{
Mb(Xd̃

)
}
.

Our claim in Theorem 2.2 then follows from (A.1), and Corollary 3.3 of Cheng
(1987). This approach is similar to that of Sathe and Shenoy (1989), and Galil
and Kiefer (1980), where weighing designs under the unbiasedness assumption
are considered. We now present the details of our proof.

DEFINITION A.1. A block matrix B ∈ 
N,K is of the form

B =
m⊕

i=1

[
(N − 3)Iri + 4Jri

] − JK

for an integer m ∈ {1, . . . ,K} representing the number of “blocks.” Here,
⊕

is the
matrix direct sum, and r1, r2, . . . , rm are the block sizes of B that satisfy ri ≥ 1,
and

∑m
i=1 ri = K .

For these block matrices, the following result is an extension of Theorem 2.1(a)
of Masaro (1988) and equation (1.1) of Sathe and Shenoy (1989). Clearly, this
result also implies that tr{B−1

b } is invariant to a rearrangement of the block sizes
r1, . . . , rm, which facilitates the derivation of the subsequent results; here Bb =
B − N−1JK .
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LEMMA A.1. Let B ⊂ 
N,K be the set of all block matrices. Then for B ∈ B,
we have

tr
{
B−1

b

} =
m∑

i=1

L−1
i + K − m

N − 3
+

∑m
i=1 riL

−2
i

(1 + N−1)−1 − ∑m
i=1 riL

−1
i

(A.2)

= 1

4t

{
K −

m∑
i=1

ri

t + ri
+ t

∑m
i=1 ri/(t + ri)

2

4/(1 + N−1) − ∑m
i=1 ri/(t + ri)

}
,

where Li = N − 3 + 4ri , and t = (N − 3)/4 ≥ 1.

PROOF. Let Cri = (N −3)Iri +4Jri , we have Bb = ⊕m
i=1 Cri − (1+N−1)JK ,

and

B−1
b =

[
m⊕

i=1

Cri − (
1 + N−1)

jK j′K

]−1

=
m⊕

i=1

C−1
ri

+ (1 + N−1)[⊕m
i=1 C−1

ri
]jK j′K [⊕m

i=1 C−1
ri

]
1 − (1 + N−1)

∑m
i=1 jri C

−1
ri jri

.

The two equalities in (A.2) can then be derived by some simple algebra. �

The following lemma indicates that a block matrix minimizing the trace of
B−1

b = [B − N−1JK ]−1 can be found over a small subset of B [cf. Theorem 2.1(b)
of Masaro (1988)].

LEMMA A.2. Let Bs ⊂ B be the set of block matrices having blocks of only
one size or two contiguous sizes. Then

min
B∈Bs

tr
{
B−1

b

} = min
B∈B tr

{
B−1

b

}
.

PROOF. Among the block matrices that yield the minimum tr{B−1
b } over B,

let Bm be the one with the smallest number of blocks, m. Clearly, we only need
to consider cases where m ≥ 2. Without loss of generality (see also the statement
above Lemma A.1), we may assume that the first two block sizes r1 and r2 are,
respectively, the largest and the smallest block sizes among the m block sizes.
With Lemma A.1, we can then write tr{B−1

m,b} = [K + f (x)]/4t , where Bm,b =
Bm − N−1JK ,

f (x) = t[x/(t + x)2 + (r − x)/(t + r − x)2 + β]
4/(1 + N−1) − [x/(t + x) + (r − x)/(t + r − x) + α]
−

[
x

t + x
+ r − x

t + r − x
+ α

]
,
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r = r1 + r2, x = r1 (or r2) with 0 < x < r , α = ∑m
i=3 ri/(t + ri), and β =∑m

i=3 ri/(t + ri)
2. We note that this expression of tr{B−1

b } applies to any block
matrix, and that α = β = 0 for block matrices with two or fewer blocks. Since
the number of blocks of Bm is m ≥ 2, we have tr{B−1

m,b} < tr{B−1
b } for those block

matrices B with only one block; thus, f (x) < f (0) = f (r). With some simple
algebra similar to that of Masaro (1988), we also have

f (x) = h(y) = ay2 + b

cy2 + d
and f ′(x) = h′(y) = 2(ad − bc)y

(cy2 + d)2 ,

where y = x − 0.5r ∈ (−0.5r,0.5r), and a, b, c, d are some constants. Along with
the fact that f (x) < f (0) = f (r), and f is symmetric about 0.5r , the minimum of
f (x) occurs when x is the integer closest to 0.5r . Consequently, r1 = r2 when r is
even, and r1 = r2 + 1 when r is odd. �

With these results, we can now work on B0,s ⊂ Bs that consists of block ma-
trices having m(< K) block sizes with r1 − 1 = · · · = rv − 1 = rv+1 = · · · =
rm = r ≥ 1, and v ≥ 1. We note that, for any m0 ≥ 1 and r0 ≥ 2, a block matrix
having (m,v, r) = (m0,0, r0) can be treated as a block matrix with (m,v, r) =
(m0,m0, r0 − 1), and is thus in B0,s ; see also Sathe and Shenoy (1989). Conse-
quently, the only block matrix in Bs that is left out from B0,s is B∗ = (N + 1)IK −
JK , which has (m,v, r) = (K,0,1), or equivalently, (m,v, r) = (K,K,0). Under
the condition described in the following lemma, we have tr{(B∗ − N−1JK)−1} ≤
tr{(Bs − N−1JK)−1} for any other Bs ∈ Bs .

LEMMA A.3. Let B∗ = (N + 1)IK − JK , Bs ∈ B0,s be a previously described
block matrix, B∗

b = B∗ −N−1JK , Bs,b = Bs −N−1JK , and N0(K,1) be the great-
est real root of the cubic function c(x) = 2x3 + (10 − 7K)x2 + 2(2K − 5)(K −
1)x + 4K2 − 7K . If N ≥ N0(K,1), then

tr
{(

B∗
b

)−1} ≤ tr
{
B−1

s,b

}
.

PROOF. Let u = m − v, and B be obtained by replacing a block of size r + 1
in Bs with a block of size r and a block of size 1. From (A.2), we have

tr
{
B−1

s,b

} = K − m

N − 3
+ u − 1

L
+ v − 1

L + 4
+ (2L + 4)(1 + N−1)−1 − K

g(v)
,

where L = N −3+4r , and g(v) = 4v(r+1)+(L+4)ξ , and ξ = [L(1+N−1)−1−
K]. In addition,

tr
{
B−1

b

} = K − m − 1

N − 3
+ u

L
+ v − 2

L + 4
+ 1

N + 1

+ (2L + 4)(1 + N−1)−1 − K + 16r(r − 1)(N + 1)−2

g(v) − 4r(N + 1 + L)(N + 1)−1 .
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Since g(v) ≥ g(1), we have

tr
{
B−1

s,b − B−1
b

}

= 4r

L(N − 3)
+ (2L + 4)(1 + N−1)−1 − K

g(v)
+ 1

L + 4
− 1

N + 1

− (2L + 4)(1 + N−1)−1 − K + 16r(r − 1)(N + 1)−2

g(v) − 4r(N + 1 + L)(N + 1)−1

≥ 4r

L(N − 3)
+ (2L + 4)(1 + N−1)−1 − K

g(1)

− (2L + 4 − 4r)(1 + N−1)−1 − K

(N + 1)ξ − 4(r − 1)
= �(r).

The equality holds when v = 1. With some algebra, we have

�(r) = 8r(N + 12r − 11)(N + 1)−1c(N)

L(N − 3)[(N + 1)ξ − 4(r − 1)][(L + 4)ξ + 4(r + 1)]
+ 16r(r − 1)

× N2 − 7N + 12 − 8(1 + N−1)−1 + 16(r − 1)2N(3N − 1)(N + 1)−2

L(N − 3)[(N + 1)ξ − 4(r − 1)][(L + 4)ξ + 4(r + 1)]
+ 16r(r − 1)

× 4(r − 1)(N + 1)−1[(7N − K)(N − K) + 5(N2 − 1) + 8N ]
L(N − 3)[(N + 1)ξ − 4(r − 1)][(L + 4)ξ + 4(r + 1)] ,

where c(N) = 2N3 + (10 − 7K)N2 + 2(2K − 5)(K − 1)N + 4K2 − 7K . With
N = 3 (mod 4) ≥ 4 and K ≥ 4, it can be seen that, when N ≥ N0(K,1), we have
c(N) ≥ 0, �(r) > 0 for r > 1, and �(1) ≥ 0. Consequently, for a Bs , we either (i)
find a B /∈ Bs with tr{B−1

s,b} > tr{B−1
b }, or (ii) can keep splitting each block of size

r + 1 = 2 in Bs into two blocks of size 1 without increasing the objective function
(tr{B−1

b }). For the first case, Bs(�= B∗) is obviously not an optimal block matrix of
our interest. For the second case, we can continue the process until B = B∗. Our
claim thus follows. �

The results we have so far suggest that, under the condition of Lemma A.3,
B∗ = (N + 1)IK − JK minimizes tr{B−1

b } over all block matrices B. With the
following Lemma A.4, our proof of Theorem 2.2 is then complete.

LEMMA A.4. Let B∗ = (N + 1)IK − JK . If N ≥ N0(K,1) for the N0(K,1)

defined in Lemma A.3, then

tr
{(

B∗
b

)−1} = min
EK∈
N,K

tr
{[

EK − N−1JK

]−1}
.
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The proof of Lemma A.4 is lengthy, but otherwise is a simple extension of
that of Theorem 2.2 of Sathe and Shenoy (1989). The main idea is to show that
an E∗

K ∈ 
N,K minimizing tr{(E−1
b,K} is similar to a block matrix after some

permutations of rows and columns. Lemma A.4 then follows from Lemma A.3.
To that end, we need the following lemmas, which are extensions of results in
Sathe and Shenoy (1989). Lemma A.5 is a well-known result, and the proof
is omitted. We also use the following notation: E∗

K ∈ 
N,K is a matrix such
that tr{(E∗

b,K)−1} = minEK∈
N,K
tr{E−1

b,K}, Nb = N − N−1, 3b = 3 − N−1, cb =
c − N−1 for some c = 3 (mod 4), and μb,i = μi − N−1jK−2 and μb,j = μj −
N−1jK−2 for some μi and μj whose elements are congruent to 3 modulo 4. In

addition, ab,i,j = μT
b,iE

−1
b,K−2μ

T
b,j , bb,i,j = μT

b,iE
−2
b,K−2μ

T
b,j , Ab,i,j = Nb − ab,i,j ,

zb,i,j (cb) = cb − ab,i,j , and

fb,i,j (cb)
(A.3)

= (Ab,i,i + Ab,j,j ) + Ab,i,ibb,j,j + Ab,j,j bb,i,i − 2bb,i,j zb,i,j (cb)

Ab,i,iAb,j,j − z2
b,i,j (cb)

.

LEMMA A.5. Let E = ((Eij )) for i, j = 1,2 be a partitioned positive definite
matrix, where E11 and E22 are square matrices. We have

tr
{
E−1} = tr

{
E−1

22

} + tr
{
V

[
I + E12E−2

22 E21
]}

,

where V = (E11 − E12E−1
22 E21)

−1.

LEMMA A.6. tr{(E∗
b,K)−1} < tr{(E∗

b,K−1)
−1} + (N − 3)−1.

PROOF. For K = 2, tr{E−1
b,2} = 2Nb/(N

2
b − c2

b) is minimized when c = −1, or
equivalently, cb = −1 − N−1. Thus, tr{(E∗

b,2)
−1} − tr{(E∗

b,1)
−1} =

2Nb

N2
b − (1 + N−1)2

− Nb = N2 − 2N + 2

(N + 1)(N − 1)(N − 2)
<

1

N − 3
.

Suppose tr{(E∗
b,K−1)

−1} < tr{(E∗
b,K−2)

−1} + (N − 3)−1. We would like to show
that tr{(E∗

b,K)−1} < tr{(E∗
b,K−1)

−1} + (N − 3)−1. To that end, we write

E∗
b,K−1 =

[
Nb μT

b,j

μb,j Eb,K−2

]
.

With Lemma A.5 and the fact that E∗
b,K−1 is positive definite, we have bb,j,j > 0

and

A−1
b,j,j < A−1

b,j,j (1 + bb,j,j ) = tr
{(

E∗
b,K−1

)−1} − tr
{
E−1

b,K−2

}
≤ tr

{(
E∗

b,K−1
)−1} − tr

{(
E∗

b,K−2
)−1}

< (N − 3)−1.
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Thus, Ab,j,j = Nb − ab,j,j > N − 3, and this in turn implies zb,j,j (3b) = 3b −
ab,j,j > 0. Following this fact and some simple algebra, we can show that the
following matrix Eb,K(j), which is obtained by adding a row and a column to
E∗

b,K−1, is positive definite, and is thus in 
N,K :

Eb,K(j) =
⎡
⎢⎣

Nb 3b μT
b,j

3b Nb μT
b,j

μb,j μb,j Eb,K−2

⎤
⎥⎦ .

With Lemma A.5, we also have

tr
{
E−1

b,K(j)
} = tr

{
E−1

b,K−2

} + fb,j,j (3b)
(A.4)

= tr
{(

E∗
b,K−1

)−1} − A−1
b,j,j (1 + bb,j,j ) + fb,j,j (3b).

By noting that fb,j,j (3b) in (A.3) can be written as

fb,j,j (3b) = 2[zb,j,j (3b) + (N − 3)(1 + bb,j,j )]
(N − 3)(N − 3 + 2zb,j,j (3b))

,

we can show that fb,j,j (3b) − A−1
b,j,j (1 + bb,j,j ) < (N − 3)−1. The proof is then

completed by the fact that

tr
{(

E∗
b,K

)−1} ≤ tr
{
E−1

b,K(j)
} = tr

{(
E∗

b,K−1
)−1} + fb,j,j (3b) − A−1

b,j,j (1 + bb,j,j )

< tr
{(

E∗
b,K−1

)−1} + (N − 3)−1. �

LEMMA A.7. Write E∗
b,K = E∗

K − N−1JK in the form of

E∗
b,K =

⎡
⎢⎣

Nb cb μT
b,i

cb Nb μT
b,j

μb,i μb,j Eb,K−2

⎤
⎥⎦ =

⎡
⎢⎣

N c μT
i

c N μT
j

μi μj EK−2

⎤
⎥⎦ − N−1JK.(A.5)

We have (i) tr{(E∗
b,K)−1} = tr{E−1

b,K−2} + fb,i,j (cb) and (ii) fb,i,j (cb) < 2(N −
3)−1.

PROOF. We first replace E, E11 and E22 in Lemma A.5 by E∗
b,K ,

E11 =
[
Nb cb

cb Nb

]
,

and Eb,K−2, respectively. This allows to verify (i). In addition, we have from
Lemma A.6 that

fb,i,j (cb) = tr
{(

E∗
b,K

)−1} − tr
{
E−1

b,K−2

} ≤ tr
{(

E∗
b,K

)−1} − tr
{(

E∗
b,K−2

)−1}
≤ tr

{(
E∗

b,K

)−1} − tr
{(

E∗
b,K−1

)−1} + tr
{(

E∗
b,K−1

)−1} − tr
{(

E∗
b,K−2

)−1}
< 2(N − 3).
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This proves (ii). �

We now are ready to prove that E∗
K is similar to a block matrix. This is done

by considering the expression of E∗
b,K in (A.5). We then will show that if |c| > 3,

then fb,i,j (cb) ≥ 2(N −1)−1, which contradicted with Lemma A.7(ii), a necessary
condition of Lemma A.6. Since the same argument can be applied after permuting
the rows and columns of E∗

b,K , E∗
K must have off-diagonal elements equal to −1

or 3, and is thus similar to a block matrix. We begin this procedure by deriving
some useful results. With Lemma A.7(i) and equation (A.4), we have

tr
{(

E∗
b,K

)−1} = tr
{
E−1

b,K−2

} + fb,i,j (cb)

≤ min
{
tr

{
E−1

b,K−2

} + fb,i,i(3b), tr
{
E−1

b,K−2

} + fb,j,j (3b)
}
.

Thus, fb,i,j (cb) ≤ min{fb,i,i(3b), fb,j,j (3b)}. Let zb,g(cb) =
√

zb,i,i(cb)zb,j,j (cb);
then

zb,i,i(3b)bb,j,j + zb,j,j (3b)bb,i,i

2

≥
√

zb,i,i(3b)bb,j,j zb,j,j (3b)bb,i,i

=
√

zb,i,i(3b)zb,j,j (3b)
√

bb,i,ibb,j,j ≥ zb,g(3b)|bb,i,j |.
The last inequality is due to the Cauchy–Schwarz inequality [see also, Theo-
rem 14.10.1 of Harville (1997)]. With the same reason, we also have a2

b,i,j ≤
ab,i,iab,j,j . Thus, for |c| > 3,∣∣zb,i,j (cb)

∣∣ = |cb − ab,i,j | ≥ |c| − ∣∣N−1∣∣ − |ab,i,j | > 3b − √
ab,i,iab,j,j

≥ 3b − ab,i,i + ab,j,j

2
= 3b − ab,i,i + 3b − ab,j,j

2

= zb,i,i(3b) + zb,j,j (3b)

2
.

We note that ab,i,i , and ab,j,j are positive since EK−2 is positive definite.
Let zb,a(cb) = (zb,i,i(cb) + zb,j,j (cb))/2. We have, for |c| > 3, |zb,i,j (cb)| >

zb,a(3b) ≥ zb,g(3b). It also can be easily seen that

fb,j,j (3b) = 2[Ab,j,j + (N − 3)bb,j,j ]
(N − 3)[Ab,j,j + zb,j,j (3b)] .

With these facts and some algebra similar to that in Sathe and Shenoy (1989), we
can see that, for |c| > 3,[

Ab,i,iAb,j,j − z2
b,i,j (cb)

]
fb,i,j (cb)

= [
(N − 3)2 + 2(N − 3)zb,a(3b) + z2

b,g(3b) − z2
b,i,j (cn)

]
fb,i,j (cb)
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≥ 2
[
N − 3 + zb,a(3b)

]
+ [

(N − 3)zb,a(3b) + z2
b,g(3b) − z2

b,i,j (cb)
]
fb,i,j (cb).

The first equality is due to Ab,i,j = N − c + zb,i,j (cb). This in turn leads to
fb,i,j (cb) ≥ 2(N − 3)−1. With Lemma A.7(ii), we thus can conclude that |c| ≤ 3
and E∗

K is similar to a block matrix. The proof of Lemma A.4 is then completed
by using Lemma A.3.
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