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ABSTRACT

The geveral problem of minimum bias estimation is reviewed for polynomial
response surface models, where the true model, a polynomial of degree d+k-~1,
is estimated by a polynomial of degree d-1. Through the choice of estimator,
the same minimum integrated squared bias B is achieved for any experimental
design that satisfies a simple estimability condition. This design flexibility
is used to construct D-optimal, V-optimal, and A-optimal experimental designs
in two dimensions through a computerized simplex search procedure. The re=-
sulting optimal designs for both square and circular regions of interest are

discussed and recommendations as to their use are made.
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1. INTRODUCTION

The study of design optimality criteris has always been of fundamental
importance in response surface acaly:sis, especially when the functional form
of the response surface relationship,

n = f(Tl’ . Tp; 8 v oo 91) = £{1,8). (1.1
is unknown. It is common practice tu approximate the functional relatipnship
£(1,9) by a polyncmial of degree m, denoted Pm, and then fit the standard
pclynomial model using least squares methoeds., Various properties of the re-
sulting fitted polynomials have been investigated, especially those properties
which are heavily influenced by the choice of the experimental design.

Most major design criteria such as D-optimality, G-optimality, rotat-
ability, etc., have one thing in common. They are '"variance criteria' which
assume that the model to be fitted i< the tcue model. The question of bias
due to the inadequacy of the approximating polynomial is often given little
consideration. This can be a seriocus oversight as has been pointed out by
several authors [ 1, 2, 4, 10, 13]. For example, D-optimal and G-optimal
designs ave extremely model dependent, Tt is important therefore to look
at design criteria that take into account the concept of bias as well as
variance.

2, MINIMUM BLAS ESTIMATION
Suppose the true model is a polyuomial of degree d+k-1
nix) = 351.8.‘1 + fii;.ﬂ.z 2.1
but for cne reason or another is estimated by a polynomial of degree d-1
yix) = gk, - (2.2)
Discrepancies between the true response and fitted model stem from both
vaciance (i.e., sampiing ervor) and bias {inadequacy of the approximating

polynomial).
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Box and Draper in 1959 [1] and again in 1963 [2] adopted the minimization
of mean square error integrated cver a region of interest R (denoted IMSE)
as a basic criterion. This criterion involves both variance and bias. The

IMSE for R, the region of experimental interest. is
2 3

N ~ 2
J==5 IR E{y(x) -~ 1(x)1" dx (2.3)
o]
where
-1 _ )
Q= jR dx . (2.4)
It ig casy te show that J is the sum of integrated squared bias,
N() e "2 .
B = ;5 JRUEDV(ai] = Mx) ¥ ax o (2.5)
and integrated Var §(x) ,
= .r_\:.Q e )
V== g Var y(x)dx . (2.6)

Minimization of J = V+B requires advance knowledge of the regression co-
efficients. Such prior knowledge is generally not available. Box and Draper
attacked this lack of prior knowledge by minimizing the average value ‘of J -
over all orthogonal rotatjions of the response surface. 1In the process, they
showed that unless V is at least four times B, optimal designs for minimizing
the sum of V and B have design moments which are close to those obtained by
assuming V = 0,

Box and Draper proposed that an experimenter (1) estimate ﬁl using
standard least squares, and (2) find an experimental design which minimizes B.
The design, which minimizes B for the standard least squares estimator, is

one which satisfies

.1 - ,
(X X)) XX, =W W, (2.1)
where
— “]- i
w370 Jr 2xdx . (2.8)

wjj is a moment matrix of a uniform probability distribution over the region
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of interest R. Designs which satisfy {2.7) are said to meet the Box and
Draper condition.
In 1969, Karson, Mansou, and Hades [10] minimized B through the choice
of the estimator. If-hl i1s to mimimize the bias term B, E(gl) must satisfy
E(b.) = AR (2.9)

where
1L
A= [j_l,:v\ruwlzJ (2.10)
and
8= (B):35) . (2.11)
The minimized value of B is easily shown to be
M _l.\IQQ - ,/‘-1~ v i
Min B ) Ez{w:zz ‘“12w11w12}&2 (2.12)

where wjj iz given in (2.8). Tge exact same Min B value is achieved for any
design for which AB is estimable,

Karson, Manson and Hader go on to show in their paper that the
estimator 21 = T'y, called the "minimum bias estimator" (MBE) , where

T/ = AGX’ , (2.13)
and where G is the gencralized iaverse of X'X, minimizes the integrated
variance V subject to minimum B for any fixed design. Note that X = (XlEXZ).
V was then further minimized by choice of the experimental design. 1In this
manner Karson, Manson, and Hader were able to achieve smaller IMSE than by
using the Box and Draper approaci:.
3. DESICGN CITIMALITY GRITERTA

Thus, by choice of the estimator, winimized integrated squared bias B,

due to terms of specified higher degrie from rhe fitted response, is achieved

for any design for which AR is escimable, From this large class of designs,

designs can be found that are Decptimal, Yeoptimal or A-optimal,
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A design is said to be D=0 timai for the model §(x) given in (2.2), if
”~

it minimizes the determinant of the warian-e covariance matrix of Rl“ Using
minimum bias estimation, this meanz faat a design is D-optimal if it minimizes

/5 . e . NS ,
I(AGA )| or equivalently if it maximizesz ]{AGA ) |. Another popular design
criterion is G-optimality. A design is said ro be G=-optimal for the model

~ P PV -~ - N . - .
y{x) if it minimizes max var(y_ ) where vy = x'b.. As is the case when using

g R
standard least squares, a design is D-ovrtimal using the MBE if and oaly if
it is G-optimal for the MBE. The variance criterion of D-optimality (and
equivalently Geoptimality) shall be dennted by Vl.
Using D and G optimality criceria for designing experiments produces
designs which for the MBE
1. Have a confidence region for the parameters of smallest (hyper)
volume in the parameter space,
2. Minimize the generalized variance of the minimum bias parameter
estimates,
3. Are invariant to linear changes of scale of the parameters,
4., Minimize the maximum variance of any predicted valuc {from the re-
gression function) over the experimental space,
Minimizing the integrated variance, V, used by Box and Draper and Karson,
Manson and Hader produces designos that are V-optimal, a design criterion that

shall be denoted by V For the MBE, v-cptimal designs are obtained by

¢

11). The use «f the MBE and V-optimal designs

minimizing N trace (AGA'W
achieves the same minimum IMSE fourd tv Karson, Manson, and Hader.
~ a k3 s ’ . L3
A design is said to be A=optimai fer the model y(x) in (2.2), if it
~
minimizes the trace of the vaciance covaciance matrix of 21. Thus the variance

criterion V? shall denote the A-opi . mal design criterion when the MBE is used.

For the MBE, A-optimal designs minimize the frave (AGA'). This minimizes the
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average variaace o. Th: catvawe.sr :3C.mates, VB 18 a0¢ invariant to linear

changes of scale of the parameters gz are Vl and V2'

The advantages and disadvantages of each of these three variance criteria
have been discussed numerous times iw the literature. It is not the purpose
of this paper to repeat the well-koown arguments for each criterion. Instead,
using the MBE, optimal desigus for szach crireriou are Zeveloped and are used
to coupare the critevia.

&4, DESIGNS

A Coumpuler projra. was written to azid iun the searching fo:r opcimal
designs for which AB is estimable. Tnis program employs the simplex search
procedure suggested by Hendrix [97. As a check on the effectiveness of the
simplex search procedure used, the computer program was applied to the pro-
blems of finding D-optimal designs for situations studied by Dykatra {57 and
by Mitchell [11,12]. 1In no situation did the simplex search procedure fail
to watch the published results. It is the results of this program's search
that are being presented here.

Extensive use of the program repeatedly demonstrated that the optimal
designs for each variance criterion are basically concentric n-gons, Thus
designs will be denoted as cowmbinations of regular n-gons which are concentric
about the origin. Each n-gon is described by the notation (N,g) where N is
the number of vertices and g is the counterclockwise rotation of a rzference
vertex from the positive xlwaxis. in twe dimensions (g=2), which is the
Situation dealt with in this paper, there is wo reason for loss of generality

with this notation. Any e representes in this manner since each

. . ) ) .. .. . .th . .
n-gou could centein coly cne point, The rollus of rhe i—=o2 n-gon in o design
will be speciiisd by the perameler p ., while the number of observations taken

I3

at the orizin will be denoted by NO,
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4.1 Designs for Linear Polynomials Protecting Against Quadratic Effects

Suppose that in two diumensions (g=2) the true model is yuadratic (d+k-1=2)

but is fitted by a linear -nodel (d=1=1). This design setting will be denoted
as

(q=2, d=2, k=1) .
For this setting, designs have been studied for 3 < N € 9. For N=3 and N=4
there are no designs for which A is estimable. For 5 < N < 9 designs for
wiich A3 is estiwmable were thoroughly searched.

Tables 1, 2, and 3 give the best designs found for each of the three
variance criteria for a square region of interest, (SRI). The choice of a
square (or rectangular) region of interest by an experimenter is a natural
choice, Most experimenters have a range of interest for each of k variables,
that is to say they are interested in the iEE variable between the values a,
and bi for i =1, 2, ..., k. This interest is quite naturally satisfied by
a square (or rectangular) region of interest.

A brief comparison of the desigus in Tables 1, 2, and 3 shows a number
of general characterisitcs of the three variance criteria. The most important
characteristic is that every optimal design found for a square region of
interest contains at least one observation in the corners of the region of
interest. If the experimenter has a SRI, it is necessary to place at least
one observation in each corner if an optimal or near optimal design for any
of the three variance criteria iz desired.

For the SR, the same optimal design was found for all three criteria
when N=5 and when N=6. This is the result of the restriction that A8 be
estimable and the importance of the shape of the region of interest. Not

until designs have seven or wmore points does the restriction of A3 being
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estiuable cease to produce the same optimal design for each variance criterion
for 5 SRI.

Table 1 contains the optimal designs found for V, for a SRI. These

1
optimal designs for Vl’ with the exception of N=7, are all singular designs.
Thus an experimenter could not change his mind after experimentation and fit
a quadratic model if he so desived. Alsc V1 suffers from the disadvantage of
possessing wany local optima. For both N=8 and N=9, the best design found
was unapproachable be a search routine because of singularity problems. The
criterion of D-optimality cften has the problem of search routines stopping
at local optima [8]. Therefore several designs that were singular with re-
spect to the true model, but for which A3 is estimable, were searched. This
resulted in the discovery of the designs for N=8 and N=9 listed in Table 1.
The real nature of the problem of locating optima in such situations using
direct search computer routines, appears to be the occasional lack of cone
tinuity between singular and non-singular designs.

The optimal design for N=8 for Vl in a SRI is somewhat inefficient for
V2 and V,, A better design for all three criteria is

3
No P Pe Vl V2 v3

.582 128.1 2.51 .598

.

.5 + (4,0 0

) E,__.

Unless the experimenter knows that he is definitely interested in a D=-optimal
experimental design, he might want to use a design that is near optimal for
all three criteria. The design above is V1 optimal for two 4-gons and also
has values of V2 and V3 which are very close to their optimal values,

It is important to be able to compare the "size" of different designs.
The comparisons that we will make among the three variance criteria will de-
_4”

pend to some extent on how we define "size". We shall adopt the definition

of "size" proposed by Box and Wilson [3]. 1If a design consists of K factors
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, . th .
and N observations, St is called the spread for the t— variable where

S, = . . (4.1.2)
Two designs are considered to be of comparable size if the spread of each of
the factors is the same in the twc designs. When designs are not of compar-
able size, total spread, denoted by
k

S =58, (4.1.3)

will be used to compare designs. Furthermore, variance criterion Vi will be

sald te be more highly !

'variance oriented” thau variance criterion Vj if the
optimal designs found for Vi have a total spread greater than the optimal
designs of the same size found for Vj.

On the basis of these definitions, a comparison of the three variance
criteria is possible. Tables 4, 5, and 6 give the best designs found for
each of the three variance criteria for a circular region of interest, (CRI).
These tables of optimal designs for the CRI show clearly that V3 produces
designs with the greatest total spread and V2 produces designs with the
least total spread. For a CRI, a high teral spread generally means that
most of the observations will be on the boundary of the region of interest.
Of the resulting fifteen optimal designs found, only two designs had
observations located at points other tham at the center of or on the boundary
of the region of interest, Consequently, the size of the region of
interest and the number of points on the boundary are of critical importance
if a CRI is used.

For the SRI such complete crdering is not possible. This is because scme
of the optimal designs found for Vl are singular and unapproachable by a
search routine., If we ignore these unusual situations and compare the variance

criteria for a SRI for nonsingular designs of the same configuration of n~gons,
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the relationship of V3 being the most highly variance oriented criterion and
V2 being the least, holds true.

All things considered, V2 is recommended as a primary variance criterion.
There are several reasoms for this preference. With the exception of only
one design, all of the optimal designs found for V1 for both a square and a
circular region of interest consist of only boundary points and center points.
Designs of this type are of questionable value for two reasons:

1. Extensive regions of the response surface remain unobserved.

2. Fitted polynomiais based cn such designs are not always good for
prediction purposes in the interior of the region of interest. The
variance of predicted values is related to the uniform information
over the whole region of interest. Designs consisting only of
boundary and center points produce little information anywhere else
and hence produce high variance of predicted values anywhere except
near the boundary and near the center of the region of interest.

The optimal Vl designs found for a SR1 for N=8 and N=9 are of a special
nature due to their unapproachability by a search routine. 1In these designs,
two diagonal corner points of the region of interest are replicated, along
with 2 or 3 center points. 1LIf observations are taken near the center of the
region of interest but not exactly at the center, the resulting design has a

value of V. less than one half the optimal value of V To have such a small

1

change in location of points make such a large difference in the value of V

1
1

is not a pleasing result. Since neither VQ nor V, seems so affected by

3
local optima and since both do produce dezigns with more information about

the interior of the region of interest than does Vl’ they are both preferred

to Vl.
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that V2 contains that V3 does not. VZ is the only variance criterion scaled
to take into account differences in the number of points between two designs
and different areas for regions of interest., The result of such scalidg is

a measurement of variance per observation per unit area. This makes it
feasible to compare designs of different sizes and in a }imited sense from
different regions of interest. Neither Vl nor V3 are averaged over the region
of interest. Consequently they are not scaled as meaningfully as is VZ'
Teus it is felt a more accurate idea about the relative efficiency of a given
design is obtained by using V2 than by using V3.

V2 is also preferred over V3 because it is less highly variance oriented.
It often seems simpler to define a region of operability than a region of
interest. Therefore the region of opecrability is often used as the region of
interest simply because of the difficulty of deciding just what region inside
of the operability region is really the region of interest. When one choses
the region of interest in this way, VZ will produce designs with more inform~-
ation about the interior of the region of operability, and hence about the
true region of interest, than will V3, It would seem therefore that V2 would
be a preferable design criterion to V3.

Since V2 is a measure of the variance per observation per unit area, it
can be used to compare the efficiency of different designs and to make re~-
commendations as to how large a design to use. It is important to notice at
this point that the minimum integrated variance, Vkﬁ that Box and Draper would
get for this problem, using their zufficient conditions to obtain Min B, would
be V* = 3,0, This is considered te¢ be an acceptable level of variance. Con-

sequently, when we are comparing the =ificiency of various size designs, it is

impertant to realize that all of the designs with v, s 3.0 will be considered
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to be acceptable designs. Thus for the 3RI, the designs with N=8 or N=9 are
recommended. This is because both of these designs offer more information
than just at the center and boundary «f the region of interest.

For the CRI the same minimum value cof V2 is obtainable for N=6, 7, and
9. However, since all three of thess designs consist of observations only at
the center and at the boundary of the regicm of interest, an experimenter
might want to use the optimal design fcor N=8, The minimum value of V2 for
N=8 is 2,648 versus 2.625 for N=A, 7, and 9., This is a small difference that
allows the experimenter te chose a design that is very good and yet does not

have the disadvantages discussed before, of designs consisting of only

boundary points and center points.

4.2 Designs for Quadratic Polvnomials Protecting Against Cubic Effectg

In this section several designs are developed that are optimal for the
minimum bias quadratic model that protects against a cubic polynomial being
the true model (by "protect'" it iz meant that if the true model is a cubic
polynomial, the minimum achieveable value of the integrated squared bias B
will be achieved by the fitted quadratic mcdel, for any design for which Ag
is estimable). In two dimenéions, these designs will be denoted by

(q=2, d=3, k=1). (4.2.1)

For the minimum bias quadratic mcdel that protects against cubic effects,
only V2 will be used as a variance criferiocn for several reasons. Primary
among these reasons was the extreme difficuity of determining the relative
merit of designs found by using V! o %3 as the variance criterion. There
are three basic veasons why such a difficulty arises:

1. Neither Vy nor VB 18 scaled to make designs of different size com-

parable.
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2. The range of values of Vl and V3 for a given design size was so large

as to impede the determination as to which designs are good.

3. There was considerable evidence that the optimal designs for V1 would

turn out to be singular designs that could not be approached by a
search procedure.

Using VZ 48 a variance criterion sclved most of these problems. Since V2
is scaled for both the number of points in the design and for the area of the
region of interest, meaningful comparisons between designs are readily available.
Using the Box and Draper sufficient conditions to obtain Min B for this problem,
would give designs with V* = 6.0, This is considered an acceptable level of
average variance and furnishes an excellent method to judge the merit of de-
signs produced. Finally the problem of the optimal designs being singular and
unapproachable by a search procedure did not appear in using V2. A number of
singular designs were tested but none proved to be very good. Consequently,
it was decided to consider only V2 as a variance criterion for the (g=2, d=3,
k=1) designs.

Designs with 6 £ N £ 13 have been investigated using V2 as a varilance
criterion, Table 7 presents the optimal designs found for a SRI and Table 8
presents the optimal designs found for a CRI., Both tables list designs for
10 s N g 14, Smaller designs than N=1Q exist for which AB is estimable; how-
ever, the variance is very high for these small designs. Also designs for
N < 10 are such that only a particular lecation for the points allows A8 to
be estimable. This is unsatisfactecrv for a search procedure since the answer
must be known in order to find it bevauvse of the absence of continuity. For
this reason the discussion is restrizted to designs for which N = 10, 1t is
also important to note that while an extensive search of desigpns for 10 s N

< 13 was conductad, only the best previnus patterns were searched for N=14,
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With the exception of the 10 point design, the optimal designs for a SRI
all follow the same pattern of placing one observation in each corner of the
region of interest and the rest equally spaced on a circle of radius py ™ .83,
Only the 10 point design is different from this pattern. This difference is
due primarily to necessity of AB being estimable. The ten point design of the
same pattern, i.e., (4,%) + (6,0), is such that AB is not estimable. This
lack of estimability helps to explain the big jump in the value of V2 between
the optimal 10 point design and the optimal 11 point design. From N=11 to
N=14 the change in V2 is gradual.

It should be noted that there is little change in V2 due to rotation of
the inner circle of these optimal designs. Usually the change is in the
seventh or eight decimal for the square region of interest and is even
smaller for the circular region of interest. Thus the angles given in Table
7/ and Table 8 for the inner circle are not necessarily optimal but are generally
chosen for ease in the construction of the design.

The designs in Table 7 allow the experimenter to avoid any difficulties.
For N=11 he can use a design with only four points on the boundary of his
region of interest and the rest well inside of the region of interest. This
means that the designs produced will yield information inside the region of
interest and not just on the boundary. Also it is important to note that de-
signs with one center point, one point in each of the four corners, and the re-
maining points equally spaced on a circle of radius py = .83, are nearly
optimal. An exXperimenter trying to determine the optimal size design to use
will obviously be guided by the cost of additional observations. As was
mentioned earlier, values of V2 are comparable as variance per observations
per unit area. If observations are free the best thing to do is to take as

many observations as is possible. But since observations are rarely free,
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the value of V2 offers a nice comparison between the efficiencies of any two
different designs to which the cost of observations can readily be added,

Table 8 of optimal designs found for CRI also shows a distinct pattern,
The pattern starts for N=12 and holds for larger designs. The pattern is to
place an equal number of points (where possible) on two concentric circles,
the outer one having radius Py = 1 and the inner one Py = .528 or .384 de~
pending upon whether the number of design points is even or odd. If the de-
sign size is odd, the remaining point should be placed at the center of the
region of interest. This same pattern seems to hold as the optimal designs
for larger size designs not included in the table.

However, there appears to be no reason to look at designs larger than
N=14 since it appears that a lower bound of v, = 5.1384 has been found. It
is interesting to note that we achieve this apparent lower bound for N=12 and
N=14 but cannot achieve it for odd values of N. The fact that designs with N
even (and greater than 10) can achieve this value and designs where N is odd
cannot may be due to a condition of symmetry. In any case, cost of the
observations will probably dictate using N=12 since it does achieve this lower
bound with the least number of observations.

The simplicity of the optimal designs for both a square and a circular
region of interest makes them attractive and should facilitate their use by
experimenters. However, there are still problems associated with the use of
optimal designs. The optimal designs for the square region of interest are
not good configurations to use if the region of interest is circular. In
fact, the optimal designs in Table 7 are very poor 1f scaled and placed in a
circular region of interest. The same thing is true if you use the optimal
designs from Table 8 when the region of interest is a square, This result is

not surprising since each table presents a very definite and different pattern
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for the optimal designs. But it does underscore the point made in Section 4.1.
The experimenter must know what shape his region of interest is if he wants to
use optimal designs.
5. SUMMARY
The minimum bias approach offers the chance to have protection against
bias and still enjoy the advantages of variance-optimal design criteria, When

a true model, 7 = iigq + §'§2 is approximated by ¥ = x/b. over a region of

2 =1-1
interest R, the MBE obtains the same minimum integrated squared bigs B for
any experimental design for which A is estimable. The class of designs for
which Af is estimable contains an infinite number of designs. This flexibility
has allowed the construction of D-optimal, V-optimal, and A~optimal
experimental designs. There is sufficient flexibility to satisfy other types
of design criteria, i.e., orthogonality, rotatability, etc,, and still be g
near optimal design for any variance criterion, if not the optimal design.
Many areas for further study are implied by these procedures., The
minimum bias approach can be applied to problems where the true model is not
a polynomial. The approach is also easily extended to any number of
dimensions. Allowing the design points to occur outside the region of
interest causes no added complications. Constraints upon the achievable
values of the independent variables is another area suggested for future
study. Thus, the minimum bias approach is a simple procedure for determining

good experimental designs in a variety of situations where protection

against the inadequacy of the fitted model is of importance to the experimenter,



OPTIMAL DESIGNS FOQR V1 (g=2, d=2, k=1, SQUARE REGION OF INTEREST)

-17-

Designs c Py P2 1 2 3
5 1 7z ———— 33.9% 3.19% \972%
.7 2 VI - 64.0% 2,506 ,750%
@D+ 60 0 VZ .020 91.0% 2,40 .676
RN ER D 2 i Vz 131.7% 2.94 .618
CR IR 3 V2 \VZ 189.4% 2.65 544

OFTIMAL DESIGNS FOR V, (q=2, d=2, k=1, SQUARE REGION OF INTEREST)

Designs o P1 P2 i V2 ,vﬁ
4,7 1 V2 ———— 33.9% 3.19% .97 2%
.7 2 12— 64 .0% 2,50% ,750%
R 3 VZ e 91.0 2.40% .676
D + 4,0 o V7T 322 121.6 2.43% .621
4,1 + (4,0) 1 VT .559 164.5 2.47% .563

3. OPTIMAL DESIGNS FOR V, (q#2, d=2, k=1, SQUARE REGION OF INTEREST)

Designs ) P1 P2 V1 Y Va V3
V(%%) 1 V7 e 33.9%  3.19%  ,972%
(4,% 2 i ———— 64 .0% 2.50% .750%
R RN ER 0 VT .02 90.9 2.40 676k
4,1 + (4,0) 0 vz .632 127.6 2.56 ¢ 597%
4,0 + (4,0) 1T .831 173.7 2.62 .538%

“Optimal designs for this type of variance criterion
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4. OPTIMAL DESIGNS FOR V1 (gq=2, d=2, k=1, CIRCULAR REGION OF INTEREST)

N Designs N, P1 P2 Vi V) V3

5 (4,0) 1 1 ——— 12.8% 2.813% 1.313%
6 (4,0) 2 1 ———— 21,3% 2.625% 1.188
7 (5,0) 2 1 ———— 35.7% 2.625% .975

8 (6,0) 2 1 — 54 0% 2.667 .833

9 (7,0) 2 1 - 76.2% 2.714 .732%
5. OPTIMAL DESIGNS FOR V2 (g=2, d=2, k=1, CIRCULAR REGION OF INTEREST)

N Designs N, 3 Py Y1 \ V3

5 (4,0) 1 1 S 12.8% 2.813% 1.313%
6 (4,0) 2 1 ———— 21.3% 2.625% 1.188

7 (5,0) 2 1 ——— 35.7% 2.625% .975

8 (5,0) + (3’%2’ 0 1 .287 49.0 2.648 .903

9 (6,0) 3 1 - 72.0 2.625% ,792

6. OPTIMAL DESIGNS FOR V, (q=2, d=2, k=1, CIRCULAR REGION OF INTEREST)

N Designs No P1 P2 Vl VZ V3

5 (4,0) 1 1 —— 12.,8% 2.813% 1,313%
6 (5,0) 1 1 ———— 20.8 2.800 1.100%
7 (6,0) 1 1 ———— 30.9 3.208 ,958%
8 (6,0) + (2,0) 0 1 214 52.9 2.715 .832%
9 (7,0) 2 1 ———- 76.2% 2.714 732

)

<
Optimal designs for this type of variance criterion
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7. OPTIMAL DESIGNS FOR V, (g=2, d=3, k=1, SQUARE REGION OF INTEREST)

N Designs No P1 P2 V2
10 (7,539 + (3,%2) 0 1.00633 .32551 5.9786
11 @5 + (7,0 0 53 .83152 5.6084
12 @5 + @ 0 vz .83161 5.4348
13 Xy + (9,0) 0 VZ .83171 5.3109
14 4,0 + (10,0) 0 VT .83183 5.2218
8. 'OPTIMAL DESIGNS FOR V2 (gq=2, d=3, k=1, CIRCULAR REGION OF INTEREST)

N Designs o P1 P2 Yy
10 (7,0) + (3,0) 0 .88447 .37038 5.6270
11 (6,0) + (5,0) 0 .98732 .50541 5.2663
12 (6,0) + (6,1 0 1 .52806 5.1384
13 (6,0) + (6,%‘ 1 1 .58411 5.1864
14 (7,0) + (7,2‘ 0 1 .52806 5.1384

T
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