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We consider cDNA microarray experiments when the cell populations
have a factorial structure, and investigate the problem of their optimal de-
signing under a baseline parametrization where the objects of interest differ
from those under the more common orthogonal parametrization. First, ana-
lytical results are given for the 2 × 2 factorial. Since practical applications
often involve a more complex factorial structure, we next explore general
factorials and obtain a collection of optimal designs in the saturated, that is,
most economic, case. This, in turn, is seen to yield an approach for finding
optimal or efficient designs in the practically more important nearly saturated
cases. Thereafter, the findings are extended to the more intricate situation
where the underlying model incorporates dye-coloring effects, and the role
of dye-swapping is critically examined.

1. Introduction. Optimal designing of cDNA microarray experiments is an
area of enormous potential that has started opening up in recent years. The fields
of application include the biological, agricultural and pharmaceutical sciences. In
an experimental design for microarrays, the cell populations under study represent
the treatments which, as in traditional design theory, may be unstructured or have a
factorial structure. The design is called varietal or factorial in these two situations
respectively. In varietal designs, interest lies typically in all or some pairwise con-
trasts of the treatment effects, whereas in factorial designs, the objects of interest
are the main effects of the factors and interactions among them. These factorial
effects are commonly defined via an orthogonal parametrization, but a relatively
less studied baseline parametrization, which is nonorthogonal, can also be of in-
terest depending on the context. The main distinction between these two kinds of
parametrization is that the former defines the factorial effects via mutually orthog-
onal treatment contrasts, whereas the latter defines these effects with reference to
natural baseline levels of the factors and, hence, entails nonorthogonality. More
details follow in Section 3.

In a pioneering paper Kerr and Churchill (2001a) discussed the design issues in
microarrays and investigated optimal varietal designs that estimate the pairwise
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contrasts of treatment effects for fixed genes with minimum average variance.
While observing that microarray designs can be considered as incomplete block
designs with block size two, they noted the inadequacy of the classical optimal-
ity results in this regard and obtained, via complete enumeration, economic opti-
mal designs for ten or fewer treatments. We refer to Kerr and Churchill (2001b),
Yang and Speed (2002) and Churchill (2002) for very informative further discus-
sion on the design issues. While Kerr and Churchill (2001a, 2001b) and Churchill
(2002) concentrated on varietal designs, Yang and Speed (2002) discussed facto-
rial designs in some detail. Subsequent work on varietal designs for microarrays
includes those due to Dobbin and Simon (2002), Kerr (2003), Rosa, Steibel and
Tempelman (2005), Wit, Nobile and Khanin (2005) and Altman and Hua (2006),
although some of these authors, as also Churchill (2002), briefly touched upon
factorial designs as well.

Work on factorial designs for microarrays started gaining momentum only very
recently. A major reference in this regard is Kerr (2006), who worked under the
framework of the orthogonal parametrization and explored two-level factorial de-
signs that keep all main effects and two-factor interactions estimable, without any
assumption on the absence of higher order interactions. Exploiting the connection
between microarray designs and incomplete block designs with block size two, she
showed how replicates arising from different blocking schemes can be combined
for this purpose and, in particular, gave designs with the minimum number of repli-
cates for eight or fewer factors. Related references in the general context of two-
level factorials in blocks of size two include Yang and Draper (2003) and Wang
(2004) and, interestingly, Kerr (2006) proposed a construction which is more eco-
nomic than that in Wang (2004) for any number of factors. Bueno Filho, Gilmour
and Rosa (2006) also considered factorial microarray designs for both fixed and
random treatment effects. Their parametrization for fixed treatment effects is akin
to the orthogonal one and, among other things, they studied optimal designs for the
3×3 factorial, paying more attention to the case where the two-factor interaction is
absent. Further results on factorial microarray designs under the orthogonal para-
metrization were obtained by Landgrebe, Bretz and Brunner (2006), Gupta (2006)
and Grossmann and Schwabe (2008). Landgrebe, Bretz and Brunner (2006) stud-
ied optimal designs within a collection of candidate designs and focused on the
2 × 2 and 3 × 2 factorials, while Gupta (2006) investigated the role of balanced
factorial designs. Grossmann and Schwabe (2008) explored optimal designs for
models that include only the main effects or only the main effects and two-factor
interactions.

Turning to factorial designs for microarrays under the baseline parametrization,
which is the main thrust of this paper, two key references are Yang and Speed
(2002) and Glonek and Solomon (2004), (hereafter abbreviated GS). While Yang
and Speed (2002) broadly discussed the design issues, GS reported illuminating
computational results on admissible designs for the 2×2 factorial. Continuing with
the baseline parametrization, we propose to consider general, possibly asymmetric,
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factorials and present analytical results. For comparative purposes, results under
the orthogonal parametrization will also be occasionally indicated. The present
endeavor is motivated by two reasons. First, as will be seen in Section 3, there are
practical situations, even beyond the domain of microarray experiments, where the
baseline parametrization is natural. Second, although this parametrization looks
simpler than the orthogonal one, it renders the task of finding optimal or efficient
designs somewhat more challenging due to lack of orthogonality. Presumably due
to this reason, even in traditional factorial design literature, the optimal design
problem under the baseline parametrization has received very little attention. It
is hoped that our results would fill in this gap to some extent. We remark in this
connection that because of the considerable difference in the definitions of the
factorial effects under the baseline and orthogonal parametrizations, the significant
body of work that has already been done on factorial microarray designs under the
latter parametrization provides no clue to our derivation or results. The following
example, concerning a study of leukemic mice, highlights this point; more details
on some of the technical terms in the example are available in Sections 2 and 3.

EXAMPLE 1. GS describe a cDNA microarray experiment that compares two
cell lines FI� and V449E at times 0 hours and 24 hours. The cell line V449E
proliferates into leukemia while FI� is nonleukemic. Then there are two factors
dictating the cell populations. The first factor, namely, the mutant, has two lev-
els FI� and V449E of which FI�, being nonleukemic, is taken as the baseline
level. These levels are coded as 0 and 1 respectively. The second factor is time,
again with two levels, 0 hours and 24 hours, and the first of these is taken as
the baseline level. These two levels are also coded as 0 and 1 respectively. Thus,
considering the two factors together, there are four treatment combinations, 00,
01, 10 and 11, representing the cell populations. The main effects of the two fac-
tors are important, but their interaction, that concerns the differential expression
of genes for V449E and FI� at time 24 hours as contrasted with that at time 0
hours, is often of even greater interest. The experiment consists of a number of
slides each comparing a pair of cell populations or, equivalently, treatment com-
binations. Suppose the available resources allow experimentation with six slides.
Since the four treatment combinations can also be paired in six ways, namely,
(01,00), (10,00), (11,00), (10,01), (11,01) and (11,10), the symmetric design,
that compares each pair on one slide, seems very attractive, because it is a bal-
anced incomplete block (BIB) design with excellent optimality properties under
the orthogonal parametrization [Kiefer (1975)]. As a rival, consider the design that
compares the pairs (01,00) and (10,00) each on two slides, and the pairs (11,01)

and (11,10) each on one slide. As noted in GS, under the baseline parametriza-
tion, the symmetric design estimates the two main effects and the interaction with
respective variances 1

2σ 2, 1
2σ 2 and σ 2, whereas the corresponding variances for

the rival design are 5
12σ 2, 5

12σ 2 and 3
4σ 2, where σ 2 is the common variance of
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the observations. Thus, the rival design outperforms the symmetric one not only in
overall terms but also individually for each factorial effect, in the sense of entailing
uniformly smaller variance, that is, more precise estimation.

The above example is revealing. It shows that even for the seemingly simple
2 × 2 factorial, optimal designs under the orthogonal parametrization are by no
means guaranteed to perform well when one works with the baseline parametriza-
tion where entirely new designs may turn out to be desirable. This opens up new
challenges which become even more complex for general factorials.

The paper is organized as follows. The next section gives an outline of the ex-
perimental setup. In Section 3 we revisit the 2 × 2 factorial, considered previously
by GS, and obtain analytical results which supplement and strengthen their com-
putational findings, in addition to preparing the ground for the subsequent devel-
opment. Taking cognizance of the facts that in many applications there may be
more than two factors dictating the cell populations and that, even with two fac-
tors, one or both of them may appear at more than two levels, general factorials are
considered from Section 4 onward. Since cDNA microarray experiments are still
quite expensive, there is a premium on optimal designs that are relatively small
in size. From this viewpoint, in Section 4, we first consider the saturated, that is,
most economic, case and present a collection of optimal designs in a strong sense.
Apart from facilitating a choice under resource constraints, this leads to an ap-
proach for finding optimal or efficient designs in the practically more important
nearly saturated cases that are also studied at length in Section 4. In Section 5 we
extend the main ideas of Section 4 to the situation where the underlying model in-
cludes dye-coloring effects. The findings of this section rigorously justify, for such
a model, a recommendation by Yang and Speed (2002) on dye-swapping. Several
other design issues, including open problems, are discussed in Section 6. Techni-
cal details, including proofs, appear in a supplementary material file posted at the
journal website [Banerjee and Mukerjee (2008)]. The technical tools include use
of approximate design theory, Kronecker representation and unimodularity.

2. Experimental setup. We refer to Nguyen et al. (2002) and Amaratunga
and Cabrera (2004) for detailed accounts of the experimental setup. In cDNA mi-
croarrays, each slide compares two cell populations on the basis of mRNA samples
separately labeled with fluorescent dyes, usually red and green. This is done for a
number of slides and different slides may compare different pairs of cell popula-
tions. After competitive hybridization, the ratio of the red and green fluorescence
intensities is measured at each spot on each slide. Any such ratio represents the
relative abundance of the gene in the two cell populations compared on the corre-
sponding slide. The intensity ratios are usually adjusted for background noise and
then normalized with the objective of removing systematic biases.

We consider linear models for the log intensities and, hence, the log intensity
ratios. The modeling as well as the corresponding optimal design problem refers
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to a single gene—it is intended that the same design applies simultaneously to all
genes on the array. The log intensity ratios for a gene, arising from different slides,
are supposed to be homoscedastic and uncorrelated; a discussion on this, in the
light of biological variability, follows in Section 6.

The above experimental setup is structurally similar to classical paired com-
parison experiments; see Kerr and Churchill (2001a). The cell populations under
comparison are the same as treatments (or treatment combinations when they are
dictated by several factors as in Example 1), while each slide is equivalent to a
block of size two. However, the stringency on the number of slides as well as the
baseline parametrization adopted here open up new design problems.

3. The 2 × 2 factorial.

3.1. The baseline parametrization. Suppose two factors F1 and F2, each at
levels 0 and 1, dictate the cell populations, which correspond to the treatment
combinations 00,01,10 and 11. Let τ00, τ01, τ10 and τ11 denote the expected log
intensities, that is, the effects, of these treatment combinations. We focus on the
situation where, as in Example 1, there is a null state or baseline level, say, 0, of
each factor. Then θ00 = τ00 stands for the baseline effect. We consider the base-
line parametrization [cf. Yang and Speed (2002); GS] according to which the main
effects of F1 and F2 are given respectively by

θ10 = τ10 − τ00 and θ01 = τ01 − τ00,(1)

while the interaction effect F1F2 is given by

θ11 = τ11 − τ10 − τ01 + τ00.(2)

The counterparts of θ10, θ01 and θ11 under the more common orthogonal parame-
trization are defined respectively as

θ∗
10 = 1

2(τ11 + τ 10 − τ01 − τ00), θ∗
01 = 1

2(τ11 − τ 10 + τ01 − τ00),

θ∗
11 = 1

2(τ11 − τ 10 − τ01 + τ00).(3)

Observe that the definitions of the main effects under the two parametrizations are
entirely different. While θ11 is proportional to θ∗

11, this equivalence for the two-
factor interaction also disappears for factorials involving three or more factors;
see, e.g., (8) below.

Kerr (2006) nicely summarized the situations under which the two parametriza-
tions mentioned above are appropriate. The baseline parametrization is natural if
there is a clear null state or baseline level of each factor. As noted above, this hap-
pens in Example 1. Similarly, in a toxicological study with binary factors, each
representing the presence or absence of a particular toxin, the state of absence
can be regarded as a natural baseline level of each factor [Kerr (2006)]. On the
other hand, if at least one factor, like gender, lacks a natural baseline level, then
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the baseline parametrization is inappropriate because this will arbitrarily single
out one level of such a factor. In situations of this kind, it is advisable to use the
orthogonal parametrization.

Indeed, the null state or baseline level of a factor can be interpreted in a broad
sense. It need not strictly mean the zero level on some scale, but may as well refer
to a standard or control level like the one currently used in practice. For example,
in an agricultural experiment to investigate possible improvement in productivity
by changing the doses of several fertilizers, the currently used doses of the fer-
tilizers may represent the control levels. Similarly, in an industrial experiment on
possible quality improvement via a change in the settings of several machines used
at different stages of the production process, the current settings of the machines
may reasonably constitute the control levels. In general, if each factor has such a
control or baseline level along with one or more test levels, then the baseline para-
metrization is appropriate and, hence, the present results should be useful. The
possible areas of application extend well beyond microarrays and pertain, notably,
to agricultural and industrial experiments as hinted above. We add in this connec-
tion that although not much work has so far been reported on optimal factorial
designs under the baseline parametrization, there is already a rich literature on the
corresponding problem for varietal designs. An excellent review of this develop-
ment on treatment-control designs is available in Majumdar (1996).

3.2. Design criteria. Following GS, in this section we assume the absence
of systematic biases including dye-color bias because one of our objectives here
is to obtain analytical results in their setup. With four treatment combinations
00,01,10 and 11, as in Example 1, there are six possibilities for any slide, namely,
(01,00), (10,00), (11,00), (10,01), (11,01) and (11,10), where the members of
each pair represent the treatment combinations that can be compared on the slide.
Within each pair, one member gets red dye-coloring and the other green dye-
coloring, but the distinction is immaterial in the absence of dye-color bias. Suppose
the total number of slides used in the experiment is fixed at N . Then the design
problem involves deciding on the respective frequencies f1, . . . , f6 with which the
slides of the six kinds as listed above should appear in the experiment, so as to
entail optimal inference in a reasonable sense. Here f1, . . . , f6 are nonnegative
integers satisfying f1 + · · · + f6 = N . We consider only those designs that keep
θ01, θ10 and θ11 estimable. Let V01,V10 and V11 denote the variances of the best lin-
ear unbiased estimators (BLUEs) of θ01, θ10 and θ11, respectively. A good design
should aim at keeping these three variances small. Recognizing that commonly no
single design will minimize all the three simultaneously, GS considered admissi-
ble deigns. A design d0 is admissible if there is no other design d1 such that each
of V01,V10 and V11 under d1 is less than or equal to that under d0, at least one of
these inequalities being strict. By complete enumeration, GS tabulated admissible
designs for even N in the range 6 ≤ N ≤ 18.
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The notion of admissibility is intimately linked with that of weighted optimal-
ity. In most applications, one wishes to give equal weight to the two main effect
parameters. Also, as GS noted, the interaction parameter can be of greater interest
in microarrays than the main effect parameters. From this perspective, we consider
designs that minimize V01 + V10 + wV11, where w is a positive weight, with par-
ticular interest in case w > 1. Such a design, called w-optimal for simplicity, is
evidently admissible. Indeed, even for moderate N , admissible designs may be too
numerous, and consideration of w-optimality helps in narrowing down the choice.

3.3. Results via approximate design theory and their implications. The fact
that the frequencies f1, . . . , f6 are integer-valued complicates the task of finding
w-optimal designs because tools from calculus cannot be employed. This is par-
ticularly so because the objective function V01 + V10 + wV11 depends on these
frequencies in a complex manner. Considerable simplicity is achieved if for the
moment we treat the relative frequencies πi = fi/N as continuous variables over
the range πi ≥ 0 for each i and

∑
πi = 1. Any such π = (π1, . . . , π6) is called a

design measure. This approach amounts to invoking the approximate design the-
ory [see, e.g., Silvey (1980)] which enables one to use calculus techniques to get
the following result.

RESULT 1. (a) For w > 0, let

ξ = 1
4{(w2 + 2w)1/2 − w}.(4)

Then the design measure

π0 = (1
2 − ξ, 1

2 − ξ,0,0, ξ, ξ
)

(5)

is w-optimal, whenever w ≥ 2
3 .

(b) The design measure π̃ = (1
4 , 1

4 ,0,0, 1
4 , 1

4) minimizes V11 and is admissible.
(c) The design measure (1

2 − ξ, 1
2 − ξ,0,0, ξ, ξ) is admissible whenever 1

6 ≤
ξ ≤ 1

4 .

Incidentally, Bueno Filho, Gilmour and Rosa (2006) and Grossmann and
Schwabe (2008) also employed the approximate theory in the study of optimal
microarray designs. But their settings and criteria and, hence, final results are dif-
ferent from ours. We now discuss the implication of Result 1 on (exact) designs
that take cognizance of the fact that f1, . . . , f6 are actually integers. Any such de-
sign may be represented by the vector f = (f1, . . . , f6). Since πi = fi/N for each
i, the following conclusions, pertaining to even N, are evident from Result 1.

(i) If w ≥ 2
3 and φ = Nξ is an integer, where ξ is given by (4), then the design

f = (1
2N − φ, 1

2N − φ,0,0, φ,φ
)

(6)

is w-optimal.
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(ii) If N is a multiple of 4, then the design (1
4N, 1

4N,0,0, 1
4N, 1

4N) mini-
mizes V11.

(iii) Any design of the form (6) is admissible whenever 1
6N ≤ φ ≤ 1

4N .

The points (i)–(iii) noted above cater to the need, in our context, of finding good
designs with emphasis on the interaction parameter. For N ≤ 18, they provide
analytical justification for quite a few findings of GS, such as the admissibility
of the rival design in Example 1. In addition, they facilitate the study of good
designs for N ≥ 20, which is beyond the range considered by GS and may pose
difficulties in complete enumeration. For instance, if N = 20, then they show that
the designs (6,6,0,0,4,4) and (5,5,0,0,5,5) are admissible, and that the latter
design minimizes V11.

Given w (≥ 2
3), even if φ = Nξ in (i) above is not an integer, one may simply

round it off to the nearest integer to get a highly efficient design. As an illustration,
let w = 2. By (4), then ξ = 0.207107. For N = 22, rounding Nξ off to the nearest
integer, namely, 5, we can follow (6) to consider the design (6,6,0,0,5,5), which
has efficiency 99.44% as a comparison with the w-optimal design measure in (5)
reveals. Continuing with w = 2, for every even N in the range 6 ≤ N ≤ 30, one
can similarly obtain designs with over 97%, and often over 99%, efficiency. These
efficiencies are actually lower bounds, as they are relative to an optimal deign
measure which is unattainable in the exact setup. Hence, we conjecture that all
these designs are actually w-optimal, with w = 2, for the respective N . Using (iii)
above, one can also verify that these designs are all admissible.

It is of interest to compare Result 1 with its counterpart arising under the orthog-
onal parametrization (3). To that effect, we note that the following hold under (3):

(a) The design measure πorth
0 = (α,α, 1

2 − 2α, 1
2 − 2α,α,α), where α =

1
2w1/2/(2 + w1/2), is w-optimal for 0 < w < 4.

(b) The design measure π̃ = (1
4 , 1

4 ,0,0, 1
4 , 1

4) is w-optimal for w ≥ 4.
(c) The design measure(α,α, 1

2 − 2α, 1
2 − 2α,α,α), with α as in (a), is admis-

sible for 0 < α ≤ 1
4 .

The proofs of these are similar to but simpler than that of Result 1. From (a) and
(b) above, simple rounding off again yields highly efficient exact designs under the
orthogonal parametrization. For w < 4, unlike π0 in Result 1, the measure πorth

0 in
(a) assigns positive masses to all the six possible slides. In fact, for w = 1, πorth

0
assigns uniform mass everywhere and, hence, entails a BIB design. On the other
hand, for w ≥ 4, the optimal design measures under the two parametrizations are
quite close to each other.

The fact that π has only six elements, because of only six possibilities for any
slide, helped the study of optimal design measures and, hence, that of optimal or
efficient designs in this section. In microarray experiments for general factorials
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considered from Section 4 onward, the number of possibilities for any slide in-
creases dramatically and, as a result, the optimal design measures are analytically
intractable. For this reason, hereafter we directly investigate exact designs.

4. General factorials.

4.1. Preliminaries. In many applications of cDNA microarrays there may be
more than two factors dictating the cell populations and, even if there are only two
factors, one or both of them may appear at more than two levels. For instance, if in
Example 1 the two cell lines are compared at time 12 hours, in addition to 0 hours
and 24 hours, then we have to consider a 2 × 3 factorial, with the second factor,
time, now appearing at three levels. Similar examples abound and underscore the
practical need to explore the optimal designing of cDNA microarray experiments
with reference to general factorials.

From this perspective, consider an s1 × · · · × sn factorial that involves n (≥ 2)

factors F1, . . . ,Fn dictating the cell populations, with Fj appearing at levels 0,
1, . . . , sj − 1. Then there are v = ∏

sj cell populations which correspond to the
treatment combinations i1 . . . in (0 ≤ ij ≤ sj − 1,1 ≤ j ≤ n). Let τi1...in be the ex-
pected log intensity, that is, the effect, of the treatment combination i1 . . . in. As
before, the baseline level of each factor is denoted by 0. Hence, θ00...0 = τ00...0

stands for the baseline effect. Also, as an obvious extension of the baseline para-
metrization given by (1) and (2), a main effect, say, that of F1, is represented by
the s1 − 1 parameters

θi10...0 = τi10...0 − τ00...0 (1 ≤ i1 ≤ s1 − 1),(7)

whereas a two-factor interaction, say, F1F2, is represented by the (s1 − 1)(s2 − 1)

parameters

θi1i20...0 = τi1i20...0 − τi100...0 − τ0i20...0 + τ000...0(8)

(1 ≤ i1 ≤ s1 − 1,1 ≤ i2 ≤ s2 − 1).

Similarly, we can define θi1...in for every i1 . . . in �= 0 . . .0 (0 ≤ ij ≤ sj −1,1 ≤ j ≤
n) so that any such θi1...inrepresents a factorial effect as determined by its nonzero
subscripts. Thus, any θi1...in with u nonzero subscripts represents a factorial effect
involving u factors. Hereafter, often the v − 1 parameters θi1...in (i1 . . . in �= 0 . . .0)

are collectively referred to as the θs for ease in presentation.
Note that (7) is reminiscent of the canonical parametrization in Wit, Nobile and

Khanin (2005), Subsection 2.1, for varietal designs. Throughout this section we
continue to assume the absence of systematic biases including dye-color bias and
write σ 2 for the variance of any observed log intensity ratio.
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4.2. Optimal saturated designs. All main and interaction effects, as repre-
sented by the θs, are of potential interest at least for a relatively small number
of factors. Hence, at this stage we consider optimal designs for the estimation of
all these v −1 parameters. Clearly, then the number of slides, N , in the experiment
must satisfy N ≥ v − 1. We first consider the saturated case N = v − 1 and obtain
a collection of optimal designs. In addition to facilitating a choice under resource
constraints, this paves the way for the development of an approach for finding op-
timal or efficient designs in the practically more important nearly saturated cases
that are taken up in the next subsection.

RESULT 2. Let N = v − 1 and consider a design that keeps all the θs es-
timable. Then for any θi1...in , which represents a factorial effect involving u fac-
tors,

Var(θ̂i1...in) ≥ σ 22u−1,(9)

where θ̂i1...in is the BLUE of θi1...in .

Result 3 below shows that the same design can attain the lower bound in (9)
simultaneously for all the θs. Such a design is then optimal not only in overall
terms but also individually for every parameter representing a main or interaction
effect. In what follows, a slide which compares treatment combinations i1 . . . in and
j1 . . . jn, respectively with red and green dye-coloring, is denoted by the ordered
pair (i1 . . . in, j1 . . . jn). A design is represented by a collection of such pairs. Note
that the ordering within any pair is immaterial at this stage for inferential purposes,
as we are now assuming the absence of dye-color bias. For any i1 . . . in �= 0 . . .0, let
ρ(i1 . . . in) be obtained replacing the first nonzero entry of i1 . . . in by 0 and leaving
the other entries unchanged. For instance, with a 2 × 2 × 3 factorial, ρ(012) =
002, ρ(111) = 011 etc.

RESULT 3. Let N = v − 1. Then the design

d0 = {
(i1 . . . in, ρ(i1 . . . in)) : 0 ≤ ij ≤ sj − 1,1 ≤ j ≤ n, i1 . . . in �= 0 . . .0

}

leads to the attainment of the lower bound in (9) simultaneously for all the θs.

REMARK 1. For n = 2, one can check that Result 3 remains valid if for every
i1 ≥ 1, i2 ≥ 1, ρ(i1i2) is allowed to be either 0i2 or i10, instead of being fixed at
0i2 as stipulated above. Because of the two possibilities for any such ρ(i1i2), one
gets a collection of 2(s1−1)(s2−1) optimal designs.

REMARK 2. Examples can be given to show that, for n ≥ 3, Result 3 does not
remain valid if, in the spirit of Remark 1, each ρ(i1 . . . in) is obtained simply by
replacing an arbitrary, rather than the first, nonzero entry of i1 . . . in by 0. However,
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even then, Result 3 leads to a collection of optimal designs via factor permutation.
To illustrate this point, observe that Result 3 yields the design

d0 = {(001,000), (002,000), (010,000), (011,001), (012,002), (100,000),

(101,001), (102,002), (110,010), (111,011), (112,012)}
for a 2 × 2 × 3 factorial, and the design

{(001,000), (010,000), (011,001), (100,000), (101,001), (110,010),

(111,011), (200,000), (201,001), (210,010), (211,011)}
for a 3×2×2 factorial. Permuting the factors in the latter, one readily gets another
design for the 2×2×3 factorial which, like d0, is optimal in the sense of Result 3.
In the same manner, Result 3 can be easily applied to all possible factor orderings
to yield a collection of optimal designs.

4.3. Nearly saturated designs. The optimal designs Section 4.2 are saturated
and, hence, do not yield an internal estimator of σ 2 which is important for testing
of hypotheses. This difficulty can persist even if the same clone is replicated r (>

1) times on each slide. Then, for the purpose of estimating the θs, the means of the
r log intensity ratios arising from the slides play the role of the individual ratios
considered so far, but an attempt to estimate σ 2 on the basis of the within slide
variation can be vitiated by unknown correlation among the ratios arising from the
same slide [Yang and Speed (2002) and Churchill (2002)].

In view of the above, as a feasible yet economic approach to getting degrees of
freedom for the estimation of σ 2, one may like to have a little more than v − 1
slides and thus consider nearly saturated designs. Unlike in the saturated case, typ-
ically for N > v − 1, no single design can estimate all the θs with the minimum
variance. We, therefore, consider the w-optimality criterion as applicable to gen-
eral factorials. Analytical derivation of optimal designs, via either combinatorial
techniques or approximate design theory, still remains difficult for N > v − 1.

The results in the last subsection, however, readily yield a heuristic approach
which, as computations indicate, leads to highly efficient, if not optimal, designs.
Based on the intuitive expectation that, for N close to v − 1, a design obtained via
augmentation of an optimal saturated design should behave well, we propose the
following steps:

(I) Given s1, . . . , sn, list all optimal saturated designs given by Result 3 and
Remark 1 or 2.

(II) Given N , augment each design in (I) in all possible ways to generate de-
signs with N slides.

(III) From the augmented designs in (II), select one as per the chosen optimality
criterion, also taking care of resource constraints, if any.
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TABLE 1
w-optimal designs for the 2 × 2 factorial

N w w-optimal design

4 1,2,3 {(01,00), (10,00), (11,01), (11,10)}
5 1,2,3 {(01,00), (10,00), (10,00), (11,01), (11,10)}
6 1,2,3 {(01,00), (01,00), (10,00), (10,00), (11,01), (11,10)}

For N close to v − 1, computationally the above steps are far easier to imple-
ment than a complete enumeration of all designs. The least favorable cases for this
approach are those where the saturated designs involve a rather small number of
slides, and hence, even a slightly larger N can potentially have a significant impact.
From this viewpoint, the approach is now evaluated for 2 × 2 and 2 × 3 factorials
which represent the two smallest saturated cases. We consider w-optimal designs
that, for an s1 × s2 factorial, aim at minimizing

s1−1∑

i1=1

Var(θ̂i10) +
s2−1∑

i2=1

Var(θ̂0i2) + w

s1−1∑

i1=1

s2−1∑

i2=1

Var(θ̂i1i2).

Tables 1 and 2 show w-optimal designs, as obtained by complete enumeration of
all designs, for 2×2 and 2×3 factorials, with w = 1,2,3, and N = v −1+ j (j =
1,2,3). While these optimal designs can be nonunique, only one such design is
reported in each case to save space.

Every design in Table 1 or 2 contains the optimal saturated design d0 of
Result 3 as a subdesign, thus showing that the heuristic approach, based on
augmentation, indeed yields a w-optimal design in each of these cases. For
the 2 × 2 factorial, we have also checked that all admissible designs for N =
4,5 and 6 are augmentations of one of the two optimal saturated designs,
{(01,00), (10,00), (11,01)} and {(01,00), (10,00), (11,10)}, arising from Re-
mark 1.

For an s1 × s2 factorial, let d̄ be the design obtained as the union of the
2(s1−1)(s2−1) optimal saturated designs given by Remark 1, that is, d̄ consists of

TABLE 2
w-optimal designs for the 2 × 3 factorial

N w w-optimal design

6 1,2,3 {(01,00), (02,00), (10,00), (11,01), (12,02), (11,10)}
7 1, 2, 3 {(01,00), (02,00), (10,00), (11,01), (12,02), (11,10), (12,10)}
8 1 {(01,00), (02,00), (10,00), (11,01), (12,02), (11,10), (12,10), (02,01)}
8 2,3 {(01,00), (02,00), (10,00), (10,00), (11,01), (12,02), (11,10), (12,10)}
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the v − 1 + (s1 − 1)(s2 − 1) slides (i1i2,0i2),1 ≤ i1 ≤ s1 − 1,0 ≤ i2 ≤ s2 − 1, and
(i1i2, i10),0 ≤ i1 ≤ s1 − 1,1 ≤ i2 ≤ s2 − 1. Let � be the class of all designs that
consist of N slides from d̄ , where v−1 < N ≤ v−1+ (s1 −1)(s2 −1). Tables 1, 2
and partial enumeration in several other cases lead us to the following conjecture.

CONJECTURE. (a) If N = v − 1 + (s1 − 1)(s2 − 1), then the design d̄ is w-
optimal for any w ≥ 1.

(b) If v − 1 < N < v − 1 + (s1 − 1)(s2 − 1), then for any w ≥ 1, a w-optimal
design in � is also w-optimal in the class of all designs.

The case N = 4 in Table 1 and the cases N = 6,7 in Table 2 pertain to the
Conjecture and show its truth, with w = 1,2,3, for 2 × 2 and 2 × 3 factorials.
Furthermore, using approximate design theory, the efficiency of the design d̄ in
(a) is seen to be at least 91.88%, 94.16% and 95.57% for the 2 × 4 factorial, and
at least 94.26%, 96.16% and 97.04% for the 3 × 3 factorial, under w = 1,2 and
3 respectively. Indeed, if this Conjecture is true in general, then part (b) would
considerably reduce the search for an optimal design, while part (a) would give a
compact result.

For general factorials, one can define the orthogonal parametrization via a
straightforward extension of (3); see, for example, Gupta and Mukerjee [(1989),
Chapter 2]. Under this parametrization, BIB designs are optimal in a very strong
sense [Kiefer (1975)] and extended group divisible (EGD) designs are known
to be admissible [Gupta and Mukerjee (1989), Chapters 3 and 8]. While Exam-
ple 1 demonstrates that a BIB design can become inadmissible under the base-
line parametrization, we now show that the same can happen with EGD de-
signs. Note that in the context of microarrays, an EGD design is one where
the number of slides comparing any two treatment combinations i1 . . . in and
j1 . . . jn depends only on the equality or otherwise of iu and ju,1 ≤ u ≤ n. Thus,
for the 2 × 3 factorial and with N = 6 slides, there is a unique EGD design
{(11,00), (12,00), (10,01), (12,01), (10,02), (11,02)} that allows the estimabil-
ity of all treatment contrasts. Under the baseline parametrization, this design be-
comes inadmissible because it estimates each of the θs with uniformly larger vari-
ance than the w-optimal design shown in Table 2 for N = 6.

5. Results under effects due to dye-coloring. We now extend the main ideas
of Section 4 to the situation where the underlying model includes effects due to
dye-coloring. For 0 ≤ ij ≤ sj − 1,1 ≤ j ≤ n, let β

(1)
i1...in

and β
(2)
i1...in

be the expected
log intensities for the treatment combination i1 . . . in under red and green dye-
coloring respectively. Then τi1...in = 1

2{β(1)
i1...in

+β
(2)
i1...in

} represents the overall effect

of i1 . . . in, whereas λi1...in = 1
2{β(1)

i1...in
− β

(2)
i1...in

} accounts for the effect of dye-
coloring on i1 . . . in. For any slide (i1 . . . in, j1 . . . jn), which compares treatment
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combinations i1 . . . in and j1 . . . jn respectively with red and green dye-coloring,
the expected log intensity ratio is now given by

β
(1)
i1...in

− β
(2)
j1...jn

= τi1...in − τj1...jn + λi1...in + λj1...jn .(10)

The parameters of interest continue to be the θs , representing the main and inter-
action effects and defined with reference to the τ s as in Section 4.1. The λs are, on
the other hand, nuisance parameters to us. Unlike in the previous sections, where
we took the λs as zeros, now these are kept perfectly general. Hence, as (10) in-
dicates, the ordering within the slides is no longer inconsequential. A reduced but
more restrictive version of the model (10) will be considered briefly in Section 6.

In the presence of dye-coloring effects, several authors, notably Yang and Speed
(2002), advocated the use of dye-swapped experiments. It is not hard to see that,
under (10), any estimable contrast of the τ s is estimated orthogonally to the λs in
such an experiment. Let d0 be any optimal design arising from Result 3, Remark 1
or Remark 2. The dye-swapped version of d0, denoted by d

swap
0 , is a design that

includes both the slides (i1 . . . in, j1 . . . jn) and (j1 . . . jn, i1 . . . in) for every slide
(i1 . . . in, j1 . . . jn) in d0. Given the optimality of d0 in the absence of dye-coloring
effects, one may be inclined to recommend the use of d

swap
0 in the present setup.

However, in order to justify this rigorously, the following questions need to be
answered:

(a) There are 2(v − 1) slides in d
swap
0 . Are at least 2(v − 1) slides required

to estimate all the θs under (10), even when possibly nonorthogonal (to the λs)
estimation is allowed?

(b) Under (10), will d
swap
0 be optimal, in the sense of Result 3, among all de-

signs that involve 2(v − 1) slides and keep the θs estimable?
The possibility of nonorthogonal estimation complicates (a). Similarly,

(b) needs careful attention because orthogonality alone does not guarantee opti-
mality with 2(v − 1) slides.

Satisfyingly, the answers to both (a) and (b) are in the affirmative. The following
results confirm this and, hence, vindicate the proposal of Yang and Speed (2002)
about dye-swapping. As before, the total number of slides is denoted by N . Also,
we continue to assume that the log intensity ratios arising from different slides are
uncorrelated and homoscedastic with common variance σ 2.

RESULT 4. Under the model (10), at least 2(v − 1) slides are required to keep
all the θs estimable.

RESULT 5. Let N = 2(v − 1) and consider a design that keeps all the θs es-
timable under (10). Then for any θi1...in , which represents a factorial effect involv-
ing u factors,

Var(θ̂i1...in) ≥ σ 22u−2,(11)

where θ̂i1...in is the BLUE of θi1...in under (10).
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RESULT 6. Let N = 2(v − 1) and d
swap
0 be a design defined as above. Then,

under (10), dswap
0 leads to the attainment of the lower bound in (11) simultaneously

for all the θs.
These results show the optimality of d

swap
0 in a strong sense. Although Result 5

resembles Result 2, its proof involves much extra work. Following Remarks 1
and 2, there is considerable flexibility in the choice of d0 and hence that of d

swap
0 .

In addition to being helpful under resource constraints, this facilitates the task of
finding highly efficient designs when one intends to use a little more than 2(v − 1)

slides so as to gain degrees of freedom for the estimation of σ 2. For this purpose,
the same heuristic approach as in Section 4.3 can be followed with the only change
that now in step (I), all possibilities for d

swap
0 , corresponding to d0 arising from

Result 3 and Remark 1 or 2, have to be considered. As an illustration, consider the
2 × 2 factorial and let N = 8. Then, under the criterion of w-optimality (w = 1,2
or 3), the above approach yields the design

{(01,00), (10,00), (11,01), (00,01), (00,10), (01,11), (11,10), (10,11)},
which is an augmentation of d

swap
0 (consisting of the first six slides) and a dye-

swapped design by itself. A complete enumeration shows that this design is, in-
deed, w-optimal among all designs with N = 8 slides, for w = 1,2,3 and under
the model (10).

6. Concluding remarks.

6.1. Robustness considerations. The results in this paper were obtained un-
der the assumption that the log intensity ratios for a gene, arising from different
slides, are homoscedastic and uncorrelated. A discussion on this assumption is
warranted. In cDNA microarray experiments, the measurement error is typically
swamped in biological variability. From a practical viewpoint, it is therefore ap-
propriate to attribute the variance of an observed log intensity ratio arising from
a slide (i1 . . . in, j1 . . . jn) to components, say, γ 2

i1...in
and γ 2

j1...jn
, representing the

biological variability within the cell populations given by i1 . . . in and j1 . . . jn, in
addition to a component, say, δ2, due to the measurement error. Thus, this vari-
ance equals γ 2

i1...in
+ γ 2

j1...jn
+ δ2. If the variance components γ 2

i1...in
are supposed

to be equal for all cell populations [cf. Kerr (2003) and Altman and Hua (2006),
among others] with common value say, γ 2, then the log intensity ratios arising
from different slides are homoscedastic with common variance σ 2 = 2γ 2 + δ2.
Furthermore, these ratios can be safely assumed to be uncorrelated if the replica-
tions for every treatment combination are biological (i.e., the same subject does
not appear in more than one slide). Thus, in this situation all our results go through
with σ 2 = 2γ 2 + δ2.

If, however, the variance components γ 2
i1...in

associated with the cell popula-
tions are not all equal, then the assumption of homoscedasticity no longer holds.
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TABLE 3
Efficiencies of π0 under heteroscedasticity

Situation w = 1 w = 2 w = 3

(i) 99.90% 99.89% 99.86%
(ii) 99.25% 99.03% 98.91%

(iii) 99.43% 99.15% 99.00%

In order to give a flavor of the robustness of our results to this possibility, we
revisit Sections 3 and 4. For the 2 × 2 factorial in Section 3, writing γ̃ 2

i1i2
=

γ 2
i1i2

/δ2, three patterns are considered for (γ̃ 2
00, γ̃

2
01, γ̃

2
10, γ̃

2
11): (i) (2,2.5,2.5,3),

(ii) (2,3,4,6) and (iii) (6,4,3,2). Under (i)–(iii), one can employ the approxi-
mate design theory to find the w-optimal design measures and, hence, obtain Ta-
ble 3 showing the efficiencies of the design measure π0 reported earlier in Re-
sult 1(a). It is satisfying to note that π0, which is w-optimal under homoscedas-
ticity, remains quite robust even to the appreciably heteroscedastic situations (ii)
and (iii). The exact designs arising from π0 are also seen to remain highly effi-
cient under (i)–(iii). The findings are almost equally encouraging for the nearly
saturated optimal exact designs shown in Tables 1 and 2. Under (i)–(iii) and
for w = 1,2,3, the designs in Table 1 often remain w-optimal among all ex-
act designs and, except in one case, always have efficiency over 97%. The ex-
ceptional case concerns the design for N = 6, which has efficiency 93.40% un-
der (ii) when w = 3. For the 2 × 3 factorial, along the line of (i)–(iii), we con-
sidered the patterns (2,2.5,2.5,2.5,3,3), (2,3,3,4,6,6) and (6,4,4,3,2,2) for
(γ̃ 2

00, γ̃
2
01, γ̃

2
02, γ̃

2
10, γ̃

2
11, γ̃

2
12). Under all these patterns and for w = 1,2,3, the de-

signs in Table 2 often turn out to be w-optimal and always have efficiency over
98%.

The log intensity ratios from different slides, of course, get correlated when the
same subject is allowed to appear in more than one slide. If we continue to as-
sume the equality of the γ 2

i1...in
and denote their common value by γ 2, then the

correlation terms depend on the ratio γ 2/δ2, which is commonly unknown. As a
result, the standard linear model based analysis and the associated optimal design
theory will not work. On the other hand, if we pretend γ 2/δ2 to be known so as
to allow the use of weighted least squares, empirical evidence suggests in favor
of having only biological replications from the point of view of efficiency. To il-
lustrate this point without making the presentation too involved, we consider the
case of a 2 × 2 factorial design in N = 4 slides under the absence of dye color
effects. We made an enumeration of all such designs that keep the main and in-
teraction effects estimable and, for each design and every treatment combination,
enumerated all possibilities for biological or technical replication (here technical
replication means repeating the same subject on more than one slide). For instance,
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in the design d∗ = {(01,00), (10,00), (11,01), (11,10)}, the two replications for
any treatment combination can be biological or technical, thus leading to 16 pos-
sibilities arising from this design alone. The complete enumeration revealed that,
if the ratio γ 2/δ2 is pretended to be known, then irrespective of the value of this
ratio, the design d∗, with all replicates biological, is w-optimal whenever w ≥ 2

3 .
Earlier, in Table 1, the same design was reported to be w-optimal for w = 1,2
and 3 in the homoscedastic and uncorrelated setup. Complete enumeration of this
kind becomes unmanageable for more complex factorials, but partial enumeration
in several other situations led to similar conclusions. This reinforces the findings
in Kerr (2003) in a simpler setting and suggests that, in addition to making the log
intensity ratios from different slides uncorrelated, use of only biological replicates
can be advantageous from the perspective of design efficiency as well; see also
Kendziorski et al. (2005) and the references therein for insightful practical results
in a similar context. The point just noted makes sense if the cost of biological repli-
cation is negligible compared to the cost of the assay per slide, as has been tacitly
supposed in this paper. While Bueno Filho, Gilmour and Rosa (2006) mention that
the number of slides is typically the most important limiting factor in microarray
experiments, a more detailed discussion in this regard is available in Kerr (2003),
who also dwelt on the situation where this is not the case. If the cost of biological
replication is a real issue, then the design problem becomes much more complex.
Instead of fixing the number of slides, as done here, one should then proceed in the
spirit of Kerr (2003) to formulate the problem in terms of a cost function that incor-
porates the cost of the assays (slides), as well as the cost of biological replication.
Given such a cost constraint, the possibility of technical replication and associated
correlation will also have to be accounted for. Since commonly this correlation is
unknown, the optimal design problem will then concern some kind of likelihood
based rather than linear model based analysis.

6.2. Further open issues. Even within the homoscedastic and uncorrelated
setting, there are several open issues that deserve attention. One of these concerns
analytical derivation of optimal designs for N greater than v − 1 or 2(v − 1) in
Sections 4 or 5 respectively. For instance, a proof of the Conjecture in Section 4.3
will be of interest. This can, however, be challenging, and pending a complete so-
lution, our heuristic approach holds the promise of yielding designs that are at least
highly efficient.

From a practical point of view, an important design problem is that of fractional
replication. Compared to traditional factorials, a difficulty here is the lack of ef-
fect hierarchy [Wu and Hamada (2000), page 112]. Even in the two-factor case,
the interaction can be of greater interest to biologists than the main effects. Hence,
especially when the number of factors, n, is relatively small, it may be too drastic
to ignore some interactions, as required in fractional replication. For large n, how-
ever, this can be a sensible option. The experience with factorial fractions under
the orthogonal parametrization [see, e.g., Dey and Mukerjee (1999)] suggests that
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then, under specification from biologists about the pattern of negligible interac-
tions, the present techniques should be useful.

A problem, akin to that of fractional replication, concerns the study of op-
timal deigns when the impact of possible dye-color bias can be modeled via
a reduced version of (10). Note that the model (10) allows a very general
form for the effect of dye-coloring and, hence, is applicable to a broad spec-
trum of situations. If in a specific application one has sufficient knowledge
of the underlying process so as to entertain the risk of assuming that such
effect is repeatable over slides, that is, additive to treatment effects, then in
(10) one can replace λi1...in + λj1...jn by a single parameter η. In this case,
it can be shown that at least v slides are required to keep all the θs es-
timable. However, in contrast with Results 3 and 6, no single design with
v slides is optimal simultaneously for all these parameters. For this reduced
model, it is known that any even design (i.e., a design where every treat-
ment combination appears an even number of times) allows a dye-color assign-
ment that ensures orthogonality to η [Kerr and Churchill (2001a)]. For even
s1 and s2, the design in Conjecture (a) of Section 4.3 is even and, hence,
with appropriate dye-color assignment, it is again conjectured to be optimal
under this model. For odd s1 or s2 too, the initial findings are optimistic.
Thus, for the 2 × 3 factorial, Conjecture (a) yields the nearly orthogonal design
{(00,01), (02,00), (10,00), (01,11), (11,10), (12,02), (10,12)}, and a complete
enumeration shows that it is, indeed, w-optimal among all designs with 7 slides,
for w = 1,2,3 and under the reduced model.

In the present paper we studied optimal designs from the statistical consider-
ation of efficiency. From this perspective, our designs often outperform more el-
ementary ones that have gained popularity in applied work. For instance, in the
setup of Sections 4 and 5, it is easy to check that the designs arising from Re-
sults 3 and 6 estimate the main effect parameters with the same variance and en-
tail smaller variances for the interaction parameters, as compared to the commonly
used reference design or the dye-swapped version thereof, respectively. These sim-
pler designs may, however, have other practical benefits, including those dictated
by manufacturer recommendations. Nevertheless, as noted earlier, our results allow
considerable flexibility under resource constraints and should be useful to applied
researchers concerned with practical issues in addition to efficiency considerations.
Even in extreme situations where such practicalities preclude direct implementa-
tion of the proposed designs, the latter would help in benchmarking the designs
actually used from the point of view of efficiency.

It is hoped that the present endeavor will generate further interest in the above
directions.

Acknowledgments. We thank the referee, the associate editor and the editor
for very constructive suggestions. This work was supported by the Center for Man-
agement and Development Studies, Indian Institute of Management Calcutta.



384 T. BANERJEE AND R. MUKERJEE

SUPPLEMENTARY MATERIAL

Optimal factorial designs for CDNA microarray experiments: Proofs (doi:
10.1214/07-AOAS144SUPP; .pdf). Technical details, including proofs, appear in
a supplementary material file posted at the journal website.
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