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Abstract

Fractional factorial designs are used in a wide variety of disciplines as a means of

studying how changes in the settings of a set of factors influence a response variable.

Two important considerations in choosing a fractional factorial design are identifying

which effects can be jointly estimated and how the effects not estimated influence the

estimation.

Orthogonal arrays with clear two-factor interactions provide a class of designs

robust to nonnegligible effects. In the first part of this thesis, we introduce the concept

of partially clear interactions which leads to a richer class of robust designs when

specific interactions are known to be negligible a priori. We develop several methods

to construct designs that allow for additional factors to be studied in comparison to

designs with clear two-factor interactions. When used in conjunction with non-regular

designs, the results become even more powerful as they provide additional flexibility

and retain the robust properties.

In some situations, the experimenter would like to study factors at more than two

levels, such as when curvature has the potential to occur within the experimental

region. The second part of this thesis focuses on the estimation of main effects and

specified interactions for designs with more than two levels. As designs with more

than two levels have additional complications, results are provided that aid in the

search for efficient designs that also have robust properties.

For two-level designs, the criteria of $G$ and G2-aberration are based on J-

character-

istics and they provide measures of the projection properties of a design. For multi-

level designs, extension to G2 was previously done without the use of J-characteristics.
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The J-characteristics for multi-level designs are introduced in the last part of this the-

sis as an intuitively appealing means to measure lower-dimensional properties, which

leads to more natural definitions of G and G2-aberration. We show how the properties

of a design can be gleaned by using an analysis of variance as taught in introductory

statistics courses.
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Chapter 1

Introduction

1.1 Factorial Designs

Experimenters are often concerned with how changes of certain factors impact a pro-

cess. If the experimenter has some control over the settings of these factors, then

experimentation through changing these settings can aid in understanding the pro-

cess. By using settings of the factors at a fixed number of values, referred to as levels,

a factorial design is typically used as a plan to conduct such an experiment. Instead

of focusing on one factor at a time, a factorial experiment varies the levels of these

factors simultaneously. Depending on the different combinations of factors used in the

experiment, not only can the experimenter study how the factors impact the response

individually, but also their interaction. If enough attention is not placed in the design

phase, the experimenter may not be able to meet the objectives of the experiment. A

well-designed experiment can be analyzed in a valid and objective way, making it an

important aspect of the experimental process.

Throughout this thesis, we assume that the experimental data can be adequately

modeled by the general linear model. For a factorial design with n runs and m factors,

the general linear model is written as

Y = X0β0 +X1β1 +X2β2 + · · ·+Xmβm + ε (1.1)

where Y is the vector of n observations for the response, X0 is the vector of 1’s, β0 the

1



CHAPTER 1. INTRODUCTION 2

intercept, Xi is the matrix of covariate values for the i-factor interactions with βi the

corresponding effects, and ε the vector of independent random errors. For convenience,

when discussing the use of (1.1), we assume the use of orthogonal contrasts and denote

the effects as factorial effects throughout. This allows independent tests on the effects

and estimates can still be related back to original values. We refer the reader to

Chapter 1 of Wu and Hamada (2000) or an introductory text on design and analysis

of experiments for more details.

Running all possible level combinations of the factors, called a full factorial design,

allows for the estimation of all factorial effects. While this makes performing a full

factorial design desirable, running all possible combinations of the factors may not

be feasible for a variety of reasons including economic limitations, ethical concerns

for certain combinations of factors, and situations where certain combinations do not

make practical sense or are not possible to be run together. In such situations, a

fractional factorial design (FFD) that uses a fraction of the runs of the full factorial

design is frequently used. However, using a smaller subset of runs comes with a price;

factorial effects become aliased. In regular designs, those determined by a defining

relation, factorial effects are either orthogonal or fully aliased. If a design does not

have the aforementioned property we refer to the design as non-regular. The question

then becomes how to determine the desirability of a design based on the nature of

this aliasing.

1.2 Choosing Fractional Factorial Designs

While the appropriateness of a design is ultimately based on the experimental objec-

tives, there are some working assumptions that are generally accounted for in choosing

designs. These are based on empirical evidence and play an important role in ranking

designs and analyzing results. Three fundamental principles for factorial effects in

fractional factorial designs (Wu and Hamada, 2000) are:

1. Hierarchical Ordering Principle: (i) Lower order effects are more likely to

be important than higher order effects, and;
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(ii) effects of the same order are equally likely to be important.

2. Effect Sparsity Principle: The number of relatively important effects in a

factorial experiment is small (Box and Meyer, 1986).

3. Effect Heredity Principle: In order for an interaction to be active, at least

one of its parent factors should be active (Hamada and Wu, 1992).

Using these principles, FFDs can be constructed and ranked. Following the hierar-

chical ordering principle, the main effects are the most important factorial effects,

followed by two-factor interactions, three-factor interactions, etc. In the ANOVA

model (1.1), these apply to β1, β2, β3, . . .. With this ranking of effects in mind, Box

and Hunter (1961) introduced the criterion of maximum resolution for regular designs

to measure the aliasing between lower order effects. As a means of further distinguish-

ing between designs having the same resolution, Fries and Hunter (1980) proposed

the minimum aberration criterion. These ideas were generalized to non-regular two-

level designs by Deng and Tang (1999) and Tang and Deng (1999) through G2 and

G-aberration. Generalized minimum aberration was derived for multi-level designs by

Xu and Wu (2001). The notion of G2 and G-aberration for multi-level designs will be

returned to later in this thesis. We now discuss other considerations that may arise

in choosing an appropriate design for an experiment.

1.2.1 Requirement Sets

By the hierarchical ordering principle, effects of the same order are equally likely to

be important. However, there are situations where a certain subset of effects are of

interest to the experimenter. For example, the experimenter’s interest may be in the

estimation of the main effects and a specified set of two-factor interactions. Consid-

ering a specific subset of interactions is important from a practical standpoint, but

breaks the hierarchical ordering principle, meaning maximum resolution and mini-

mum aberration designs will no longer be the best choice for these cases. The goal

is then to find designs that allow estimation of the effects of interest, if such designs

exist. This idea goes back to Addelman (1962). Franklin and Bailey (1977) presented
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an algorithm for generating designs with a requirement set for two levels, and was

extended by Franklin (1985) additional levels. In this thesis we call this set of ef-

fects a requirement set, as done by Greenfield (1976). If we are able to find more

than one design that allows for estimation of the requirement set, we can differenti-

ate between these designs using another criterion. Popular examples of these include

D-optimality, which minimizes the volume of the confidence ellipsoid for the set of

factorial effects, and A-optimality, which minimizes the sum of the variances of the

regression coefficients.

1.2.2 Robustness to Nonnegligible Effects

If we can find a design that can estimate the requirement set, the estimates may be

aliased with effects that are not estimated. If the effects not estimated are nonneg-

ligible, this aliasing should be accounted for. For example, if the experimenter is

interested in estimating the main effects of the factors, they may fit the main effects

model given by

Y = X0β0 +X1β1 + ε. (1.2)

Using model (1.2), the least squares estimate of β1 is calculated as β̂1 = (XT
1 X1)

−1XT
1 Y .

This estimate is unbiased for model (1.2), but if model (1.1) is the true model, we

have

E(β̂1) = β1 + C2β2 + · · ·+ Cmβm, (1.3)

where the Ci = (XT
1 X1)

−1XT
1 Xi are called the aliasing matrices for i = 2, . . . ,m.

If elements of βi are nonnegligible, they can introduce bias on the estimation of β1

as seen in (1.3). We will see later that, for a requirement set with some two-factor

interactions, replacing X1 in (1.2) by the model matrix for the requirement set can

be easily adapted to (1.2) and (1.3).

This examination of the bias dates back to Box and Draper (1959) for response

surface designs. If we are only interested in the main effects, the ranking of designs can

be done with G and G2-aberration. When certain interactions are to be estimated, a

different tactic needs to be taken in regards to bias. One approach is to treat all those

effects not estimated as negligible, but this may not be a reasonable assumption.
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Another typical approach is to treat higher-order interactions as negligible. This

can still leave nonnegligible effects that are not estimated. If the effects that are

estimated are aliased with these effects, we get biased estimates. To prevent this, we

want a design that is robust to nonnegligible effects. Wu and Chen (1992) defined

clear two-factor interactions as those which are orthogonal to all main effects and

other two-factor interactions. Clear two-factor interactions are valuable because their

estimates are robust to nonnegligible effects if interactions involving three or more

factors are negligible.

One of the themes of this thesis is combining the requirement set problem with

robustness to nonnegligible interactions. In one case, robustness will be achieved

through prior information about some of the effects to ensure robustness to nonnegli-

gible effects. In another, we look to efficient estimation of the requirement set firstly,

and then try to establish robustness properties. Related work for two-level designs is

seen in Ke and Tang (2003) and Wu (2009), and by Jones and Nachstheim (2011) for

three-level designs.

1.2.3 Screening Experiments and Response Surface Explo-

ration

Much of the discussion to this point has been concerned with a specific set of effects

to be estimated. Without a requirement set, FFDs can be used for factor screening,

with the intention of identifying a subset of the factors that have a large influence on

the response. More detailed experimentation can then be performed on this smaller

subset of factors. By the effect sparsity principle, this subset is expected to be small

in size. If there is the possibility that one or more of the lower order interactions

are significant, ideally we should be able to entertain as many of the smaller subsets

that include some interactions as possible. For regular designs, the nature of the

aliasing is well-defined, but leaves some effects indistinguishable from each other.

Non-regular designs have a complex aliasing pattern, but have the potential to allow

for the estimation of a greater number of models involving smaller subsets of factors.

Some metrics for choosing designs for this purpose include estimation capacity (Sun,
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1993 and Cheng, Steinberg and Sun, 1999), projection estimation capacity (Loeppky,

Sitter and Tang, 2007), and average D-efficiency (Cheng, Deng and Tang, 2002).

In non-regular designs, complex aliasing can make it difficult to discriminate be-

tween sets of models. Some proposed solutions to identifying subsets of factors in-

fluencing the response include Hamada and Wu (1992), Chipman, Hamada, and Wu

(1997) and Wolters and Bingham (2011). If the purpose of the experiment is to max-

imize or minimize a response, one strategy is to use response surface methodology on

this smaller subset of factors. Response surface methodology is a two-phase process

which involves using first order models to find an experimental region near the opti-

mum and fit a second-order model that allows for curvature within that region. In

Chapter 3 we will consider an alternative to standard response surface methodology,

when estimating curvature is desirable but not follow-up experimentation.

1.3 Orthogonal Arrays

The fractional factorial designs considered in this thesis are orthogonal arrays. Or-

thogonal arrays date back to the 1940’s to Rao (1947) and Plackett and Burman (1946)

and form the basis for most factorial designs. An orthogonal array OA(n, s1, . . . , sm, t)

is an n × m matrix in which column i has si levels for i = 1, . . . ,m, such that for

any subset of t columns all possible level combinations occur equally often. In the

experimental sense, the n rows can be thought of as the experimental runs and each

column represents the settings for a factor. We refer to t as the strength of the or-

thogonal array. The strength of an orthogonal array is related to the estimability

of the interaction terms in the linear regression model. The higher the strength of

an orthogonal array, the more interaction terms can be estimated independently of

each other. In terms of clear effects, for an orthogonal array of strength 2, the main

effects and clear two-factor interactions can be estimated with the clear two-factor in-

teractions robust to nonnegligible two-factor interactions, under the assumption that

interactions involving three or more factors are negligible. Under the same assump-

tion with interactions involving three or more factors being negligible, both the main
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effects and clear two-factor interactions are estimable and robust to nonnegligible two-

factor interactions in an orthogonal array of strength 3. Unfortunately, the higher the

strength of an orthogonal array for a fixed set of factors, the larger the run size needs

to be. Similarly, for a fixed run size, the higher strength implies fewer factors can be

considered.

Regular designs presented in introductory design of experiments textbooks are a

special case of orthogonal arrays. With the inclusion of non-regular designs, orthog-

onal arrays provide a much richer class of designs to consider in terms of run size

economy and flexibility, while ensuring the main effect estimates are mutually orthog-

onal. Throughout this thesis, we will make use of catalogs such as those in Chen, Sun

and Wu (1993) and Evangelaras, Koukouvinos and Lappas (2011) in searching for

designs for different experimental objectives. An extensive look at orthogonal arrays

is done in Hedayat, Sloane, and Stufken (1999). More recent work on designs using

orthogonal arrays appears throughout this thesis.

1.4 Outline

We now give an outline for the remainder of the thesis with a brief description of each

chapter and motivation behind it.

Orthogonal arrays with clear two-factor interactions provide a class of designs that

are robust to nonnegligible effects. If certain prior knowledge is available, then robust

designs may allow additional factors to be studied. This is done through partially clear

two-factor interactions. In Chapter 2 we investigate the existence and construction

of such robust designs and present an upper bound on the maximum number of clear

two-factor interactions.

While two-level designs allow the estimation of linear effects, the experimenter

may require the use of more than two levels per factor. The ideas of a requirement set

and influence of those effects not estimated become more complicated when factors

are studied at more than two levels. Chapter 3 studies the problem of requirement sets

for factors with more than two levels and robustness to those effects not estimated.

Chapter 4 considers finding designs with desirable projection properties. In an
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orthogonal array of strength t, in any subset of t columns, all level permutations

occur equally often. If strength t is not attainable, ideally the lower-dimensional

projections of a design should resemble this property for smaller values of t. With

this idea, we introduce the J-characteristics for multi-level designs which are based

on the frequency of design points and can be used to examine lower dimensions. We

will use these J-characteristics to rank designs.

The thesis is concluded in Chapter 5 with a summary of Chapters 2, 3 and 4 and

a general discussion on possible future work.



Chapter 2

Robust Designs Through Partially

Clear Two-Factor Interactions

2.1 Introduction

In this chapter, we consider factorial designs with two levels, although the main ideas

are generally applicable. Two-level factorial designs are widely used for screening

experiments in industrial applications. Two-level orthogonal arrays enjoy run size

economy and flexibility beyond those of regular factorial designs.

Orthogonal arrays with clear two-factor interactions are robust to nonnegligible

two-factor interactions. In an orthogonal array, a two-factor interaction (2fi) is said

to be clear if it is orthogonal to all main effects and all other two-factor interactions

(2fi’s). Under the assumption that interactions containing three or more factors are

negligible, an orthogonal array of strength 2 allows estimation of clear 2fi’s even if

the other 2fi’s are nonnegligible, although main effects may be aliased with some

2fi’s. Under the same assumption regarding interactions of three or more factors, if

an orthogonal array is of strength 3, main effects and clear 2fi’s can all be estimated

regardless of the nonnegligible 2fi’s.

Clear 2fi’s were introduced by Wu and Chen (1992) and their existence was ex-

amined by Chen and Hedayat (1998). Cheng, Steinberg and Sun (1999) and Wu and

Wu (2002) explored the relationship between the criterion of minimum aberration and

9
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that of the maximum number of clear 2fi’s. Other work on clear 2fi’s includes Tang,

Ma, Ingram and Wang (2002), Ke, Tang and Wu (2005), Chen, Li, Liu, and Zhang

(2006), and Lisonek (2006). The concept of clear 2fi’s was generalized to orthogonal

arrays by Tang (2006).

In this chapter, instead of treating all 2fi’s that are not estimated as either neg-

ligible or nonnegligible, we consider the situation in which some 2fi’s are assumed

to be negligible while others are not. Assuming all 2fi’s that are not estimated are

negligible such as in Addelman (1962), Greenfield (1976) and Sun (1993) may be too

strong whereas assuming all are nonnegligible may be too restrictive. The assumption

that some 2fi’s are negligible leads to a class of robust designs that allow more factors

to be studied as compared to designs with clear 2fi’s. They are obtained using the

concept of partially clear 2fi’s. Partially clear 2fi’s are orthogonal to nonnegligible

2fi’s but allowed to be aliased with negligible 2fi’s.

Section 2.2 introduces basic concepts and presents some preliminary results. Sec-

tion 2.3 establishes several theoretical results for the construction of robust designs

and Section 2.4 provides tables of robust designs for 32 and 64 runs. We conclude this

chapter with a result on the maximum number of clear 2fi’s in an orthogonal array in

Section 2.5.

2.2 Concepts and Preliminary Results

A two-level fractional factorial design D of n runs for m factors is represented by

an n × m matrix of ±1. Design D is a two-level orthogonal array of strength t if,

in every n × t submatrix of D, each of 2t level combinations appears with the same

frequency. We denote such an orthogonal array by OA(n, 2m, t). The run size n must

be a multiple of 4 for t = 2, and a multiple of 8 for t = 3. Orthogonal arrays of

strength 2 allow orthogonal estimation of all main effects when all interactions are

negligible. For orthogonal arrays of strength 3, the main effects can be orthogonally

estimated under the weaker assumption that interactions involving three or more

factors are negligible. In this chapter, we assume that interactions involving three
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or more factors are negligible. Under this assumption, orthogonal arrays of strength

3 allow unbiased estimation of all main effects regardless of two-factor interactions.

Clear 2fi’s carry this idea further. Orthogonal arrays of strength 3 with clear 2fi’s

allow unbiased estimation of all main effects and all clear 2fi’s even if the other 2fi’s

are nonnegligible.

A 2fi in an orthogonal array of strength 3 is clear if it is orthogonal to all other

2fi’s. A clear 2fi can be estimated regardless of other 2fi’s. In the situation where prior

knowledge suggests that certain 2fi’s are negligible, this property of robust estimation

for a 2fi remains intact so long as it is orthogonal to all nonnegligible 2fi’s. Such a 2fi

is called partially clear. A partially clear 2fi is allowed to be aliased with negligible

2fi’s but this does not affect its robust estimation. The idea for partially clear 2fi’s is

now formally developed.

Let S1 denote the set of 2fi’s that are to be estimated, S2 the set of nonnegligible

2fi’s and S3 the set of negligible 2fi’s. Thus, the entire set of all 2fi’s is partitioned into

three mutually exclusive and exhaustive sets S1, S2 and S3. The problem of interest

here is to find designs that allow estimation of all main effects and the 2fi’s in S1 in

the presence of the nonnegligible 2fi’s in S2. Designs considered for this problem are

orthogonal arrays of strength 3, which guarantee that main effects are orthogonal to

2fi’s. The 2fi’s in S1 may or may not be orthogonal under a given orthogonal array.

For most of this chapter, we consider arrays such that the 2fi’s in S1 are orthogonal.

In this case, we have orthogonal designs for estimating main effects and the 2fi’s in

S1. According to Greenfield (1976), the set of main effects together with S1 is called

a requirement set. We call S1 a requirement set in this chapter. In Section 2.3.2, we

will allow the requirement set S1 to be non-orthogonal.

Definition 2.1. For a given orthogonal array of strength 3, a 2fi in the requirement

set S1 is said to be partially clear if it is orthogonal to all 2fi’s in the nonnegligible

set S2.

When the negligible set S3 is empty, a partially clear 2fi becomes clear. Definition

2.1 allows prior knowledge as summarized by S3 to be utilized when finding designs

for a given requirement set. If an orthogonal array of strength 3 is such that all 2fi’s
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in the requirement set S1 are partially clear, then this array provides a robust design

for the requirement set S1. This chapter studies the existence and construction of

such robust designs.

We now introduce some structures for S1, S2 and S3 which will allow us to gain

insights into and obtain theoretical results on robust designs. The factors to be studied

are divided into two groups of factors, G1 and G2. Let G1×G1 denote the set of 2fi’s

within the factors in G1, G2×G2 the set of 2fi’s within the factors in G2, and G1×G2

the set of 2fi’s between the factors in G1 and those in G2. We consider the following

three cases:

Case 1: S1 = G1 ×G1, S2 = G1 ×G2 and S3 = G2 ×G2;

Case 2: S1 = G1 ×G1, S2 = G2 ×G2 and S3 = G1 ×G2;

Case 3: S1 = G1 ×G2, S2 = G1 ×G1 and S3 = G2 ×G2.

For convenience, robust designs for Cases 1, 2 and 3 are referred to as robust

designs of types 1, 2 and 3, respectively.

2.2.1 Preliminary Results

Simple characterization of robust designs can be obtained using J-characteristics.

For an arbitrary number of vectors xj = (x1j, . . . , xnj)
T, where j = 1, . . . , k, their

J-characteristic is defined as

J(x1, . . . , xk) =
n∑
i=1

xi1 · · ·xik.

Let D = (d1, . . . , dm) be a two-level factorial design of n runs for m factors, where

dj = (d1j, . . . , dnj)
T is the jth column of D. Then design D is an orthogonal array of

strength t if and only if J(dj1 , . . . , djk) = 0 for all j1, . . . , jk such that 1 ≤ j1 < · · · <
jk ≤ m and k ≤ t.

Let a1, . . . , am1 be the columns of design D corresponding to the factors in G1, and

b1, . . . , bm2 be the columns of design D corresponding to the factors in G2. Thus D =

(a1, . . . , am1 , b1, . . . , bm2). We also write G1 = (a1, . . . , am1) and G2 = (b1, . . . , bm2).

Define
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A40 =
∑

1≤j1<j2<j3<j4≤m1

[J(aj1 , aj2 , aj3 , aj4)]
2 ,

A31 =
∑

1≤j1<j2<j3≤m1

m2∑
j=1

[J(aj1 , aj2 , aj3 , bj)]
2 and

A22 =
∑

1≤j1<j2≤m1

∑
1≤i1<i2≤m2

[J(aj1 , aj2 , bi1 , bi2)]
2 .

The following result is immediate.

Lemma 2.1. Let D = (G1, G2) be an orthogonal array of strength 3. We have that

(i) design D is a robust design of type 1 if and only if A40 = A31 = 0;

(ii) design D is a robust design of type 2 if and only if A40 = A22 = 0;

(iii) design D is a robust design of type 3 if and only if A31 = A22 = 0.

In Lemma 2.1(i), condition A40 = 0 ensures an orthogonal requirement set S1 =

G1×G1. Condition A31 = 0 makes the design robust. More precisely, that the 2fi’s in

S1 = G1 ×G1 are partially clear is captured by A31 = 0. As seen from parts (ii) and

(iii) of Lemma 2.1, robust designs of types 2 and 3 both require that A22 = 0. This is

quite a strong condition to impose on a design, as shown by the following lemma.

Lemma 2.2. Let D = (G1, G2) be an orthogonal array of strength 3 such that 2 ≤
m1 ≤ m2 ≤ m− 2.

1. If A22 = 0, then it must be true that m ≤ n/4 + 1 for every m1 except for

m1 = 3.

2. When m1 = 3, we have that m ≤ n/4+2. If D is regular, we have m ≤ n/4+1.

Proof. For the case of m1 = 2, condition A22 = 0 implies that a1a2 is a clear 2fi. By

Proposition 2 of Tang (2006), it must be true that m ≤ n/4 + 1.

Let m1 ≥ 3. Since D = (G1, G2) is an orthogonal array of strength 3, all 2fi’s

are orthogonal to main effects. Because A22 = 0, the 2fi’s aibj for i = 1, . . . ,m1
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and j = 1, . . . ,m2 are mutually orthogonal. Thus, the following vectors a1, . . . , am1 ,

b1, . . . , bm2 , and all aibj for i = 1, . . . ,m1 and j = 1, . . . ,m2 are mutually orthogonal,

and all are orthogonal to the column of all plus ones. This establishes that

1 +m+m1(m−m1) ≤ n. (2.1)

Solving for m gives

m ≤ n/(m1 + 1) +m1 − 1. (2.2)

Taking m1 = 3, we obtain m ≤ n/4 + 2.

Now consider m1 ≥ 4, in which case we must have n > 16. (It would be impossible

to have A22 = 0 if n ≤ 16 and m2 ≥ m1 ≥ 4.) We prove Lemma 2.2 for this

case by contradication. Assume that m ≥ n/4 + 2. Then from (2.2), we obtain

n/4 + 2 ≤ n/(m1 + 1) + m1 − 1. Solving for n gives n ≤ 4(m1 + 1), implying

that m1 ≥ n/4 − 1. Since m2 = m − m1 ≥ m1 ≥ n/4 − 1, by (2.1) we obtain

1 + 2(n/4 − 1) + (n/4 − 1)2 ≤ n, which leads to n ≤ 16, a contradiction. The proof

of Lemma 2.2 is completed.

We next prove that m ≤ n/4 + 1 for m1 = 3 if D is a regular design. Now assume

that A22 = 0 holds for a strength 3 array D = (a1, a2, a3, b1, . . . , bm2) where m =

n/4 + 2 and m2 = n/4− 1. Consider design D∗ = (a1, a2, b1, . . . , bm2). Since A22 = 0,

the 2fi a1a2 is clear in design D∗. This implies that a1, a2, b1, . . . , bm2 , a1b1, . . . , a1bm2 ,

a2b1, . . . , a2bm2 , a1a2, a1a2b1, . . . , a1a2bm2 together form a saturated regular design,

as m2 = n/4 − 1. Noting that a1, a2, b1, . . . , bm2 , a1b1, . . . , a1bm2 , a2b1, . . . , a2bm2 ,

a3, a3b1, . . . , a3bm2 are all mutually orthogonal, we conclude that the set of columns

a1a2, a1a2b1, . . . , a1a2bm2 is identical to the set of columns a3, a3b1, . . . , a3bm2 . Thus

a3 must equal to a1a2bi for some i. For simplity, we take a3 = a1a2b1. Now consider

a3b2. Then there must be bj such that a3b2 = a1a2bj. This shows that b1 = b2bj,

contradicting that D is of strength 3.

Using the catalog of regular designs of 64 runs in Chen, Sun and Wu (1993), we

conduct a complete search for robust designs. Table 2.1 gives the maximum value of

m for given m1 for each of the three types of robust designs of 64 runs. Ke, Tang
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and Wu (2005) studied clear compromise plans. In Table 2.1, the maximum number

of factors given by clear compromise plans with the same requirement set is provided

under max(mc).

Table 2.1: Robust designs of 64 runs and corresponding clear compromise plans.

type 1 type 2 type 3
m1 max(m) max(mc) max(m) max(mc) max(m) max(mc)
7 17 8 10 8 12 8
6 22 9 10 9 12 12
5 22 10 11 10 11 11
4 28 11 11 11 11 11
3 31 17 17 17 17 11

For an orthogonal array of strength 3 to have clear 2fi’s, it is necessary that

m ≤ n/4+ 1; see Chen and Hedayat (1998) and Tang (2006). Lemma 2.2 reveals that

robust designs of types 2 and 3 are unable to break this barrier and the gain from

considering such designs is unlikely to be substantial. This is all confirmed by Table

2.1. However, much gain can be achieved by robust designs of type 1, as shown in

Table 2.1. In the next section, we present several general methods for constructing

this type of robust design.

2.3 Some Theoretical Results

This section focuses on robust designs of type 1. For simplicity, when we speak

of robust designs in this section, we actually mean robust designs of type 1. We

present five methods for constructing robust designs in this section. The first and

fifth methods are applicable to regular designs.

Regular fractional factorials are linear orthogonal arrays and treated in almost all

design textbooks. See Dey and Mukerjee (1999), Hedayat, Sloane and Stufken (1999),

and Wu and Hamada (2000). Regular fractional factorials are specified by their defin-

ing relations. The resolution of a regular factorial provides a simple characterization
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of the aliasing properties of the design. A regular fractional factorial of resolution R

is an orthogonal array of strength R−1; in particular regular designs of resolution IV

are special orthogonal arrays of strength 3. The saturated resolution IV design has

n = 2k runs and m = 2k−1 factors where k is a positive integer. Our first method of

constructing robust designs makes use of this satuarated resolution IV design.

While the first method and fifth methods only apply to regular designs, our other

three methods can be used to construct robust orthogonal arrays, regular or non-

regular. The scope of application is in fact even greater as these three methods also

allow robust designs to be constructed for non-orthogonal requirement sets. This will

be discussed in Secion 2.3.2.

Some of the construction methods are best presented using Kronecker products,

which we now introduce. Let x = (x1, . . . , xn1)
T and y = (y1, . . . , yn2)

T. The Kro-

necker product of two vectors x and y is defined as

x⊗ y = (x1y1, . . . , x1yn2 , . . . , xn1y1, . . . , xn1yn2)
T.

Tang (2006) provided a simple way for calculating the J-characteristic of Kronecker

products.

Lemma 2.3. We have that

J(a1 ⊗ b1, . . . , ak ⊗ bk) = J(a1, . . . , ak) J(b1, . . . , bk),

where aj = (a1j, . . . , an1j)
T and bj = (b1j, . . . , bn2j)

T for j = 1, . . . , k.

2.3.1 Construction of Robust Designs

Method 1. Let X be a saturated resolution IV design with n = 2k runs and m = 2k−1

factors. Then for any three distinct columns x, y, z of X, their Hadamard product

xyz must also belong to X. The Hadamard product of two vectors x = (x1, . . . , xn)T

and y = (y1, . . . , yn)T is defined as xy = (x1y1, . . . , xnyn)T . We obtain the following

result.
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Proposition 2.1. Design D = (G1, G2) is a robust design, where

(i) G1 is a subset of the columns of X and G1 has resolution VI or higher;

(ii) G2 is obtained by removing columns xyz from X \G1 for all three distinct x, y, z

in G1.

Proposition 2.1 is immediate from part (i) of Lemma 2.1, as it is obvious that A40 =

A31 = 0 for design D = (G1, G2).

As before, letm1 andm2 denote the numbers of columns inG1 andG2, respectively.

When m1 ≤ 5, the number of columns that need to be removed from X \G1 is
(
m1

3

)
.

Thus we have that m2 = 2k−1 −m1 −
(
m1

3

)
. For m1 ≥ 6, it is advantageous to choose

G1 to have resolution VI as the number of columns that have to be removed to obtain

G2 will be less than
(
m1

3

)
due to the existence of the relation x1y1z1 = x2y2z2 when

G1 is of resolution VI.

We next look at the application of the above construction method to designs of

32 and 64 runs. For designs of 32 runs, we obtain m2 = 12 for m1 = 3, m2 = 8 for

m1 = 4, and m2 = 1 for m1 = 5. Our computer search of robust designs from among

all resolution IV designs shows that the maximum number of columns in G2 for given

m1 is m2 = 12 for m1 = 3, m2 = 8 for m1 = 4, and m2 = 5 for m1 = 5. This reveals

that our method of construction provides the best results for m1 = 3, 4. However,

the method is not very effective for m1 = 5. We will return to this example when we

present other construction methods.

For designs of 64 runs, our construction method gives m2 = 28 for m1 = 3, m2 = 24

for m1 = 4, and m2 = 17 for m1 = 5. For m1 = 6, choosing G1 to be of resolution VI

gives m2 = 16. In all theses cases, the method maximizes m2 for given m1, as is clear

from Table 2.1. This method does not produce a useful design for m1 = 7 as it gives

m2 = 0. This case will be further examined later.

Method 2. Let D∗ and D0 be two orthogonal arrays of n runs such that D∗ has

strength 4 and D0 has strength 2 and that D∗ ⊂ D0. We use I to denote a column

of all plus ones of length n. Further let a1 = (−1,−1, 1, 1)T , a2 = (−1, 1,−1, 1)T and

a1a2 = (1,−1,−1, 1)T .
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Proposition 2.2. Design D = (G1, G2) is a robust design, where

G1 = a1 ⊗ (I,D∗) and G2 = a1a2 ⊗ (I,D0).

The proof is straightforward. To prove Proposition 2.2, we need to show that D =

(G1, G2) is of strength 3 and that A40 = A31 = 0. All these can easily be verified

using Lemma 2.3.

When D0 is regular, the construction in Proposition 2.2 can be thought as a special

case of that in Proposition 2.1. This can be seen by noting thatX = (a1, a1a2)⊗(I,D0)

is a saturated resolution IV design of 4n runs when D0 is a saturated resolution III

design of n runs, and that G1, a subset of X, has resolution VI or higher when D∗

has resolution V.

The usefulness of Proposition 2.2 lies in the fact that it is applicable to non-regular

designs. More importantly, this method provides robust designs for non-orthogonal

requirement sets, a topic we will discuss in Section 2.3.2.

Method 3. This method is a modification of Method 2 but allows one extra column

in G1. Let D0, D
∗, a1, a2 be defined as in Method 2. Then Method 3 chooses

G1 = (a2 ⊗ I, a1 ⊗ I, a1 ⊗D∗) and G2 = a1a2 ⊗ (D0 \D∗). (2.3)

Proposition 2.3. Let G1 and G2 be defined as in (2.3). Then D = (G1, G2) is a

robust design.

Similar to Method 2, Method 3 is applicable to both regular and non-regular

designs and also allows non-orthogonal requirement sets. When applied to regular

designs, Method 3 is not a special case of Method 1 as design D = (G1, G2) given

by Method 3 is not an even design. Even designs are those that can be obtained

by selecting columns from a saturated resolution IV design. For designs of 32 runs,

Method 3 gives a robust design with m1 = 5 and m2 = 4. For designs of 64 runs,

Method 3 gives a robust design with m1 = 7 and m2 = 10, the same result as that
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obtained by computer search given in Table 2.1. Note that Method 1 produces m2 = 0

when m1 = 7 for designs of 64 runs.

Method 4. This method can be viewed as a generalization of doubling (Chen and

Cheng 2006; Cheng, Mee and Yee 2008). Let D∗ be an orthogonal array of strength

4 and D0 be an orthogonal array of strength 3 such that D∗ ⊂ D0. Let

G1 =

(
D∗

D∗

)
and G2 =

(
D0

−D0

)
. (2.4)

Proposition 2.4. Let G1 and G2 be defined as in (2.4). Then D = (G1, G2) is a

robust design.

If D0 is chosen to be a saturated resolution IV design, then Method 4 is quite

similar to Method 1. The generality of Method 4 is that D0 can be chosen to be

any other maximal design (Chen and Cheng 2006) than the saturated resolution IV

design. Let D∗ and D0 be the same maximal design with 16 runs and 5 factors. Then

Method 4 gives m1 = m2 = 5 for designs of 32 runs. Finally, Method 4 applies to

non-regular designs and non-orthogonal requirement sets as well.

We present Method 5 through an example. Method 5 is similar to Method 3, but

is only valid for regular designs. The purpose of Method 5 is to increase m1 over that

obtained with Method 3.

Example 2.1. Let n = 128 and denote the columns for the independent factors from

the full factorial design as 1, . . . , 7. Let D∗ be a resolution V design for 8 factors with

generators from factors 2, . . . , 7, such as 8 = 2345 and 9 = 4567. We form G1 with

columns 1, 2, and all the columns of D∗, where if the column of D∗ is not generated

by column 2, we take the Hadamard product of column 1 with that column. In this

example, this gives G1 = {1, 2, 13, 14, 15, 16, 17, 2345, 14567}. Let D0 be a saturated

resolution III design based on factors 3, . . . , 7 including the column of 1’s, and D0(12)

the Hadamard product of columns 1 and 2 with the columns of D0. To form G2, we

will use a subset of the columns of D0(12). That A40 = 0 and A31 = 0 is immediate

from the construction. To make D = (G1, G2) strength 3, we remove the columns

xixj from D0(12), where xi, xj are columns of G1 such that xi is generated by factor 1
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and xj generated by factor 2. This corresponds to the removal of 7× 2 = 14 columns.

Then Method 5 gives a design with m1 = 9 and m2 = 18. In comparison, Method 1

gives m1 = 9 and m2 = 1. For n = 128, the maximum m1 for Method 3 gives a design

with m1 = 8 and m2 = 25.

Method 5 follows the approach in Example 2.1, and is applicable when the reso-

lution V design D∗ can be formed by more than one generator, as this provides the

additional columns for G1. In general, column 2 should be chosen as a factor that

appears in the fewest number of generators in D∗. This minimizes the number of

factors to be removed from D0(12) through the number of xixj terms.

2.3.2 Non-orthogonal Requirement Sets

A robust design, as constructed in Methods 1-5, is an orthogonal array D = (G1, G2)

of strength 3 such that A40 = A31 = 0. The condition A31 = 0 ensures robustness

in that the 2fi’s in the requirement set G1 × G1 are orthogonal to the set G1 × G2

of nonnegligible 2fi’s. The condition A40 = 0 says that G1 is an orthogonal array of

strength 4, which guarantees orthogonal estimation of the requirement set G1 × G1.

Instead of requiring G1 to be an orthogonal array of strength 4, we now introduce a

weaker condition on G1. A design is said to have property A if it allows estimation of

all main effects and all 2fi’s. Property A is weaker than strength 4. An orthogonal

array of strength 4 has property A as it allows orthogonal estimation of all main

effects and all 2fi’s.

If D = (G1, G2) is an orthogonal array of strength 3 that satisfies A31 = 0 and G1

has property A, then D = (G1, G2) provides a design for the requirement set G1×G1

that is robust to the nonnegligible 2fi’s in G1 × G2. In Methods 2, 3 and 4, if we

choose D∗ to have property A, then it can be easily checked that G1 also has property

A. We summarize this result in the following theorem.

Theorem 2.1. In Methods 2, 3 and 4, if D∗ has property A, then design D =

(G1, G2)

(i) allows estimation of the requirement set G1 ×G1, and

(ii) is robust to the set G1 ×G2 of nonnegligible 2fi’s.
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Note that the full requirement set is G1 × G1 plus all main effects. Design D =

(G1, G2) in Theorem 2.1 supports this full requirement set follows from the fact D

is an orthogonal array of strength 3. Theorem 2.1 is a powerful result. We give two

examples to illustrate.

Example 2.2. Let D0 be an orthogonal array of 12 runs for 11 factors and let D∗ consist

of any four columns of D0. According to Cheng (1995), design D∗ has property A.

Using D∗ and D0, Method 2 gives a robust design D = (G1, G2) of 48 runs with

m1 = 5 and m2 = 12 and Method 3 constructs a robust design D = (G1, G2) of 48

runs with m1 = 6 and m2 = 7.

Example 2.3. Let D0 be an orthogonal array of 20 runs for 19 factors and D∗ be

a subarray of D0 with five columns that has property A. The existence of such D∗

follows from the results in Loeppky, Sitter and Tang (2007). Applying Methods 2 and

3, we obtain a robust design D = (G1, G2) of 80 runs with m1 = 6 and m2 = 20, and

a robust design D = (G1, G2) of 80 runs with m1 = 7 and m2 = 14, respectively.

By introducing non-orthogonality, we gain in terms of estimation and robustness.

The trade-off here is the loss of estimation efficiency. One common measure of the

D-efficiency is given by (XTX/n)1/p, where X denotes the full model matrix and p is

the number of parameters. For the designs in Examples 2.2 and 2.3, we have found

that their D-efficiencies are all well above 90%. So at least for these examples, the

efficiency loss is quite minor.

2.4 Catalog of Designs for 32 and 64 Runs

Chen, Sun, and Wu (1993) gave a complete catalog for non-isomorphic designs of

resolution IV having 32 and 64 runs. We use these designs to search for robust designs

of types 1, 2, and 3. While the results in the previous section provide a method for

constructing robust designs of type 1, we present here which designs from the catalog

of Chen, Sun, and Wu (1993) these robust designs can be obtained from. In Tables

2.2 to 2.5, “parent design” refers to the design from Chen, Sun, and Wu (1993) which
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Table 2.2: 32-Run Partially Clear Designs of Type 1
|G1| max(m) max(mc) parent design Columns in G1 Columns in G2

6 6 6 6-1.1, 6-1.2
5 10 6 10-5.1 (1, 4, 8, 16, 29) (2, 7, 11, 19, 30)
4 12 7 12-7.1 (16, 19, 21, 25) (1, 2, 4, 7, 8, 11,

13, 14)
3 15 9 15-10.1 (7, 8, 16) (1, 2, 4, 11, 13,

14, 19, 21, 22,
25, 26, 28)

allows for the construction of the robust design and max(m) the maximum number

of columns in a robust design for given m1. For robust designs of types 2 and 3, the

results come from multiple parent designs, which can then be chosen according to

some secondary criterion. Tables 2.2 - 2.5 can be used to construct robust designs,

as they specify a set of columns to form both G1 and G2. For 32 runs, only robust

designs of type 1 provide useful results, as given in Table 2.2, which also lists the

maximum number (max(mc)) of columns allowable for a clear design.

For a design of type 1, additional type 1 designs can be created by moving an

element from G1 to G2. If we have a design in which two-factor interactions in

G1×G2 are clear, moving an element from G2 to G1 results in a partially clear design

of type 3. For the designs listed, further partially clear designs of the same type can

be created by removing factors from either G1 or G2.

For n = 64 and m1 = 6, the partially clear design of type 1 is unique in that

for all 15 non-isomorphic designs and all possible choices for columns in G1, there is

only one design that is partially clear of type 1. In terms of minimum aberration of

these designs, it is the 13th out of 15. Also of note for n = 64 and m1 = 5, the only

choice for G1 that results in a partially clear design of type 1 is achieved by moving

an element from G1 to G2 from the partially clear design for m1 = 6.
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Table 2.3: 64-Run Partially Clear Designs of Type 1
|G1| max(m) parent design Columns in G1 Columns in G2

7 17 17-11.2 (16, 19, 29, 32,
37, 41, 47)

(1, 2, 4, 7, 8, 11, 49,
55, 59, 62)

6 22 22-16.13 (32, 35, 37, 41,
49, 62)

(1, 2, 4, 7, 8, 11, 13,
14, 16, 19, 21, 22, 25,
26, 28, 31)

5 22 22-16.13 (32, 35, 37, 41,
49)

(1, 2, 4, 7, 8, 11, 13,
14, 16, 19, 21, 22, 25,
26, 28, 31, 62)

4 28 28-22.1 (49, 50, 52, 56) (1, 2, 4, 7, 8, 11, 13,
14, 16, 19, 21, 22, 25,
26, 28, 31, 32, 35, 37,
38, 41, 42, 44, 47)

3 31 31-25.1 (14, 16, 32) (1, 2, 4, 7, 8, 11, 13,
19, 21, 22, 25, 26, 28,
31, 35, 37, 38, 41, 42,
44, 47, 49, 50, 52, 55,
56, 59, 61)
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Table 2.4: 64-Run Partially Clear Designs of Type 2
|G1| max(m) parent design Columns in G1 Columns in G2

7 10 10-4.1 (1, 2, 4, 8, 16, 27, 32) (7, 43, 53)
10-4.2 (2, 4, 7, 8, 16, 25, 32) (1, 42, 53)

6 10 10-4.1 (1, 2, 4, 16, 27, 32) (7, 8, 43, 53)
10-4.2 (1, 2, 4, 8, 16, 32) (7, 25, 42, 53)
10-4.7 (1, 2, 4, 8, 16, 32) (7, 25, 42, 52)

5 11 11-5.1 (1, 16, 29, 32, 51) (2, 4, 7, 8, 11, 45)
11-5.3 (2, 16, 29, 32, 49) (1, 4, 7, 8, 11, 46)
11-5.4 (11, 16, 32, 46, 56) (1, 2, 4, 7, 8, 21)
11-5.11 (2, 16, 30, 32, 49) (1, 4, 7, 8, 11, 13)

4 11 11-5.1 (1, 16, 29, 32) (2, 4, 7, 8, 11, 45, 51)
11-5.3 (1, 16, 29, 32) (2, 4, 7, 8, 11, 46, 49)
11-5.4 (8, 16, 32, 46) (1, 2, 4, 7, 11, 21, 56)
11-5.6 (1, 29, 32, 62) (2, 4, 7, 8, 11, 16, 19)
11-5.7 (8, 16, 32, 57) (1, 2, 4, 7, 11, 21, 38)
11-5.9 (1, 29, 32, 45) (2, 4, 7, 8, 11, 16, 19)
11-5.11 (1, 16, 30, 32) (2, 4, 7, 8, 11, 13, 49)
11-5.13 (1, 16, 30, 32) (2, 4, 7, 8, 11, 13, 46)
11-5.20 (13, 16, 32, 53) (1, 2, 4, 7, 8, 11, 19)
11-5.22 (13, 16, 32, 46) (1, 2, 4, 7, 8, 11, 19)
11-5.24 (13, 19, 32, 61) (1, 2, 4, 7, 8, 11, 16)
11-5.30 (1, 16, 32, 51) (2, 4, 7, 8, 11, 13, 14)
11-5.31 (2, 16, 32, 49) (1, 4, 7, 8, 11, 13, 14)

3 17 17-11.6 (1, 32, 63) (2, 4, 7, 8, 11, 13, 14,
16, 19, 21, 22, 25, 26,
28)
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Table 2.5: 64-Run Partially Clear Designs of Type 3
|G1| max(m) parent design Columns in G1 Columns in G2

7 12 12-6.1 (1, 2, 4, 7, 8, 11, 16) (29, 32, 45, 51, 62)
12-6.8 (1, 2, 4, 7, 8, 11, 13) (16, 30, 32, 46, 49)

6 12 12-6.1 (1, 2, 4, 7, 8, 11) (16, 29, 32, 45, 51, 62)
12-6.2 (8, 16, 32, 46, 54, 56) (1, 2, 4, 7, 11, 21)
12-6.8 (1, 16, 30, 32, 46, 49) (2, 4, 7, 8, 11, 13)

5 11 11-5.1 (1, 16, 29, 32, 45) (2, 4, 7, 8, 11, 51)
11-5.2 (1, 2, 4, 7, 63) (8, 16, 25, 32, 42, 52)
11-5.4 (8, 16, 32, 46, 56) (1, 2, 4, 7, 11, 21)
11-5.11 (1, 16, 30, 32, 49) (2, 4, 7, 8, 11, 13)
11-5.13 (1, 16, 30, 32, 46) (2, 4, 7, 8, 11, 13)

4 11 11-5.1 (16, 29, 32, 45) (1, 2, 4, 7, 8, 11, 51)
11-5.2 (1, 2, 4, 7) (8, 16, 25, 32, 42, 52,

63)
11-5.3 (1, 16, 32, 49) (2, 4, 7, 8, 11, 29, 46)
11-5.4 (11, 21, 32, 46) (1, 2, 4, 7, 8, 16, 56)
11-5.6 (1, 29, 32, 62) (2, 4, 7, 8, 11, 16, 19)
11-5.7 (8, 16, 32, 57) (1, 2, 4, 7, 11, 21, 38)
11-5.9 (16, 29, 32, 45) (1, 2, 4, 7, 8, 11, 19)
11-5.11 (1, 16, 32, 49) (2, 4, 7, 8, 11, 13, 30)
11-5.13 (16, 30, 32, 46) (1, 2, 4, 7, 8, 11, 13)
11-5.20 (13, 16, 32, 53) (1, 2, 4, 7, 8, 11, 19)

3 17 17-11.6 (1, 32, 63) (2, 4, 7, 8, 11, 13, 14,
16, 19, 21, 22, 25, 26,
28)
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2.5 Discussion and Further Results

The following two problems of theoretical importance arise from robust designs of

type 1. One is to construct such robust designs that maximize m2 for given m1, and

the other is to construct robust designs with m1 maximized. For designs of 32 and 64

runs, we have shown in Section 2.3 that our methods allow such designs to be found.

Although completely solving these problems is likely to be quite nontrivial, it would

be possible to obtain some useful general results. We leave the problems to future

research.

We conclude this chapter with a result on the maximum number of clear 2fi’s in

an orthogonal array of strength 3.

Theorem 2.2. We have that

β(n,m) ≤ m(n− 2m)/(m− 2),

where β(n,m) denotes the number of clear 2fi’s in an orthogonal array of strength 3

with n runs for m factors.

Proof. Let D = (a1, . . . , am) be an orthogonal array of strength 3 with n runs for m

factors. Suppose that it has β clear 2fi’s and we use c1, . . . , cβ to denote the column

vectors corresponding to these clear 2fi’s. Further let R0 denote the n−1 dimensional

vector space that collects all vectors with n real entries that are orthogonal to the

vector of all plus ones. Then a1, . . . , am, c1, . . . , cβ are mutually orthogonal and all

belong to R0. Let R1 denote the linear subspace of R0 that consists of all vectors that

are orthogonal to a1, . . . , am, c1, . . . , cβ. Then R1 is a p dimentional subspace with

p = n− 1−m− β. Let d1, . . . , dp be an orthonormal basis of R1. That is, d1, . . . , dp

are orthogonal vectors with length unity in R1. Since a1a2, . . . , a1am are mutually

orthogonal, for any given k = 1, . . . , p, we have

| < a1a2/
√
n, dk > |2 + · · ·+ | < a1am/

√
n, dk > |2 ≤ 1,
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where < x, y > denotes the inner product of two vectors x and y. Equivalently, we

have

| < a1a2, dk > |2 + · · ·+ | < a1am, dk > |2 ≤ n.

Noting that < a1a1, dk >= 0, we obtain
∑m

j=1 | < a1aj, dk > |2 ≤ n. In general, we

have
∑m

j=1 | < aiaj, dk > |2 ≤ n, for every i = 1, . . . ,m. Upon combining, we obtain∑
1≤i<j≤m

| < aiaj, dk > |2 ≤ nm/2.

Summing over k and re-arranging, we obtain

∑
1≤i<j≤m

p∑
k=1

| < aiaj, dk > |2 ≤ pnm/2. (2.5)

Now consider aiaj for fixed i, j. This 2fi is orthogonal to R1 if it is clear and belongs

to R1 otherwise. Therefore, we have that
∑p

k=1 | < aiaj, dk > |2 is equal to 0 if aiaj

is clear and is equal to n otherwise. We thus obtain
(
m
2

)
− β ≤ pm/2. Substituting

p = n− 1−m− β in and solving for β, we obtain β ≤ m(n− 2m)/(m− 2).

The same result for regular designs was obtained earlier in Tang, Ma, Ingram and

Wang (2002). However, the proof of Theorem 2.2 does not follow from the idea of

proving the result for regular designs.

In the case of regular designs, the bound in Theorem 2.2 can be slightly improved;

see Wu and Wu (2002) and Yang and Butler (2008).



Chapter 3

Multi-Level Orthogonal Arrays for

Estimating Main Effects and

Specified Interactions

3.1 Introduction

In this chapter, we examine the requirement set problem for orthogonal arrays with

more than two levels. There are two key differences when handling more than two

levels. Firstly, main effects and interaction terms can be broken up into orthogonal

components, of which only some may be of interest. Secondly, level permutations of

the factors become an issue when using these orthogonal components. This chap-

ter investigates how these differences impact searching for designs. In Chapter 2,

we enforced orthogonality between the nonnegligible effects and the effects in the re-

quirement set. This chapter relaxes the requirement of orthogonality, but we will still

attempt to find designs with robust properties.

Given a factor with q levels, the main effect for this factor has q − 1 degrees

of freedom and can be broken up into q − 1 orthogonal contrasts. In this chapter,

we adopt the approach from Xu and Wu (2001) which uses normalized main effect

contrasts so that all factorial effects have the same variance if a full factorial design

28



CHAPTER 3. MULTI-LEVEL ORTHOGONAL ARRAYS 29

were used. For example, for a three-level factor, we have linear and quadratic main

effects coded as (−1, 0, 1)×
√

3/
√

2 and (1,−2, 1)/
√

2, respectively. For convenience,

our discussion refers to the linear and quadratic contrasts for the three-level coding,

but the results presented hold for any set of orthogonal contrasts.

A two-factor interaction has (q−1)2 orthogonal components, each corresponding to

one degree of freedom. In a two-level design, this implies that a two-factor interaction

corresponds to one component and, as such, one degree of freedom. For a three-level

design, a two-factor interaction has four orthogonal components corresponding to

linear-by-linear, linear-by-quadratic, quadratic-by-linear, and quadratic-by-quadratic

effects.

The experimenter may be interested in only a subset of the two-factor interaction

components. In this chapter we consider experiments in which the experimenter

is interested in a model with the grand mean, all main effects, and certain two-

factor interaction components, the set of which we call the requirement set. For a

requirement set S, define the core set, C(S), as the subset of S which includes all

two-factor interaction components in S and all main effects for which a main effect

component occurs in one of the two-factor interaction components in S. For example,

consider a special case of the second-order model as in Cheng and Wu (2001) and

Xu, Cheng and Wu (2004) in which some or all of the linear-by-linear two-factor

interaction components are of interest:

y = β0 +
r+k∑
i=1

βixil +
r+k∑
i=1

βiixiq +
∑

1≤i<j≤r

βijxilxjl + ε, (3.1)

where y is the response, ε the error term, xil and xiq the linear and quadratic contrast

coefficients for factor i and βi, βii their corresponding effects, βij the linear-by-linear

two-factor interaction for factors i and j, and β0 is the grand mean. Cheng and Wu

(2001) and Xu, Cheng and Wu (2004) consider the case where k = 0. If r = 3 and

k = 2, the requirement set is {β0, β1, β11, β2, β22, β3, β33, β4, β44, β5, β55, β12, β13, β23},
while the core set is {β0, β1, β11, β2, β22, β3, β33, β12, β13, β23}. We will consider Model

(3.1) again in Section 3.6. A design is said to support a requirement set if all effects

in the requirement set are estimable. If we have multiple non-isomorphic designs that
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support a given requirement set, we often distinguish between these designs using one

or more optimality criteria, some of which will be discussed in the next section.

If the experimenter believes that curvature may exist in the experimental region

and only wants to run one experiment, this can be explored with the designs discussed

in this chapter. One common approach for testing the presence of curvature is the

addition of center points to a two-level design. The addition of center points can

only detect if there is curvature. Here we want to estimate the effects with the design.

Other designs for this purpose include Box-Behnken designs (Box and Behnken, 1960)

and central composite designs (Box and Wilson, 1951).

In Section 3.2 we introduce various design criteria and Section 3.3 examines how

these are affected by level permutations. Section 3.4 investigates the existence of de-

signs for a requirement set when a saturated orthogonal array exists. Section 3.5 uses

the results to propose a method of searching for designs from a saturated orthogonal

array, which is then applied to 27-run designs under a second-order model in Section

3.6. We conclude the chapter with a brief discussion in Section 3.7.

3.2 Optimality Criteria

In this section we look at some optimality criteria which can be used to differentiate

between designs that support a given requirement set S. Consider a model that

includes all effects in the requirement set:

Y = XMβM + ε (3.2)

where Y is the vector of n observations, βM is the vector of effects in our requirement

set, XM is the corresponding matrix of contrast coefficients, and ε is the vector of n

independent random errors. The matrix XM is also referred to as the model matrix.

Define

M = XM
TXM/n = [mij] (3.3)

as the moment matrix. A D-optimal design maximizes |M |, the determinant of M ,

and minimizes the volume of the joint confidence region on the vector of regression

coefficients. For a design that supports S, its D-efficiency is defined as
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Deff = |XM
TXM/n|1/p,

where p is the number of parameters in the model (ie. the size of the requirement

set). If Deff = 1, the columns of XM are orthogonal.

There are other optimality criteria that use the moment matrix. These include

the E(s2) criterion, where

E(s2)(M) =
∑

1≤i<j≤p

m2
ij/

(
p

2

)
,

and E-optimality, which maximizes the minimum eigenvalue of the moment matrix

and minimizes the maximum possible variance of a normalized linear function of βM .

Another common criterion is the A-optimality which minimizes tr(M−1), the trace of

the inverse of the moment matrix, and minimizes the average variance of the estimates

of the regression coefficients.

In this chapter, our first means of differentiating between designs is to look at

the D-efficiency. After D-efficiency, we further distinguish designs by measuring their

robustness to nonnegligible effects outside of the requirement set.

To get an estimate for βM in Model (3.2), we use β̂M = (XM
TXM)−1XM

TY . This

estimate is unbiased for βM if Model (3.2) is true. While the model we fit is (3.2),

assume that the true model is actually

Y = X0β0 +X1β1 +X2β2 + ε, (3.4)

where X1 and X2 correspond to the matrix of contrast coefficients for the main effects,

β1, and two-factor interactions, β2, X0 the vector of ones with β0 being the grand

mean, and ε the error term. Note that XM contains the columns of X0, X1, and a

subset of columns from X2. An alternative way to write (3.4) is then

Y = XMβM +X2oβ2o + ε, (3.5)

where β2o refers to the two-factor interaction components from β2 outside of the

requirement set, and X2o the corresponding matrix of contrast coefficients.
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In order to differentiate between designs having the same D-efficiency, we can

minimize the contamination of nonnegligible two-factor interactions outside of the

model. Due to restrictions on the run size, Model (3.5) may not be estimable. If we

fit Model (3.2) when (3.5) is the truth,

E(β̂M) = E((XM
TXM)−1XM

TY )

= (XM
TXM)−1XM

TE(Y )

= (XM
TXM)−1XM

T (XMβM +X2oβ2o)

= βM + (XM
TXM)−1XM

TX2oβ2o

= βM + C2oβ2o.

In this chapter we call C2o = [cij] = (XM
TXM)−1XM

TX2o the alias matrix. Because

of β2o, estimation of βM is contaminated by these nonnegligible two-factor interactions

outside of the model, so ideally C2o should be small. One measure of this contamina-

tion is through the minimum contamination criterion which minimizes ‖C2o‖2 =
∑
c2ij

(Tang and Deng, 1999, Xu and Wu, 2001, and Steinberg and Bursztyn, 2001).

In Equation (3.5), X2o is the matrix of contrast coefficients corresponding to all

two-factor interactions outside of the requirement set. In practice, linear-by-linear

two-factor interactions are more often active than other interactions (Xu, Cheng and

Wu, 2004), so one could consider the contamination of linear-by-linear two-factor

interactions not in the requirement set. In this case, we would minimize ‖C2l‖2, with

‖C2l‖2 = ‖(XM
TXM)−1XM

TX2l‖2, (3.6)

where X2l is the subset of columns from X2o that correspond to the linear-by-linear

components outside of the model. If we let X2q be the matrix consisting of the

remaining columns from X2o whose components contain a quadratic effect (ie. X2q =

X2o \X2l), we have

‖C2q‖2 = ‖(XM
TXM)−1XM

TX2q‖2. (3.7)

To minimize the contamination from the two-factor interactions containing a quadratic

main effect, we would minimize ‖C2q‖2. Combining (3.6) and (3.7), we have

‖C2o‖2 = ‖C2l‖2 + ‖C2q‖2. (3.8)
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In our discussion of contamination of nonnegligible effects, our consideration has

only been placed on two-factor interactions. In general, we can consider i-factor in-

teractions through Ci = (XM
TXM)−1XM

TXi, where Xi is the matrix of contrast

coefficients for the i-factor interactions and measure the contamination of these ef-

fects with ‖Ci‖2. If we use the hierarchical ordering principle, on the effects outside

of the requirement set, we can sequentially minimize ‖C2o‖2, ‖C3‖2, . . . as a way to

distinguish between designs.

3.3 Level Permutations

In this section we look at the effect of permuting the levels of a factor on the properties

of a design. For multi-level designs, because of the multiple components for main

effects and interactions, level permutations of factors can impact a design to the

point that one set of level permutations supports a requirement set while another

does not for the same design. Remark 2.3.1 from Dey and Mukerjee (1999) states

that their main results do not depend on the choice of level permutations. While

this holds in situations where we are interested in all components of interactions, this

invariance to level permutations may no longer hold if our requirement set contains

only certain interaction components. In this section, we examine the influence of level

permutations on the optimality criteria of the previous section. The results focus on

level permutations on factors outside of the core set, as it will be shown that such

level permutations retain many design properties. Throughout this chapter we assume

that our design is an orthogonal array, implying main effects are orthogonal and the

lack of orthogonality with effects in the requirement set comes through the two-factor

interaction components in the requirement set.

Throughout this chapter, we will make use of the fact that this level permutation

can be performed via an orthonormal matrix Q1, where QT
1Q1 = I. Let A denote the

n × (q − 1) matrix containing the q − 1 vectors of contrast coefficients for the main

effects of a factor. Let A∗ consist of the vectors of contrast coefficients for the same

factor after a level permutation. The relationship between A∗ and A can be expressed
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with the (q − 1)× (q − 1) orthonormal matrix Q1 as

A∗ = AQ1. (3.9)

For example, consider the case of three levels and six runs in which we have linear

and quadratic main effects for a factor such that A is

A =



−
√

3/
√

2 1/
√

2

−
√

3/
√

2 1/
√

2

0 −2/
√

2

0 −2/
√

2
√

3/
√

2 1/
√

2
√

3/
√

2 1/
√

2


,

and we consider a level permutation to A∗ given by

A∗ =



0 −2/
√

2

0 −2/
√

2
√

3/
√

2 1/
√

2
√

3/
√

2 1/
√

2

−
√

3/
√

2 1/
√

2

−
√

3/
√

2 1/
√

2


.

We can then obtain Q1 as

Q1 = ATA∗/n =

(
−1/2

√
3/2

−
√

3/2 −1/2

)
.

From equation (3.9), we have a matrix Q1 to perform a level permutation on a

factor in the model. Consider a level permutation on a factor outside of the core set.

Denote XM as the model matrix before the level permutation, and X∗M as the model

matrix after the level permutation. If we let

Q =

(
Q1 0

0 Ip−(q−1)

)
,
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we can relate XM and X∗M through

X∗M = XMQ, (3.10)

where, without loss of generality, the first q − 1 columns of XM correspond to the

main effect components of the level permuted factor. The moment matrix after level

permutations, M∗, is then

M∗ = (XMQ)T (XMQ)/n = QTMQ, (3.11)

where M is the moment matrix before the level permutation.

At this point, it is important to make the distinction between level permutations

of factors inside the core set versus factors outside of the core set. A level permuta-

tion of a factor inside the core set causes permutations of the two-factor interaction

components in the requirement set, which may not allow us to write X∗M in the form

given in (3.10). With this formulation of level permutations in mind, we can now look

at the effect on the optimality criteria from the previous section.

Theorem 3.1. When the levels of a factor outside of the core set are permuted, the

D, A, E, and E(s2) criteria remain the same.

Proof. In order to establish that the level permutations outside of the core set preserve

the criteria, we will start by showing that the eigenvalues of M∗ and M are the

same. Let Q be the orthonormal matrix that performs the level permutation as in

(3.10). We have M∗ = QTMQ from (3.11). Recall that the characteristic equation

of a square matrix W is: 0 = |W − λI|. The roots of the characteristic equation

are the eigenvalues of W . The characteristic equation of M∗ is 0 = |M∗ − λI| =

|(QTMQ) − λI| = |QT (M − λI)Q| = |QT ||M − λI||Q| = |M − λI|. So M∗ and M

have the same characteristic equation, and as such the same eigenvalues.

Recalling that the determinant of a matrix is the product of its eigenvalues, and

the trace equal to the sum of its eigenvalues, we have that the D, A, and E criteria

are the same after level permutation.

For E(s2), note that E(s2)(M) = tr(MTM)/2−
∑
m2
ii. Since we assume normal-

ized length for contrast coefficients, m2
ii = n for all i, which remains true after a level
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permutation. Examining MTM , we have tr(M∗TM∗) = tr((QTMQ)T (QTMQ)) =

tr(MTM), implying E(s2)(M) = E(s2)(M∗).

Theorem 3.1 tells us that we can make level permutations to factors outside of

the core set without impacting many criteria. What Theorem 3.1 does not address

is if level permutations affect the contamination of the two-factor interaction com-

ponents outside of the requirement set. This connection is not immediately obvious,

since measurement of this contamination is based on XM and X2o, both of which are

changed after level permutations. We address this relationship in the next theorem.

Theorem 3.2. When the levels of a factor outside of the core set are permuted, the

contamination of the two-factor interaction components outside of the model, mea-

sured by ‖C2o‖2, remains the same.

Proof. After the level permutation, ‖C2o‖2 = ‖(XM
TXM)−1XM

TX2o‖2 becomes

‖C∗2o‖2 = ‖(X∗TM X∗M)−1X∗TM X∗2o‖2. In order to show ‖C2o‖2 = ‖C∗2o‖2, we will look at

the relationship between X∗M and XM and X∗2o and X2o. We will make use of the fact

that

‖C‖2 = tr(CTC).

Let Q be the orthonormal matrix from (3.10) such that X∗M = XMQ. Since

QT = Q−1, we can simplify the terms of ‖C∗2o‖2 involving X∗M to

(X∗TM X∗M)−1X∗TM = QT (XT
MXM)−1XT

M .

As the matrix X2o corresponds to the contrast coefficients for all two-factor inter-

action components outside of the model, it can be partitioned into sets of two-factor

interaction components corresponding to pairs of the m factors in the model. We

denote this partition as X2op for p ∈ (1, . . . ,
(
m
2

)
), where p is an index for a pair of

factors from the design. For p indexing a pair of factors in the core set, X2op may not

contain the full set of (q − 1)2 two-factor interaction components, as some of these

components may be in the requirement set. From this partition of X2o, we have that

‖C2o‖2 =
∑
p

‖(XT
MXM)−1XT

MX2op‖2. (3.12)
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Consider i for which X2oi corresponds to a set of two-factor interaction components

for a pair of factors that have not had levels permuted. After the level permutation,

we have X∗2oi = X2oi. Looking at the effect of this subset of X2o on ‖C∗2o‖2 after level

permutation,

‖QT (XT
MXM)−1XT

MX2oi‖2 = ‖(XT
MXM)−1XT

MX2oi‖2, (3.13)

showing that the contamination is unchanged for the pair of factors indexed by i.

The remaining columns of X2o correspond to two-factor interaction components a

pairs of columns in which one involves a level permutation. Let X2oj correspond to the

n× (q−1)2 subset for such a pair (all of the interaction components are outside of the

requirement set, otherwise the factor with a level permutation would be in the core

set). Let X∗2oj be the same matrix after level permutations, and in a similar fashion to

(3.9), there is a (q− 1)2× (q− 1)2 orthonormal matrix Q2 such that X∗2oj = X2ojQ2j.

The influence on ‖C∗o2‖2 is then

‖QT (XT
MXM)−1XT

MX2ojQ2j‖2 = ‖(XT
MXM)−1XT

MX2oj‖2, (3.14)

which is also unchanged from the level permutation. Combining (3.13) and (3.14)

into (3.12), we have the required result.

From the proof of Theorem 3.2, we have not only that the overall contamination

from two-factor interaction components remains the same, but also the component-

wise contamination from each pair of factors. As a result, if we were to sequentially

minimize these pairwise contaminations starting from the largest, in a manner analo-

gous to G-aberration, the ranking would not change after level permutations outside

of the core set. Likewise, if contamination is only considered for interactions involving

one or more factors from the core set, nothing is changed. One situation Theorem

3.2 does not apply to is when contamination is to be considered for certain two-

factor interaction components, such as all linear-by-linear components outside of the

requirement set.

Our discussion in this section assumes that we have a design to support a require-

ment set. The next section discusses the existence of such designs from orthogonal

arrays.
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3.4 Existence of Designs for a Given Requirement

Set through Orthogonal Arrays

Tang and Zhou (2009) showed that for two-level designs, the existence of an orthog-

onal array that supports a requirement set is equivalent to that of an orthogonal

array that supports its core set. For designs with greater than two levels, a similar

result holds, but the fact that main effects and interactions have multiple components

presents some restrictions. While only some components of interactions may be in

the requirement set, all main effect components are in the requirement set. In this

section, we consider removing columns representing main effect components from a

saturated orthogonal array that occupy the same space as the interaction components

in the core set. If any one of the main effect components of a factor occupies the space

of the interaction components, we remove all remaining main effect components for

that factor. The results are presented based on three-level designs, as they are most

powerful in this case, but the arguments are applicable for greater than three levels.

Theorem 3.3. For a requirement set S with m factors and e two-factor interaction

components, if an orthogonal array that supports the core set C(S) with m1 factors

exists, then an orthogonal array that supports S exists, provided m ≤ (n− 1)/2− e.

Proof. Consider a matrix D constructed from a saturated three-level orthogonal array

where each column is replaced by normalized main effect contrasts, such as the coding

for linear and quadratic main effects, and a column of all 1’s added to the array. We

will show that so long as there is a subset D1 of D that supports C(S), there exists

a partition D = (D1, D2, D3), where D2 is the set of columns in S that are not in

C(S) and D3 are the columns to be removed from D that occupy the same space as

the vectors corresponding to interaction components. We will denote the number of

factors in D1, D2, and D3 as m1, m2, and m3, respectively, and m = m1 + m2 is the

total number of factors in the requirement set.

Let X1c = (1, D1), where 1 is the column of all 1s corresponding to the grand

mean and D1 a subset of D that supports C(S). The model matrix for C(S) is then

(X1c, X2c), where X2c corresponds to the interaction components in the core set. Since
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D is a saturated orthogonal array, the partition D = (X1c, D2, D3) forms the column

space of D. If we let D∗ = (D2, D3), by the properties of block matrices,

det[(X1c, X2c)
T (X1c, X2c)]

= det(XT
1cX1c)det(X

T
2cX2c −XT

2cX1c(X
T
1cX1c)

−1XT
1cX2c)

= det(XT
1cX1c)det(X

T
2cD

∗D∗TX2c)

= n2m1+1−edet(XT
2cD

∗D∗TX2c). (3.15)

Since D1 supports C(S), det(XT
2cD

∗D∗TX2c) > 0, so XT
2cD

∗D∗TX2c must be of rank

e. Recalling that rank(AAT ) = rank(A), this also implies that XT
2cD

∗ has rank e.

The dimensions of XT
2cD

∗ is e × (2m2 + 2m3). In order for X2c to be estimated,

it must be that (2m2 + 2m3) ≥ 2m3 ≥ e. Then XT
2cD

∗ must contain a subset of

2m3 columns that has rank e, corresponding to m3 factors (each with two main effect

components) from D∗. As the columns in D3 are pairs of main effect components for

factors, the preceding bound is m3 ≥ de/2e. It is possible that there exists a subset

of m∗3 < m3 columns such that XT
2cD

∗ has a subset of 2m∗3 columns with rank e.

Let D∗3 be a subset of 2m3 columns from D∗, so that rank(XT
2cD

∗
3) = e. This also

gives us rank(XT
2cD

∗
3D
∗T
3 X2c) = e and

det(XT
2cD

∗
3D
∗T
3 X2c) > 0. (3.16)

With D∗ = (D∗2, D
∗
3), let X = (X1, D

∗
2) be be the model matrix for the requirement

set S. Similar to (3.15), we have

det[(X,X2c)
T (X,X2c)] = n2m+1−edet(XT

2cD
∗
3D
∗T
3 X2c), (3.17)

which is greater than 0 by (3.16), and implies that (D1, D
∗
2) supports S. If there exists

m∗3 as described above, S can accommodate additional factors.

As an alternative to the proof from Theorem 3.1, (3.17) shows that level permu-

tations on factors outside of the core set, as represented by D2, do not effect the

D-efficiency of the design. The connection to D-efficiency and D3 is also seen through

the following theorem.
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Theorem 3.4. The D-efficiency is maximized when det(XT
2cD

∗
3D
∗T
3 X2c) is maximized.

Theorem 3.3 provides a lower bound on the maximum number of factors outside

of the core set that can be supported. In the formation of D∗3 in the proof of Theorem

3.3, the worst case scenario is that the e two-factor interaction components take up an

e-dimensional space that corresponds to e different factors occupying a 2e-dimensional

space. However, it is possible that the e two-factor interaction components occupy

the 2e∗-dimensional space from e∗ < e different factors, a consideration we return to

in Section 3.6 when searching for designs. Theorems 3.3 and 3.4 provide insight which

will be useful in the next section to aid in searching for designs.

It is clear that level permutations for factors outside of the core set or model, such

as in D2 and D3, have no effect on the results of Theorems 3.3 and 3.4. This is not

true for factors in the core set, as level permutations change X2c. Even if the core set

is supported by a D1 after a level permutation of a factor within it, the corresponding

D2 and D3 will not be the same. In addition, it is possible that level permutations

on the core set allow additional factors to be considered outside of the core set or

an improvement to the D-efficiency. This implies that when searching for designs,

different level permutations of factors in the core set should be considered, as will be

done in the next section.

3.5 Searching for D-efficient Designs with Robust

Properties from Orthogonal Arrays

In this section, the previous results are applied to search for designs that support a

requirement set, S, if a saturated orthogonal array of the required run size is available.

As Theorems 3.3 and 3.4 are applicable when a design that supports the core set, C(S),

is specified, the algorithm will consider different combinations of factors from the

orthogonal array to form the core set, and find the best choices among the remaining

columns for the selection of the factors outside of the core set. Level permutations are

considered, but only those on the factors within the core set need to be considered,

based on the results in Section 3.3.
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Let r be the number of factors in the core set, and k the number of factors outside

of the core set. For an orthogonal array with n runs and m columns having q levels

each, and replace each column by a set of q − 1 orthogonal contrasts to create the

matrix D. When we refer to choosing a factor from {1, . . . ,m}, we mean the set of

orthogonal contrasts of that factor. The search proceeds as follows:

1. Let c = (c1, . . . , cr), a subset of size r from {1, . . . ,m}, denote the factors in the

core set.

2. Let pc = (pc1 , . . . , pcr) denote a set of level permutations on the factors in the

core set.

3. Let D1 be the set of columns from D formed by the factors given by c after

performing the level permutations upon the factors as given by pc. With the

main effect components in the core set specified, X2c is the set of contrast

coefficients for the interaction components in the requirement set.

4. If C(S) is supported by D1,

(a) Take a subset of size m− r− k from {1, . . . ,m}\c to be the factors not to

be used in the design, and use these to form D∗3 from D. The design under

consideration is (D1, D
∗
2), where D∗2 is comprised of the remaining columns

from D not in D1 or D∗3.

(b) Calculate det(XT
2cD

∗
3D
∗T
3 X2c).

(c) Repeat Steps 4a and 4b for all
(

m−r
m−r−k

)
possible subsets from the remaining

columns.

5. Repeat Steps 2 to 4 for all possible level permutations pc.

6. Repeat Steps 1 to 5 for all c ⊂ {1, . . . ,m} such that |c| = r.

By Theorem 3.4, the D-optimal design among those from the saturated orthogonal

array is the design for which det(XT
2cD

∗
3D
∗T
3 X2c) in Step 4b is maximized. Recall that

Theorem 3.3 gives a lower bound on the number of factors that can be supported
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outside of the core set. Provided there are sufficient degrees of freedom, the algorithm

presented allows us to search for designs in which k is greater than the bound in

Theorem 3.3.

The algorithm as presented is applicable to search for D-optimal designs. If we

want to minimize the contamination from the two-factor interaction components out-

side of the requirement set, ‖C2o‖2 can be calculated in Step 4b, or calculated for

those designs with the largest D-efficiencies after the search is complete. Theorems

3.1 and 3.2 imply that we do not need to consider any level permutations for the

factors outside of the core set, as this will have no influence on the D-efficiency or

contamination from the two-factor interaction components outside of the model.

This method for searching for designs is applied to designs of 27 runs in the next

section.

3.6 Efficient Designs of 27 Runs Robust to Two-

factor Interactions

In this section, we consider a special case of the second order model with requirement

sets that contain two-factor interaction components for a subset of the factors in the

requirement set. The algorithm from the previous section will be used to search for

D-efficient designs that minimize the contamination from the two-factor interaction

components outside of the model.

The model of interest in this section is the second order model (3.1) as introduced

in Section 3.1:

y = β0 +
r+k∑
i=1

βixil +
r+k∑
i=1

βiixiq +
∑

1≤i<j≤r

βijxilxjl + ε, (3.18)

where we are interested only in the linear-by-linear two-factor interaction effects from

a subset of r factors out of m = r + k factors.

The results presented concentrate on 27-run three-level designs. We use the catalog

of Evangelaras, Koukouvinos and Lappas (2011) in which they identified 129 non-

isomorphic 27-run saturated orthogonal arrays with three levels. We refer to a design
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from this catalog as Di where i refers to the i’th design as ordered in the catalog

from Evangelaras, Koukouvinos and Lappas (2011). We only consider cases of r and

k in which there are sufficient degrees of freedom to estimate all effects in (3.18). A

saturated design from which we take a subset to form a design is referred to as a

parent design.

To gauge the impact of the results in searching for designs, consider the case r = 3

and k = 8. If we were to consider all possible column choices and level permutations,

we would need
(
13
3

)
×
(
10
8

)
× 311 = 2279881890 different combinations. Theorems 3.1

and 3.2 allow us to restrict level permutations to the core set, giving
(
13
3

)
×
(
10
8

)
×33 =

347490 different combinations. Only three level permutations per factor in the core set

are considered, as reflection of a factor around the center level retains the projection

properties of the design, including D-efficiency, as discussed in Xu, Cheng and Wu

(2004). With 7→ indicating the levels before and after level permutation, we refer to

permutation 0 as (012) 7→ (012), permutation 1 as (012) 7→ (120) and permutation 2

as (012) 7→ (201).

Even with the reduction of possible searches, in some situations an exhaustive

search is still computationally intensive. We will consider a means of reducing the

search in Section 3.6.2.

3.6.1 Example of a Search for a Requirement Set from a Sat-

urated Orthogonal Array

We now examine a complete search of two saturated orthogonal arrays to look for

efficient designs. For parent designs D24 and D52, we use the algorithm to search for

designs with r = 3 and k = 8. That is, we use the 24th and 52nd designs from the

catalog of Evangelaras, Koukouvinos and Lappas (2011) to search for designs in which

the requirement set contains the linear and quadratic main effect components for 11

factors, and a subset of size 3 of these factors in which the linear-by-linear two-factor

interaction components are in the requirement set.

Tables 3.1 and 3.2 show the top 20 D-efficient designs found for each parent design.

We rank the designs firstly by D-efficiency, followed by contamination of the two-factor
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interaction components outside of the model. We also include the contamination from

only the linear-by-linear two-factor interaction components outside of the model. The

design column refers to the parent design Di, core refers to the set of columns from

Di that form the r factors in the core set, and outside the columns used for the

k remaining factors. The set of level permutations for the factors in the core set is

denoted by perm, the D-efficiency by D-eff, and the contamination from the two-

factor interaction components outside of the model ‖C2o‖2, with the linear-by-linear

contribution being ‖C2l‖2.
Comparing Tables 3.1 and 3.2, we see that D24 and D52 provide different D-

efficient designs for the second-order model (3.18). The highest D-efficiency comes

from D52, and the highest D-efficiency for D24 has less contamination from the two-

factor interaction components measured by ‖C2o‖2. Also, the number of possible

designs that give the same D-efficiency differs between the parent designs. For D24,

there tends to be a large number of level permutations and factor assignments that

give the same D-efficiency in comparison to D52. If we were to restrict ourselves to a

random selection of core sets rather than all possibilities, we are more likely to miss

D-efficient designs among D52 versus D24.

Xu, Cheng and Wu (2004) suggested using G2 and G-aberration in choosing de-

signs for second-order models for factor screening and interaction detection. These

will be discussed in more detail in the next chapter, but we mention them here to

make the distinction between the approaches. The criteria of G and G2-aberration

do not take a specific requirement set into consideration. While minimum G and

G2-aberration designs may perform well when we consider finding designs that are

applicable under a variety of models with two-factor interaction components involv-

ing fewer factors, in this situation there are specific two-factor interaction components

to be estimated. The use of G and G2-aberration is to give designs that remain ef-

ficient over many subsets of factors. However, when we have a particular model in

mind, they may not necessarily lead to a good design.
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3.6.2 Searching among all Saturated Orthogonal Arrays

Even with the preceding results, a complete search of all possible designs among all

129 saturated designs is still a time-consuming undertaking. For one, we have to

consider all
(
13
r

)
possibilities for the core set and level permutations for factors in the

core set. For each of these core set choices and level permutations, there is a large

amount of time spent in step 4 when searching for the best choice of factors to be

removed from the design, particularly if the number of these subsets is large. In order

to reduce the time spent on searching, one possibility is to consider only a subset of the

core set and level permutation combinations in steps 5 and 6 of the algorithm. While

this random sample of the different combinations may be used, ideally we would like a

means of choosing factors and level permutations for the core sets that look promising

and investigate these further.

Wu (2009) showed that for two-level designs, consideration of D-efficient designs for

the core set lead to D-efficient designs for the entire requirement set. In essence, this

is due to the two-factor interactions occupying the same space as a subset of columns

from a Hadamard matrix that are outside of the core set. In the three-level situation,

this approach becomes more complicated due to the multiple components attached

to a factor - instead of removing individual columns, we remove sets of columns

corresponding to the main effect components for a factor. Choosing a D-efficient

design for the core set does not take into consideration the multiple componenents for

a factor nor which factors should be removed from the remaining.

Letting W = D∗T3 X2c, where D∗T3 and X2c are defined as in Section 3.4, by The-

orem 3.4 we want to maximize det(W TW ). This requires evaluation of all factor

assignments to D∗3. We now consider an alternative approach to the D-efficiency of

the core set. The (M.S)-criterion can be used as a surrogate for D-efficiency and

is less computationally intensive to calculate. The (M.S)-criterion firstly maximizes

tr(W TW ), followed by minimizing tr((W TW )2). For a given core set and level per-

mutations, let Do be the columns from the saturated orthogonal array not in the core

set that correspond to mo = m−r factors. We want a W = D∗T3 X2c for some D∗3 ⊂ Do

for m3 = m− r− k factors (2m3 columns) that maximizes det(W TW ). Following the
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(M.S)-criterion, an alternative is to find D+
3 ⊂ Do by firstly maximizing tr(W TW ),

followed by minimizing tr((W TW )2), where W = D+T
3 X2c. Looking at the matrix

Wo = DT
oX2c, the rows correspond to main effect components for all factors not in the

core set and the columns the two-factor interaction components in the core set. We

want to pick the best 2m3 rows from Wo which would correspond to the m3 factors

needed for D+
3 . Since tr((W TW )) is the sum of the squared components of W , taking

W 2
o as the squared components of Wo, we can collect the row sums of W 2

o correspond-

ing to the mo factors. The top m3 of these correspond to D+
3 and their sum gives

tr(W TW ) with W = D+T
3 X2c. We can then calculate tr((W TW )2) as the sum of the

squared column sums of W 2
o , over the rows corresponding the the factors in D+

3 just

chosen.

If a complete search of all combinations of level permutations and factor assign-

ments is infeasible, using the (M.S)-approach is appealing for several reasons. Firstly,

Wo only needs to be calculated once for each core set and level permutation, and can

calculate the quantities tr(W TW ) and tr((W TW )2) to rank those core sets that war-

rant further investigation while taking into account the nature of the factors to be

removed. Perhaps more importantly, the (M.S)-approach also identifies a potential

set of factors to form D3. Instead of searching through all possible factor assignments

to D3 for a given core set, we can restrict the search to a subset of those identified

as best during the maximization of tr(W TW ). This is particularly appealing if the

number of combinations among the remaining columns to be removed is large. We

will come back to this point in Section 3.6.6.

Use of this (M.S)-approach for D24 and D52 for r = 3 and k = 8 provides the

same D-efficient designs as the complete search in Tables 3.1 and 3.2. Tables 3.3 and

3.4 show the top designs from a complete search for r = 4 and k = 6 for D24 and D52.

Using the (M.S)-approach, Tables 3.5 and 3.6 show the best D-efficient designs using

the top 500 core sets for each parent design. While we do not get the top D-efficient

designs, the D-efficiencies are close to those found through a complete search. It is

worth noting, that if we use the top 1000 designs using the (M.S)-criterion, we do

obtain the designs as given in Tables 3.3 and 3.4.
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3.6.3 Searching for efficient designs with fewer factors out-

side of the core set

In Sections 3.6.1 and 3.6.2, we examined a complete search for the cases of r = 3 and

k = 8 and r = 4 and k = 6. In both situations, the number of factors outside of the

core set is the maximum allowable for the given r. With the search algorithm, designs

with fewer factors outside of the core set than the maximum allowable tend to take

longer to search for. The reason for this is that the number of combinations to choose

the k factors outside of the core set increases, in addition to extra dimensions in the

matrix D∗3 for evaluating the determinant. As k decreases, the advantage of using D3

over the model matrix decreases, as step 4 of the algorithm can be done by calculating

det(XT
MXM). The algorithm in Section 3.5 can also be used with the (M.S)-criterion

as discussed in Section 3.6.2.

In Section 3.6.4 we provide tables with D-efficient designs with the maximum

number of allowable factors outside of the core set for different values of r using the

(M.S)-criterion. We can use these designs and remove factors outside of the core set

in an attempt to find D-efficient designs.

Table 3.7 presents the results from a complete search for r = 3 and k = 7. We

get the same results using the top 500 designs with the (M.S)-criterion, or by using a

search of the top 400 D-efficient designs from r = 3 and k = 8 and checking all subsets

that remove one of the factors outside of the core set. We see that at least for this

case, we do not lose any efficiency taking a simpler approach. While this approach

may not always find the D-optimal design, we do have

det(XT
MnewXMnew) ≥ det(XT

MXM),

where XMnew is the model matrix after removing factors from outside the core set.

This suggests that so long as the D-efficiency is high for larger k, it should remain so

when removing additional factors.
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3.6.4 Tables of Efficient Designs

Using the (M.S)-approach, we now search for D-efficient designs that minimize con-

tamination of the two-factor interaction components outside of the model. Table 3.8

presents the top 20 designs in terms of D-efficiency followed by contamination from

the two-factor interaction components. Table 3.9 gives the same results where parent

designs are presented only once for a unique D-efficiency. The top designs have D-

efficiencies better than was found with the complete search of D24 and D52. For the

top designs, the core set and level permutations from the parent design that lead to

the best D-efficiencies are few. In addition, the designs coming from the same parent

design are not typically found from the same subset of factors. Table 3.10 gives the

top 20 designs for r = 4 and k = 6. Many of the observations from the previous case

hold here as well. Also of note, is that the top D-efficiencies occur in less frequency

than in comparison to r = 3; there appear to be fewer parent design and core set

choices that lead to D-efficient designs.

3.6.5 Minimizing Contamination from Two-factor Interac-

tion Components Outside of the Requirement Set

As discussed previously, if all two-factor interaction components outside of the re-

quirement set are treated equally, Theorem 3.2 tells us we no longer need to consider

level permutations for the factors outside of the core set. However, if we differentiate

among two-factor interaction components by considering linear-by-linear components

as more likely to be nonnegligible, we can first find a D-optimal design and then

consider level permutations of the factors outside of the core set to minimize the con-

tamination from the linear-by-linear components. By Theorem 3.1, the D-efficiency

will be unchanged.

Tables 3.11 and 3.12 show level permutations of factors outside of the core set for

two D-efficient designs for r = 4 and k = 2. Table 3.11 is from D46 and 3.12 from

D110. In this case, the core set has level permutations 0 for all factors in the core set,

and the permout refers to the level permutations for the factors outside of the core

set. For each design, we report the D-efficiency, the contamination of the two-factor
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interaction components given by ‖C2l‖2, ‖C2q‖2, and ‖C2o‖2 as defined by equations

(3.6), (3.7), and (3.8), respectively. Note that within each table, ‖C2o‖2 is the same,

as expected via Theorem 3.2.

In general, level permutations of factors outside of the core set influence the impact

of the linear-by-linear two-factor interaction components outside of the requirement

set. In this example, the D-efficiency of the designs in Table 3.11 are better than those

in Table 3.12, as is the minimum of ‖C2l‖2. We do have ‖C2o‖2 smaller in Table 3.12.

Since ‖C2o‖2 is invariant to level permutations outside of the core set, it would be

ideal to use this value before considering level permutations if choosing among designs

with the same D-efficiency. As we have seen in this example, looking at ‖C2o‖2 before

considering level permutations outside of the core set has no guarantee of finding

the minimum ‖C2l‖2. The number of all possible level permutations of the factors

outside of the core set can still take a significant amount of time to search. However,

this minimization of ‖C2l‖2 is essentially the last step in the search, completed after

finding D-efficient designs. Using this search for only a few top D-efficient designs, the

experimenter might trade off a slight reduction in D-efficiency for less contamination

from the linear-by-linear two-factor interaction components.

3.6.6 Searching for an 81-Run Design

We conclude this section with an example where a complete search is not feasible.

Taking the 81-run, 40-factor design from Neil Sloane’s website (Sloane, 2011), consider

the case where r = 5 and k = 25. According to Theorem 3.3, if we have a subset of

5 factors that supports the core set, then a design that supports the requirement set

exists. However, for such a core set, there are
(
35
25

)
= 183579396 different combinations

for the factors outside of the core set. This is for a single choice of columns that

supports a core set - aiming for D-efficient designs becomes even more cumbersome.

The (M.S)-approach not only identifies core sets to be investigated further, but can

also be used to select possible choices for factors outside of the core set. While full

enumeration of all core sets and level permutations is not possible, we are still able

to consider a subset of these and restrict our search for the factors outside of the core
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set.

For a small sample of core sets and level permutations, we used the (M.S)-approach

to select the top 12 factors and search among those
(
12
10

)
to be the columns removed

from the design. The (M.S)-approach found designs with D-efficiencies of about 90%,

whereas a random sample of several thousands out of the
(
35
25

)
possibilities did not

find a design that supports the requirement set.

3.7 Discussion

While much of the attention in this chapter has been placed on three-level designs,

all of the results hold generally for designs with more than three levels. Depending

on the nature of the interaction components in the core set, it is possible that the

search can be simplified even further if an orthonormal matrix can be used on the

interactions, such as when we consider all interaction components for a pair of factors.

The results also apply to mixed level designs. This is particularly useful if the effects

of interest vary among the factors. For example, in the second order model studied

in this chapter, if we are not interested in curvature for the factors outside of the core

set, these factors can be set at two levels. Our searches were based on a saturated

orthogonal array. If we have an orthogonal array available that is not saturated, the

results of this chapter still apply. In this case, the columns in the null space of the

design are automatically in D3.
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Table 3.11: Level Permutations of Factors Outside of the Core Set from Design D46
for r = 4 and k=2.

main outside permout Dopt ‖C2l‖2 ‖C2q‖2 ‖C2o‖2
2 4 5 12 9 10 0 0 0.960041 5.3802 31.6758 37.0559
2 4 5 12 9 10 0 1 0.960041 6.3898 30.6661 37.0559
2 4 5 12 9 10 1 0 0.960041 6.3898 30.6661 37.0559
2 4 5 12 9 10 2 0 0.960041 6.3898 30.6661 37.0559
2 4 5 12 9 10 0 2 0.960041 6.3898 30.6661 37.0559
2 4 5 12 9 10 2 1 0.960041 7.0795 29.9764 37.0559
2 4 5 12 9 10 1 1 0.960041 7.0795 29.9764 37.0559
2 4 5 12 9 10 1 2 0.960041 7.0795 29.9764 37.0559
2 4 5 12 9 10 2 2 0.960041 7.0795 29.9764 37.0559

Table 3.12: Level Permutations of Factors Outside of the Core Set from Design D110
for r = 4 and k=2.

main outside permout Dopt ‖C2l‖2 ‖C2q‖2 ‖C2o‖2
3 9 11 13 6 10 2 2 0.959229 6.6922 30.1542 36.8464
3 9 11 13 6 10 0 2 0.959229 6.8698 29.9766 36.8464
3 9 11 13 6 10 2 0 0.959229 6.8698 29.9766 36.8464
3 9 11 13 6 10 2 1 0.959229 6.9092 29.9372 36.8464
3 9 11 13 6 10 1 2 0.959229 6.9092 29.9372 36.8464
3 9 11 13 6 10 1 0 0.959229 7.1888 29.6575 36.8464
3 9 11 13 6 10 0 1 0.959229 7.1888 29.6575 36.8464
3 9 11 13 6 10 0 0 0.959229 7.2514 29.5950 36.8464
3 9 11 13 6 10 1 1 0.959229 7.3303 29.5161 36.8464



Chapter 4

J-Characteristics for Multi-Level

Factorial Designs

4.1 Introduction

In Chapters 2 and 3, designs were studied to estimate a subset of the two-factor inter-

actions based on our knowledge about certain effects. This chapter has no requirement

sets, nor prior knowledge about effects. In the absence of a requirement set, the hier-

archical ordering principle would suggest that we want an orthogonal array of higher

strength. If we think of strength in terms of design points, the higher strength of an

orthogonal array implies an even spread of the design points in lower dimensions. In

this chapter, our goal is to measure the properties of a design when projected onto

lower dimensions. We will do so by measuring the spread of the design points in lower

dimensions, which will lead to robust properties for the design. This approach pro-

vides designs that are useful for screening and also appealing as ‘nearly-orthogonal’

arrays either on their own or as building blocks for other designs.

For two-level designs, the criterion of minimum G-aberration (Deng and Tang,

1999) provides a measure of the projection properties of a design, and a relaxed

variant, minimum G2-aberration, also has a projection justification (Tang, 2001). Xu

and Wu (2001) studied minimum G2-aberration for multi-level designs, but did so

62
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without the use of J-characteristics. In this chapter we extend the concept of J-

characteristics to multi-level designs and derive G and G2-aberration based on these

J-characteristics. The J-characteristics are appealing because they characterize the

distributions of design points in various dimensions and do not require the specification

of orthonormal contrasts for factors as is done by other approaches.

Section 4.2 introduces the J-characteristics for multi-level designs and Section 4.3

uses them to define G and G2-aberration, and a new criterion that places consideration

on individual factors. Section 4.4 provides an illustration of using the J-characteristics

to evaluate designs using the standard analysis of variance (ANOVA) provided in

statistical packages. We give some designs ranked according to G and G2-aberration

in Section 4.5.

4.2 J-Characteristics and Their Properties

4.2.1 J-Characteristics for Multi-Level Designs

In this section, we define the J-characteristics for multi-level designs and give an

explicit example, followed by some of the properties of J-characteristics in Section

4.2.2. The definition of the J-characteristics is based on decomposing the frequency

of the design points analogous to the ANOVA decomposition taught in introductory

statistics courses. The key idea is to treat the frequency of design points as the

response variable.

Let D be a design with n runs and m factors, where factor j has sj levels, given

by 0, 1, . . . , sj − 1, for j = 1, . . . ,m. Denote N(x1, . . . , xm) as the number of design

points at level combination (x1, . . . , xm) where xj = 0, . . . , sj − 1. Consider the

ANOVA decomposition of N(x1, . . . , xm) given by

N(x1, . . . , xm) =
∑
u⊆Zm

Nu(x1, . . . , xm), (4.1)

where the summation is over all subsets of Zm = {1, . . . ,m},

N∅ = (s1 · · · sm)−1
∑

x1,...,xm

N(x1, . . . , xm) (4.2)
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is the grand mean, and

Nu(x1, . . . , xm) = (
∏
j 6∈u

sj)
−1
∑
xj ,j 6∈u

N(x1, . . . , xm)−
∑
v⊂u

Nv(x1, . . . , xm) (4.3)

is the interaction involving the factors in u.

The J-characteristics are defined as

Ju(x1, . . . , xm) = s1 · · · smNu(x1, . . . , xm). (4.4)

The J-characteristics can then be related back to the design points through

s1 · · · smN(x1, . . . , xm) =
∑
u⊆Zm

Ju(x1, . . . , xm). (4.5)

Ai and Zhang (2004) defined J-characteristics using orthonormal contrasts follow-

ing the approach of Xu and Wu (2001). In their formulation, the J-characteristics

require a set of orthonormal contrasts for each factor and are calculated based on

these contrasts. In our formulation, the J-characteristics are based only on the design

points and do not require the specification of contrasts.

The value of Ju(x1, . . . , xm) depends only on xj’s for j ∈ u. For the remainder of

this chapter, unless otherwise specified, by referring to the J-characteristics we mean

those as defined in equation (4.4). The ANOVA decomposition allows for standard

statistical software to evaluate the properties of a design, a point which we return to

in Section 4.4.

The multi-level J-characteristics are consistent with those used for two-level de-

signs. For a two-level design, D = (xij) with xij = ±1, Tang and Deng (1999) and

Deng and Tang (1999) defined the J-characteristics as

Ju =
n∑
i=1

∏
j∈u

xij. (4.6)

for any u ⊆ Zm = {1, . . . ,m}. Tang (2001) related the distribution of design points

as a vector, N , to the vector of J-characteristics of a design through

Ju = HTN, (4.7)
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or equivalently N = 2−mHJ , where H is a Hadamard matrix that contains all possible

Hadamard products of the column vectors of the full factorial design. For two-level

designs, Ju is characterized by a single number and the calculation is based on ±1.

In the two-level case, for any of the 2m combinations of x1, . . . , xm, |Ju(x1, . . . , xm)|
= |Ju|. More precisely we have Ju(x1, . . . , xm) = (

∏
i∈u xi)Ju. For multi-level designs,

the situation becomes more complicated, as Ju(x1, . . . , xm) can take on numerous

values. We demonstrate this in the following example.

Example 4.1. Consider the 9-run, three-level design

D =



0 0 0
0 1 2
0 2 1
1 0 0
1 1 1
1 2 2
2 0 2
2 1 0
2 2 1


.

For the above design D, we have N(x1, x2, x3) = 1 if (x1, x2, x3) is one of the nine

rows and N(x1, x2, x3) = 0 otherwise. We use the decomposition in (4.1) to obtain

the Nu terms which will allow us to calculate the J-characteristics by Equation (4.4).

Starting with the grand mean, we have N∅ = (1/27)∗9 = 1/3. For the subsets u with

|u| = 1, N1(x1, x2, x3) = N2(x1, x2, x3) = N3(x1, x2, x3) = (1/9) ∗ 3− (1/3) = 0,

for any x1, x2, x3 ∈ {0, 1, 2}. To clarify, examining the calculation of N1(0, 0, 0) in

greater detail,

N1(0, 0, 0) = (1/(s2 ∗ s3))
∑
x2,x3

N(0, x2, x3)−N∅ = (1/(3 ∗ 3)) ∗ 3− (1/3) = 0,

where
∑

x2,x3
N(0, x2, x3) = 3 is the number of times 0 occurs in column 1. For

u = {1, 2} and u = {1, 3},
N1,2(x1, x2, x3) = N1,3(x1, x2, x3) = (1/3) ∗ 1− (1/3) = 0,

for all x1, x2, x3 ∈ {0, 1, 2}, while for u = {2, 3},
N2,3(x1, 1, 0) = N2,3(x1, 1, 1) = N2,3(x1, 1, 2) =

N2,3(x1, 0, 2) = N2,3(x1, 2, 2) = 1/3− 1/3 = 0, for all x1 ∈ {0, 1, 2},
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and N2,3(x1, 0, 0) = N2,3(x1, 2, 1) = (2/3− 1/3) = 1/3,

N2,3(x1, 0, 1) = N2,3(x1, 2, 0) = (0− 1/3) = −1/3 for all x1 ∈ {0, 1, 2}.
Table 4.1 gives the set of values for N1,2,3 for all (x1, x2, x3). The entries correspond

to the design points giving those values. For instance,

N1,2,3(0, 0, 0) = N(0, 0, 0)−N1,2(0, 0, 0)−N1,3(0, 0, 0)−N2,3(0, 0, 0)

−N1(0, 0, 0)−N2(0, 0, 0)−N3(0, 0, 0)−N∅
= 1− 1/3− 1/3 = 1/3.

The remaining values in Table 4.1 are calculated similarly.

Table 4.1: N1,2,3 values over all combinations of (x1, x2, x3).

N1,2,3

-2/3 -1/3 0 1/3 2/3
(1,2,1) (0,0,2) (0,0,1) (0,0,0) (0,1,2)
(2,0,0) (0,1,0) (0,2,0) (0,2,1) (1,1,1)

(0,1,1) (1,0,1) (1,0,0) (1,2,2)
(0,2,2) (1,2,0) (2,2,1) (2,0,2)
(1,0,2) (2,0,1) (2,1,0)
(1,1,0) (2,2,0)
(1,1,2)
(2,1,1)
(2,1,2)
(2,2,2)

If we return to Equation (4.1), we have the decomposition of N(0, 0, 0) as

N(0, 0, 0) = N∅ +N1(0, 0, 0) +N2(0, 0, 0) +N3(0, 0, 0) +N1,2(0, 0, 0) +

N1,3(0, 0, 0) +N2,3(0, 0, 0) +N1,2,3(0, 0, 0)

= 1/3 + 0 + 0 + 0 + 0 + 0 + 1/3 + 1/3

= 1.

The J-characteristics are calculated by Equation (4.4) as Ju(x1, x2, x3) =

27Nu(x1, x2, x3) for all u ⊆ Zm and x1, x2, x3 ∈ {0, 1, 2}. The J-characteristics for the
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individual factors, J1(x1, x2, x3), J2(x1, x2, x3) and J3(x1, x2, x3), are 0, which reflects

the fact we have a balanced design. For the two-factor interactions, J1,2(x1, x2, x3)

and J1,3(x1, x2, x3) are 0 for all x1, x2 and x3, whereas J2,3(x1, x2, x3) is non-zero for

some x1, x2 and x3. This indicates column 1 is orthogonal to columns 2 and 3, but

columns 2 and 3 are not orthogonal. In this example, J1,2,3(x1, x2, x3) takes on five

different values.

In the next subsection, we take a closer look at some of the properties of J-

characteristics.

4.2.2 Properties of J-Characteristics

The results in the following Lemma provide some insight into the usefulness of the

J-characteristics.

Lemma 4.1. (i) A design is uniquely determined by its J-characteristics, and vice

versa.

(ii) A design is a full factorial or several replicates of it if and only if Ju = 0 for all

nonempty subsets u of Zm.

(iii) A design is an orthogonal array of strength t if and only if Ju = 0 for all

nonempty subsets u such that |u| ≤ t.

(iv) when s1 = · · · = sm = s and the design is an orthogonal array of strength t, then

Ju must be a multiple of st.

If our interest lies in the lower dimensions of the factors, Lemma 4.1 tells us that

for smaller values of |u|, a good design should have Ju values as close to zero as

possible. As was seen in Example 4.1, we need to be mindful that unlike the two-level

case, Ju can take on a number of different values for a given u. The construction of

the J-characteristics gives a convenient way to summarize the size of Ju. By using

the ANOVA decomposition for the frequency of the design points, we have

s1−1∑
x1=0

· · ·
sm−1∑
xm=0

[s1 · · · smN(x1, . . . , xm)]2 =
∑
u⊆Zm

s1−1∑
x1=0

· · ·
sm−1∑
xm=0

[Ju(x1, . . . , xm)]2, (4.8)
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as

s1−1∑
x1=0

· · ·
sm−1∑
xm=0

Ju(x1, . . . , xm)Jv(x1, . . . , xm) = 0 for u 6= v because the ANOVA de-

composition is an orthogonal decomposition.

If we let

S2
u =

s1−1∑
x1=0

· · ·
sm−1∑
xm=0

[Ju(x1, . . . , xm)]2 (4.9)

represent the size of Ju, then the decomposition becomes
s1−1∑
x1=0

· · ·
sm−1∑
xm=0

[s1 · · · smN(x1, . . . , xm)]2 =
∑
u⊆Zm

S2
u. (4.10)

The values of S2
u in (4.9) will be used throughout the remainder of the chapter as a

means of evaluating the properties of a design, and will be justified in the next section.

Example 4.1 (continued). Calculating the left-hand side of Equation (4.10),

2∑
x1=0

2∑
x2=0

2∑
x3=0

[33N(x1, x2, x3)]
2 = 6561.

Using Equation (4.9), S2
∅ = 2187, S2

1 = S2
2 = S2

3 = 0, S2
1,2 = S2

1,2 = 0, S2
2,3 = 972 and

S2
1,2,3 = 3402. Taking the right-hand side of (4.10), we have

∑
u⊆Z3

S2
u = 6561.

The quantities of S2
u are the partitioned sums of squares for the factorial effects

in an ANOVA. The m factors are a full factorial design corresponding to all level

combinations of x1, . . . , xm and the response variable is s1 · · · smN(x1, . . . , xm). The

sum of squares component S2
u corresponds to the factors in u. In the standard usage

of ANOVA for a general factorial design, we typically want lower order effects with a

large sum of squares. For our situation, the lower order effects should be as small as

possible, ideally zero, as these represent the projections onto factors in u. An example

of analyzing a design using this ANOVA approach on the frequency of design points

will be given in Section 4.4. We now explore the justification for the use of S2
u.

4.3 Criteria of Aberration and their Justification

In this section, we introduce a means of ranking designs that makes use of the J-

characteristics through S2
u. This will be done through the variability of design points

and contamination from nonnegligible interactions.
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4.3.1 G2-Aberration

If we consider Equation (4.10), moving the grand mean to the left-hand side, we have

the total corrected sum of squares in an ANOVA. This quantity represents the total

variability of the design points. The S2
u terms give the partitioned sums of squares

corresponding to the different effects in the design. For any subset v of Zm, if we want

to look at the variability of the projection onto the factors in v we can look at the

S2
u for u ⊆ v. To ensure good projections onto lower dimensions, we want the S2

u to

be small when |u| is small. Based on J-characteristics, we now define the criterion of

minimum G2-aberration. Let

Bj =
∑
|u|=j

S2
u. (4.11)

Then minimum G2-aberration is to sequentially minimize B1, . . . , Bm. Similar to Tang

(2001), Ai and Zhang (2004) gave a projection justification for generalized minimum

aberration, which we discuss shortly, based on their version of the J-characteristics.

Their justification used the same idea of the variability of design points. Our measure

of S2
u is equivalent to the sum of the squared J-characteristics used by Ai and Zhang

(2004), but in our derivation, S2
u is directly linked to the distribution of design points.

The J-characteristics of Ai and Zhang (2004) are based on the orthonormal con-

trasts as used in Xu and Wu (2001) in defining generalized minimum aberration

(GMA). Generalized minimum aberration sequentially minimizes A3, A4, . . . for

Aj = n−2
mj∑
k=1

∣∣∣∣∣
n∑
i=1

x
(j)
ik

∣∣∣∣∣
2

, (4.12)

where x
(j)
ik is the ith component of the kth factor effect contrast, of which there are

mj. We have

Aj = Bj/(s1 · · · smn2), (4.13)

for j = 1, . . . ,m. The value of Aj measures the overall aliasing between the j-factor

effects and the grand mean.

In regards to robustness to nonnegligible interactions, consider the ANOVA model

written as

Y = X0β0 +X1β1 +X2β2 + · · ·+Xmβm + ε (4.14)
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where Y is the vector of n observations, Xi is the matrix of contrast coefficients for

the i-factor interactions with βi the corresponding effects, β0 the grand mean and X0

the vector of 1’s, and ε the vector of independent random errors. The main effects

model for (4.14) is given by

Y = X0β0 +X1β1 + ε. (4.15)

Using model (4.15), the least squares estimate of β1 is given by β̂1 = (XT
1 X1)

−1XT
1 Y .

This estimate is unbiased for model (4.15), but if model (4.14) is the true model, we

have

E(β̂1) = β1 + C2β2 + · · ·+ Cmβm,

where Ci = (XT
1 X1)

−1XT
1 Xi are the aliasing matrices for i = 2, . . . ,m. In the sit-

uation our design D is an orthogonal array, Ci simplifies to Ci = (1/n)XT
1 Xi. By

the hierarchical ordering principle, lower order effects are more likely to be impor-

tant than higher order effects, and effects of the same order are equally likely to be

important. If we want to minimize the contamination from nonnegligible interac-

tions, we would like to sequentially minimize C2, C3, . . .. To sequentially minimize

‖C2‖2, ‖C3‖2, . . . gives the minimum contamination criterion such as in Tang and

Deng (1999), Xu and Wu (2001), and Steinberg and Bursztyn (2001). Xu, Cheng and

Wu (2004) suggested using this approach for screening with three-level designs. In

Xu and Wu (2001), they showed that sequentially minimizing A3, A4, . . . is equivalent

to sequentially minimizing ‖C2‖2, ‖C3‖2, . . .. This means that for orthogonal arrays

(B1 = B2 = 0), G2-aberration sequentially minimizes ‖C2‖2, ‖C3‖2, . . ..
The entries of Ci are dependent on the choice of orthonormal contrasts, as are

the components x
(j)
ik in (4.12). Our definition of Bj in (4.11) does not depend on

orthonormal contrasts. As noted in Xu and Wu (2001), ‖Ci‖2 is independent of the

choice of orthonormal contrasts. If we look at the projection design onto the factors

referenced by v, note that the projected Aj values and S2
u remain the same regardless

of the choice of orthonormal contrasts for all u ⊆ v.

In related work, Liu, Fang, and Hickernell (2006) studied the connection between

different criteria for asymmetrical fractional factorial designs showing that general-

ized minimum aberration is equivalent to the minimum χ2-criterion (an extension of
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Yamada and Matsui, 2002) and minimum projection uniformity (Hickernell and Liu,

2002).

4.3.2 G-Aberration

By the effect sparsity principle, few of the effects are expected to be significant. A

more conservative approach than G2-aberration is to minimize the worst case scenario.

Assuming interactions involving three or more factors are negligible, if C2 = [cij], in

order to best protect estimation of the main effects from nonnegligible two-factor

interactions, we can try to sequentially minimize the largest of the c2ij’s. However,

the c′ijs are based on a set of orthonormal contrasts. Without prior knowledge or

choice of contrasts, a good surrogate is to sequentially minimize the frequency of S2
u

starting from the largest value among with smaller values of |u|, effectively collecting

the
∑
c2ij for i, j corresponding to factors in u. That is, we first sequentially minimize

the largest S2
u values for the smallest nonzero |u|.

Sequentially minimizing the frequencies of S2
u can also be thought of from the pro-

jection standpoint. From this view, minimum G-aberration sequentially minimizes

the worst of the lower-dimensional projections as measured by the variability of the

design points. Whereas Bj measures the overall projection properties, the projected

S2
u values provide a more conservative approach. If we expect that the response is

active in a smaller subset of the factors, G-aberration aims to minimize poor projec-

tions in smaller subsets. Our concentration for G-aberration is for |u0| with the first

nonzero S2
u0

from |u0| = 1, 2, . . .. The reason is that if we consider a |u∗| > |u0|, the

projection properties are based on S2
u for all subsets u ⊆ u∗. This causes no problems

for G2-aberration.

Another possibility to define G-aberration is to sequentially minimize the fre-

quency of |Ju(x1, . . . xm)|’s. In the two-level case, defining G-aberration with either

|Ju(x1, . . . xm)| or S2
u are equivalent, but not so when there are more than two levels

due to |Ju(x1, . . . xm)| taking on different values. This approach can also be used to

further differentiate designs with the same G-aberration as defined using S2
u. Based

on the direct relationship to the variability of the design points, for the remainder of
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this chapter we use S2
u in relation to G-aberration.

Our definition of minimum G-aberration is equivalent to the definition for two-

level designs. For multi-level designs, using the frequency of S2
u is more general than

the projection aberration criterion in Xu, Cheng and Wu (2004), in which they se-

quentially minimized the projected A3 values starting from the largest as a means of

combining factor screening and interaction detection for three-level designs.

4.3.3 G2(i)-Aberration

While minimum G2-aberration considers an overall measure of lower dimensions and

minimum G-aberration takes a conservative approach, the impact on individual fac-

tors is not taken into account from both the contamination and projection perspec-

tives. Ideally, given any factor, we should have good projection properties for all those

projections involving that factor. Equivalently, we want the contamination to the es-

timation of each factor minimized so that no individual main effect has a substantial

amount of contamination from nonnegligible interactions. Minimum G2(i)-aberration

aims to address this by sequentially minimizing the largest values of

S2
i:k =

∑
{u:i∈u,|u|=k}

S2
u (4.16)

for i = 1, . . . ,m, beginning from k = 1, 2, . . .. In general, we expect that a design

with smaller G2-aberration should also have smaller G2(i)-aberration as G2-aberration

is based on the sum of the S2
i,k’s.

Using G2(i) can be thought of as somewhere between G and G2-aberration. Not

as conservative as G-aberration, it still gives us the flexibility to distinguish between

designs having the same G2-aberration. When we reach a point that higher strength

is not possible, the aim is to have the contamination or projection properties spread

out evenly among the factors. The concept of G2(i)-aberration can be extended to

G(i)-aberration whereby we use the frequency vectors of S2
u for each factor and rank

these according to G-aberration.
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4.3.4 Considerations from Previous Chapters

In Chapter 2, we considered a case where certain two-factor interactions were safely

assumed to be negligible before conducting the experiment while other two-factor

interactions were nonnegligible. If it were known ahead of time that certain factors

do not interact, then G, G2 and G2(i)-aberration can all be adapted to account for

this information. Instead of using Bj, we can give different weights to S2
u to account

for this information.

As an example, similar to Chapter 2, consider an orthogonal array with a subset

of factors T2 such that the interactions within T2 × T2 are assumed negligible. For

|u| = 1, 2, all S2
u = 0. For |u| = 3, any S2

u where u ⊆ T2 (ie. all three factors are in

T2) can be assigned zero weight. In addition, the S2
u where u has two factors from T2

would be considered less serious than the S2
u with only one or zero factors from T2.

There are then a number of ways to rank designs using this information, whether by

creating a metric with a weighted sum of the S2
u, or a partition based on the factors

in the subset u. An example of this partitioning was used in Chapter 2 with the A40,

A31 and A22 terms.

One of the appeals of the multi-level J-characteristics and the use of S2
u is that

they are independent of the choice of orthonormal contrasts. Our concern is with the

general structure of the design in lower dimensions. In Chapter 3, we had a particular

model in mind with a set of orthonormal contrasts and specified two-factor interaction

components. In such a situation, the J-characteristics from Ai and Zhang (2004) may

be more appropriate as they are defined based on a set of orthonormal contrasts. The

S2
u terms can be thought of as summarizing all of the interaction components of the

factors in u, when our interest may only be in a subset of these components.

4.4 An ANOVA Example

We now analyze two designs based on their S2
u values calculated using a standard

ANOVA from the statistical software package R. Consider the OA(27, 36)’s denoted

by D1 and D2 in Table 4.2. The design D1 is a non-regular design, while D2 is
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regular. To analyze these designs using an ANOVA, our design matrix is the full

factorial design for m = 6 factors with 3 levels each, and the response y is the number

of occurrences of a particular row multiplied by 36 (see the left-hand side of equation

(4.5)). If we let x1, . . . , x6 represent the six factors in the full factorial, and y be as

just described, we can use the R command

aov(y∼x1*x2*x3*x4*x5*x6)

to calculate S2
u for all u ⊆ Zm and investigate the properties of the design.

Table 4.3 gives the results of the ANOVA for the three-factor interactions for both

designs and Table 4.4 for interactions involving four or more factors. The interaction

listed refers to the set u. For example, x1:x2:x3 refers to u = {1, 2, 3}. The degrees

of freedom for the interaction, represented by ‘df’ in the table, give the number

of components these interactions have if main effects were broken into orthogonal

components, as was done in the previous chapter. We present interactions involving

three or more factors as for the main effects and two-factor interactions (|u| = 1, 2)

S2
u = 0. Then for both designs, Bj from (4.11) is zero for j = 1, 2. In a typical

ANOVA, we look for significant effects through larger sums of squares for lower-order

effects. In this situation, we want the lower-order terms as close to zero as possible.

Design D2 has less G2-aberration than D1 as we have B3 = 3188646 for D2 versus

B3 = 4015332 for D1. However, D1 has less G-aberration than D2 as seen in Table 4.5

with the frequency of S2
u values for |u| = 3. Table 4.6 gives the S2

i:3 as calculated by

equation (4.16). By these values, design D1 has less G2(i)-aberration than D2. From

Table 4.6, we see that while the sum of the S2
u terms is smaller for D2, D1 has more

of an even spread of the contribution of each factor to B3.
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Table 4.2: Two OA(27, 36), D1 a non-regular design and D2 regular.

D1 =



001001
011221
022201
000022
010100
021010
002212
012120
020112
100200
112011
122022
102110
111102
120220
101111
111222
120001
200121
212000
221102
201020
210012
222121
202202
210211
221210



D2 =



000000
001101
002202
010120
011221
012022
020210
021011
022112
100111
101212
102010
110201
111002
112100
120021
121122
122220
200222
201020
202121
210012
211110
212211
220102
221200
222001



For D1, the vector of Bj values are (0, 0, 4015332, 5078214, 3306744, 1417176) and

for D2 we have (0, 0, 3188646, 6377292, 3188646, 1062882). It should be noted that∑6
j=0Bj = 14348907 for both designs. If we return to Equation (4.9), we see that∑
j Bj will be the same for two designs with the same factor and level combinations,

provided they have no repeated runs. From this perspective, minimizing Bj for smaller

values of j is equivalent to maximizing Bj for larger values of j.
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Table 4.3: S2
u (SS) for 3-factor interactions for D1 and D2.

D1 D2

Interaction df S2
u S2

u

x1:x2:x3 8 157464 0
x1:x2:x4 8 236196 0
x1:x3:x4 8 236196 0
x2:x3:x4 8 157464 0
x1:x2:x5 8 236196 1062882
x1:x3:x5 8 157464 0
x2:x3:x5 8 236196 0
x1:x4:x5 8 157464 0
x2:x4:x5 8 236196 0
x3:x4:x5 8 157464 0
x1:x2:x6 8 157464 0
x1:x3:x6 8 236196 1062882
x2:x3:x6 8 236196 0
x1:x4:x6 8 236196 0
x2:x4:x6 8 236196 1062882
x3:x4:x6 8 236196 0
x1:x5:x6 8 236196 0
x2:x5:x6 8 157464 0
x3:x5:x6 8 157464 0
x4:x5:x6 8 157464 0

4.5 Searching for Designs

In this section we search for designs using S2
u as discussed in Section 4.3 to find

minimumG andG2-aberration designs among orthogonal arrays. As was the approach

in Chapter 3, we start with an existing orthogonal array and search among smaller

subsets for the best designs. We firstly examine orthogonal arrays of 18 runs and then

move to 27 runs. Because we are dealing with orthogonal arrays, our attention will be

placed on 3-factor projections through S2
u with |u| = 3. For convenience, throughout

this section we report results in terms of projected A3 values instead of S2
u to remain

consistent with previous literature. We use projected A3 and S2
u interchangeably in
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Table 4.4: S2
u (SS) for interactions with greater than 3 factors for D1 and D2.

Interaction df D1 D2

x1:x2:x3:x4 16 275562 1062882
x1:x2:x3:x5 16 393660 0
x1:x2:x4:x5 16 314928 0
x1:x3:x4:x5 16 354294 1062882
x2:x3:x4:x5 16 393660 1062882
x1:x2:x3:x6 16 393660 0
x1:x2:x4:x6 16 314928 0
x1:x3:x4:x6 16 236196 0
x2:x3:x4:x6 16 314928 0
x1:x2:x5:x6 16 275562 0
x1:x3:x5:x6 16 275562 0
x2:x3:x5:x6 16 393660 1062882
x1:x4:x5:x6 16 393660 1062882
x2:x4:x5:x6 16 275562 0
x3:x4:x5:x6 16 472392 1062882
x1:x2:x3:x4:x5 32 551124 0
x1:x2:x3:x4:x6 32 590490 1062882
x1:x2:x3:x5:x6 32 551124 1062882
x1:x2:x4:x5:x6 32 629856 1062882
x1:x3:x4:x5:x6 32 551124 0
x2:x3:x4:x5:x6 32 433026 0
x1:x2:x3:x4:x5:x6 64 1417176 1062882

this section.

Before moving on, we clarify the calculations used in the search for designs in

the remainder of this chapter. In Section 4.4, the calculation of S2
u was based upon

an ANOVA analysis of a full factorial design with the frequency of design points as

the response. Since we have only a fraction of the runs from the full factorial, many

components of the response vector were zero. In the case of an OA(27, 313), the full

factorial would have 313 = 1594323 runs, but the response vector would have at most

27 nonzero entries. Because of the ANOVA decomposition, the calculation of S2
u can

be done with simpler formulas through the definition in Section 4.2. The simplified
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Table 4.5: Tabulation of S2
u for |u| = 3 for D1 and D2.

S2
u frequency

design 0 157464 236196 1062882
D1 0 9 11 0
D2 17 0 0 3

Table 4.6: Tabulation of S2
i,3 for D1 and D2.

S2
1,3 S2

2,3 S2
3,3 S2

4,3 S2
5,3 S2

6,3

D1 2047032 2047032 1968300 2047032 1889568 2047032
D2 2125764 2125764 1062882 1062882 1062882 2125764

formulation allows easier calculation of S2
u without creating the full factorial and can

be thought of as the manual computing formulas for the sum of squares components.

Since many of the terms are 0, the computational savings is substantial as the manual

computation formulas allow us to ignore any of the terms that are 0 in the calculation.

We examine designs by presenting our results beginning with the maximum num-

ber of factors from the larger orthogonal array. With the S2
u calculated for all u ⊆ Zm,

we can analyze a subset v of m∗ ≤ m factors by simply looking at the S2
u for u ⊆ v.

If we relate this approach back to linear regression, we are dealing with a best subset

selection process. One could then use forward or backwards selection using the error

sum of squares (SSE) such that the number of factors in the model is of size m∗.

In our situation, the SSE would be formed by taking the sum of all S2
u such that u

contains a factor outside of the current design. Instead of trying to minimize the SSE,

we want to maximize it. By starting with the larger design and calculating the full set

of S2
u values, it is convenient to start with the larger designs and sequentially remove

factors.
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4.5.1 Designs with 18 Runs

Table 4.7 provides the three non-isomorphic 18-run designs with 7 three-level factors as

identified by Evangelaras, Koukouvinos and Lappas (2007). We refer to these designs

as N18.1, N18.2 and N18.3. Schoen (2009) also identified the three non-isomorphic

18-run designs and presented the projected A3 frequency, which is equivalent to our

definition of G-aberration.

For m = 7, all three designs are the same by minimum G2-aberration with an

overall A3 = 22. Table 4.8 shows the frequencies for the projected A3 values. Ac-

cording to minimum G-aberration, we would rank the designs in order from best to

worst as N18.2, N18.1, and N18.3. Table 4.9 gives the values for A3(i), where A3(i)

corresponds to the sum of the projected A3 values that involve factor i (the equivalent

of S2
i:k). The ranking according to G2(i)-aberration is the same as G-aberration.

Table 4.10 shows the results for the top designs found by removing one column

from the parent designs. For each parent design, the design listed is best in terms of

G, G2, and G2(i)-aberration. For m = 6, the rank is reversed from the case of m = 7.

Table 4.11 gives the A3(i) values, where i refers to the column in the resulting design

with m = 6. By a theoretical result in Xu (2003), any subdesign of m ≤ 6 from N18.3

with column 4 removed has minimum G and G2-aberration.

In terms of overall A3, the change in the ranking was expected based on the results

for m = 7 from Table 4.9. For N18.3, we find that the largest value for A3(i) occurs for

i = 4. If we remove factor 4 from this design, the overall A3 value for the subdesign

will be the overall A3 from the full design minus all projected A3 values that include

factor 4, which is exactly what is calculated by A3(4). That is, given a design D with

k factors, if we remove factor i, the overall A3 for the subdesign is A3(D) − A3(i),

where A3(D) is the overall A3 for D.

The above observations have some practical implications. Intuitively, we might

expect that selecting the best larger design as a parent design may lead to better

subdesigns. As we have seen in this example, this is not necessarily the case, as all of

the best subdesigns come from the parent design with the worst ranking for m = 7.

This also has implications in constructing designs in a columnwise manner. If our goal
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is for m = 7 factors, design N18.3 would be selected as the best design for m ≤ 6,

and the worst for m = 7. Computer algorithms that create designs by sequentially

adding columns can fall prey to creating less appealing designs in such a situation.

We conclude our studies on 18-run designs with an interesting case. For N18.2,

with m = 6 with factor 1 removed, all projections onto m = 5 factors have the same

A3 = 6, and projected A3 frequency of 4 with 0.5 and 6 with 2/3 (recall that A3(i) is

the same for all i in Table 4.11), as shown in Table 4.12. At m = 6, the A3(i) values

make no distinction between any of the remaining factors in terms of G, G2, or G2(i).

However, looking at the A3(i) for m = 5 in Table 4.13, G2(i)-aberration does make a

separation between designs. Table 4.14 shows the projected A3 frequencies for m = 4.

For design N18.2, if we want a design for m = 5, we should remove columns 1 and 2,

whereas if we want m = 4, we would be removing columns 1 and 3 at m = 5. If we

were only using G and G2-aberration and the ultimate goal was m = 4, the removal

of columns at m = 6 to m = 5 would find no difference between removing columns

1 and 2 versus columns 1 and 3. In this case, G2(i) provides insight into the lower

dimensions, and depending on the desired m, we want to choose designs with worst

G2(i). Before we move on to 27 run designs, we state this more precisely.

Proposition 4.1. Let D1 and D2 be two designs with k factors having the same G2-

aberration such that A3(D1) = A3(D2). If D1 has less G2(i)-aberration than D2, then

the best subdesigns of D1 and D2 with k − 1 factors in terms of A3, D
−
1 and D−2 ,

are such that A3(D
−
1 ) ≥ A3(D

−
2 ). That is, D−2 is at least as good as D−1 in terms of

G2-aberration.

Proposition 4.2. Let D1 and D2 be two designs with k factors having the same G-

aberration such that they have the same frequency of projected A3 values. If D1 has

smaller G(i)-aberration than D2, then the best subdesigns of D1 and D2 with k − 1

factors in terms of G-aberration, D−1 and D−2 , are such that D−2 is at least as good as

D−1 in terms of G-aberration.
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Table 4.7: Three nonisomorphic OA(18, 37), N18.1, N18.2, and N18.3.

N18.1 =



0000000
0111100
0211211
0022112
0122021
0200222
1010121
1110012
1221020
1021202
1102210
1202101
2012220
2120201
2212002
2001011
2101122
2220110



N18.2 =



0000000
0111100
0211211
0022112
0122021
0200222
1010121
1110012
1221020
1021202
1102201
1202110
2012220
2120210
2212002
2001011
2101122
2220101



N18.3 =



0000000
0111110
0211021
0022122
0122201
0200212
1010101
1110222
1221002
1021210
1102011
1202120
2012012
2120020
2212200
2001221
2101102
2220111



Table 4.8: Frequency of projected A3 values for N18.1, N18.2 and N18.3 and m = 7.

1
2

2
3

1 2 A3

N18.1 20 12 2 1 22
N18.2 16 18 0 1 22
N18.3 28 0 6 1 22
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Table 4.9: Tabulation of A3(i) for N18.1, N18.2 and N18.3 and m = 7.

A3(1) A3(2) A3(3) A3(4) A3(5) A3(6) A3(7)

N18.1 9.67 9 10.67 9.67 9 9 9
N18.2 10 9 10 10 9 9 9
N18.3 9 9 9 12 9 9 9

Table 4.10: Frequency of projected A3 values for N18.1, N18.2 and N18.3 and m = 6.

removed 1
2

2
3

1 2 A3

N18.1 3 12 8 0 0 11.33
N18.2 1 8 12 0 0 12
N18.3 4 20 0 0 0 10

4.5.2 Designs with 27 Runs

In this Section we search through the design catalog of Evangelaras, Koukouvinos and

Lappas (2011) of 129 saturated orthogonal arrays with 27 runs to find the minimum

G and G2-aberration designs among these. In this chapter, we refer to the i’th de-

sign from the catalog as D27.i. Among the saturated designs, we look for the best

subdesigns in terms of G and G2-aberration. As discussed previously, since we are

starting with saturated designs and looking for subdesigns from these, our results will

be presented starting from m = 13 and moving down sequentially. Xu, Cheng and Wu

(2004) did a complete search of 27-run orthogonal arrays and found there are eight dis-

tinct values that the projected A3’s can take: (0, 8/27, 4/9, 14/27, 2/3, 20/27, 10/9, 2).

Our results will be presented with the projected A3 frequency vector for each design.

Table 4.15 summarizes the saturated orthogonal arrays ordered in terms of G-

aberration. All saturated orthogonal arrays have an overall A3 = 104. The worst

design in terms of G-aberration is the regular design. Among all these designs, only

D27.1 and D27.24 do not contain a projected A3 value of 2, corresponding to full

aliasing. All of the designs have the same A3 values of 80 and 60 for m = 12 and
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Table 4.11: Tabulation of A3(i) for N18.1, N18.2 and N18.3 and m = 6.

removed A3(1) A3(2) A3(3) A3(4) A3(5) A3(6)

N18.1 3 5.67 5.67 5.67 5.67 5.67 5.67
N18.2 1 6 6 6 6 6 6
N18.3 4 5 5 5 5 5 5

Table 4.12: Frequency of projected A3 values for N18.1, N18.2 and N18.3 and m = 5.

removed 1
2

2
3

1 2 A3

N18.1 (1, 3) 6 4 0 0 5.67
N18.2 (1, 2) 4 6 0 0 6
N18.2 (1, 3) 4 6 0 0 6
N18.3 (1, 4) 10 0 0 0 5

m = 11, respectively. Tables 4.16 and 4.17 give the top 30 designs in terms of G-

aberration. The numbers under removed refer to the columns to be removed from

the parent design to get a resulting design with the given projected A3 frequency

vector and overall A3 value as provided. As was the case for m = 13, only designs

D27.1 and D27.24 do not have a projected A3 with a value of 2. The frequency

vector of projected A3 values for each factor is not necessarily the same, as we see

some differences in the frequency vectors for m = 12 from the same parent design.

At m = 10, we begin to see differentiation between designs in terms of G2-

aberration. Table 4.18 provides the top designs in terms of G-aberration, while Table

4.19 in terms of G2-aberration. For designs having the same overall A3, our secondary

ranking is that of G-aberration. Deng and Tang (2002) showed that for two-level de-

signs with small run sizes, the ranking between G and G2-aberration is generally

consistent. As we see at m = 10, this is not the case for 27 run designs. The best G2-

aberration designs have an overall A3 value of 42, and the best of the G2-aberration

designs in terms of G-aberration does not appear on the list of top G-aberration

designs. In particular, all contain projected A3 values of 2.

We continue to see this gap between G and G2-aberration designs for 9 ≥ m ≥ 5
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Table 4.13: Tabulation of A3(i) for N18.1, N18.2 and N18.3 and m = 5.

removed A3(1) A3(2) A3(3) A3(4) A3(5)

N18.1 (1, 3) 3.33 3.67 3.33 3.33 3.33
N18.2 (1, 2) 3.5 3.5 3.67 3.67 3.67
N18.2 (1, 3) 3.5 4 3.5 3.5 3.5
N18.3 (1, 4) 3 3 3 3 3

Table 4.14: Frequency of projected A3 values for N18.1, N18.2 and N18.3 and m = 4.

removed 1
2

2
3

1 2 A3

N18.1 (1, 3, 4) 4 0 0 0 2
N18.2 (1, 2, 5) 2 2 0 0 2.33
N18.2 (1, 3, 4) 4 0 0 0 2
N18.3 (1, 2, 4) 4 0 0 0 2

as seen in tables 4.20 - 4.29. At m = 4, the best designs for both G and G2-aberration

are the strength three OA(27, 34), and not presented here. For m ≥ 6, we find

that the top G2 designs always have at least one projected A3 value of 2. The best

G-aberration designs tend to come from the same parent designs as we reduce the

number of factors. This is also true of the G2-aberration designs. However, we do not

generally see overlap between the top parent designs.

Using an algorithm from Xu (2002), Xu, Cheng and Wu (2004) found designs for

5 ≤ m ≤ 10 with less G-aberration than those found as subdesigns from the saturated

orthogonal arrays. It is interesting to note however, that they did not find designs

having less G2-aberration than those found through the saturated orthogonal array.

Before concluding this section, we make some comments on G2i-aberration. For

m = 13 and m = 12, all designs are identical by G2(i)-aberration. In both cases, the

A3(i) values are the same for all i for each design. For m = 11 and m = 10, the top

G-aberration designs are ranked above the G2-aberration designs. This can also be

seen through Proposition 4.1 and looking at the overall A3 values for m = 10 and

m = 9 factors. For m ≤ 9, we tend to see a reversal of this ranking. That is, after
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this point the better G2-aberration designs rank above the G-aberration ones. This

is due in large part to the fact that the overall A3 values are much smaller.

Based on these results, in designing a 27-run experiment, the choice between G

and G2-aberration becomes much more of an issue as their ranking is not generally

consistent. One particular point of interest is that the minimum G2-aberration designs

tend to have at least one projected A3 value of 2, corresponding to full aliasing. If

G-aberration is more of a priority, one compromise is to take the smallest overall A3

value from a list of the top ranked G-aberration designs. If G2-aberration is considered

more important to the experimenter, one might take the smallest overall A3 value such

that there are no projected A3 values of 2.

4.6 Discussion

In this chapter, we introduced J-characteristics for multi-level designs that lead to

the definition of G and G2-aberration. Using the ANOVA decomposition has a broad

appeal in that it is easily accessible by a wide range of audiences. The algorithmic

construction of nearly-orthogonal arrays (Xu, 2002 and Nguyen and Liu, 2008) typi-

cally use an equivalent of G2-aberration and focus on one dimension. With the use of

J-characteristics, considerations can be placed on G-aberration and additional lower

dimensional properties. By taking the viewpoint of trying to spread out the design

points in lower dimensions, we get intuitively good projection properties that also

have robustness properties if we return to the linear model. By viewing G and G2-

aberration from a projection standpoint, we get designs that are appealing as building

blocks for other designs such as those described in Bingham, Sitter and Tang (2009)

and Lin, Bingham, Sitter and Tang (2010).
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Table 4.15: All 129 designs ranked by G-aberration.

design (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

1 (78, 0, 156, 0, 52, 0, 0, 0) 104
24 (52, 130, 0, 52, 0, 52, 0, 0) 104
53 (85, 27, 108, 0, 63, 0, 0, 3) 104
73 (92, 30, 80, 24, 50, 0, 7, 3) 104
74 (92, 30, 80, 24, 50, 0, 7, 3) 104
95 (98, 26, 80, 28, 37, 0, 14, 3) 104
96 (98, 26, 80, 28, 37, 0, 14, 3) 104
97 (98, 26, 80, 28, 37, 0, 14, 3) 104
113 (94, 46, 56, 36, 29, 8, 14, 3) 104
114 (94, 46, 56, 36, 29, 8, 14, 3) 104
115 (94, 46, 56, 36, 29, 8, 14, 3) 104
123 (108, 0, 126, 0, 28, 0, 21, 3) 104
124 (98, 34, 94, 12, 16, 8, 21, 3) 104
125 (98, 34, 94, 12, 16, 8, 21, 3) 104
126 (98, 34, 94, 12, 16, 8, 21, 3) 104
127 (94, 56, 68, 18, 10, 16, 21, 3) 104
128 (94, 56, 68, 18, 10, 16, 21, 3) 104
129 (94, 56, 68, 18, 10, 16, 21, 3) 104
2 (91, 73, 45, 28, 0, 25, 21, 3) 104
9 (117, 27, 0, 54, 81, 0, 0, 7) 104
10 (117, 27, 0, 54, 81, 0, 0, 7) 104
3 (108, 27, 45, 36, 45, 18, 0, 7) 104
4 (108, 27, 45, 36, 45, 18, 0, 7) 104
5 (108, 27, 45, 36, 45, 18, 0, 7) 104
6 (108, 27, 45, 36, 45, 18, 0, 7) 104
7 (108, 27, 45, 36, 45, 18, 0, 7) 104
8 (108, 27, 45, 36, 45, 18, 0, 7) 104
11 (117, 27, 12, 54, 63, 0, 6, 7) 104
12 (117, 27, 12, 54, 63, 0, 6, 7) 104
28 (120, 0, 90, 0, 60, 0, 9, 7) 104
29 (120, 0, 90, 0, 60, 0, 9, 7) 104
30 (120, 0, 90, 0, 60, 0, 9, 7) 104
31 (120, 0, 90, 0, 60, 0, 9, 7) 104
32 (120, 0, 90, 0, 60, 0, 9, 7) 104
33 (126, 0, 72, 0, 72, 0, 9, 7) 104
34 (126, 0, 72, 0, 72, 0, 9, 7) 104
15 (108, 18, 84, 24, 24, 12, 9, 7) 104
16 (108, 18, 84, 24, 24, 12, 9, 7) 104
17 (108, 18, 84, 24, 24, 12, 9, 7) 104
18 (108, 18, 84, 24, 24, 12, 9, 7) 104
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Table 4.15: All 129 designs ranked by G-aberration.

design (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

19 (108, 18, 84, 24, 24, 12, 9, 7) 104
20 (108, 18, 84, 24, 24, 12, 9, 7) 104
21 (108, 18, 84, 24, 24, 12, 9, 7) 104
22 (108, 18, 84, 24, 24, 12, 9, 7) 104
23 (108, 18, 84, 24, 24, 12, 9, 7) 104
25 (111, 18, 75, 24, 30, 12, 9, 7) 104
26 (111, 18, 75, 24, 30, 12, 9, 7) 104
27 (111, 18, 75, 24, 30, 12, 9, 7) 104
13 (120, 30, 36, 12, 60, 12, 9, 7) 104
14 (120, 30, 36, 12, 60, 12, 9, 7) 104
41 (120, 18, 42, 36, 51, 0, 12, 7) 104
42 (120, 18, 42, 36, 51, 0, 12, 7) 104
43 (120, 18, 42, 36, 51, 0, 12, 7) 104
44 (120, 18, 42, 36, 51, 0, 12, 7) 104
45 (120, 18, 42, 36, 51, 0, 12, 7) 104
37 (114, 18, 72, 24, 27, 12, 12, 7) 104
38 (114, 18, 72, 24, 27, 12, 12, 7) 104
39 (114, 18, 72, 24, 27, 12, 12, 7) 104
40 (114, 18, 72, 24, 27, 12, 12, 7) 104
35 (114, 18, 72, 24, 27, 12, 12, 7) 104
36 (114, 18, 72, 24, 27, 12, 12, 7) 104
58 (117, 18, 57, 36, 36, 0, 15, 7) 104
59 (117, 18, 57, 36, 36, 0, 15, 7) 104
54 (114, 18, 78, 24, 18, 12, 15, 7) 104
55 (114, 18, 78, 24, 18, 12, 15, 7) 104
56 (114, 18, 78, 24, 18, 12, 15, 7) 104
57 (114, 18, 78, 24, 18, 12, 15, 7) 104
51 (114, 18, 78, 24, 18, 12, 15, 7) 104
52 (114, 18, 78, 24, 18, 12, 15, 7) 104
46 (120, 30, 48, 12, 42, 12, 15, 7) 104
47 (120, 30, 48, 12, 42, 12, 15, 7) 104
48 (120, 30, 48, 12, 42, 12, 15, 7) 104
49 (120, 30, 48, 12, 42, 12, 15, 7) 104
50 (120, 30, 48, 12, 42, 12, 15, 7) 104
62 (120, 18, 54, 36, 33, 0, 18, 7) 104
63 (120, 18, 54, 36, 33, 0, 18, 7) 104
60 (117, 18, 75, 24, 15, 12, 18, 7) 104
61 (117, 18, 75, 24, 15, 12, 18, 7) 104
64 (126, 0, 96, 0, 36, 0, 21, 7) 104
65 (126, 0, 96, 0, 36, 0, 21, 7) 104
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Table 4.15: All 129 designs ranked by G-aberration.

design (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

66 (120, 30, 60, 12, 24, 12, 21, 7) 104
67 (120, 30, 60, 12, 24, 12, 21, 7) 104
68 (120, 30, 60, 12, 24, 12, 21, 7) 104
71 (126, 0, 102, 0, 27, 0, 24, 7) 104
72 (126, 0, 102, 0, 27, 0, 24, 7) 104
69 (129, 0, 93, 0, 33, 0, 24, 7) 104
70 (129, 0, 93, 0, 33, 0, 24, 7) 104
79 (132, 0, 84, 0, 39, 0, 24, 7) 104
80 (132, 0, 84, 0, 39, 0, 24, 7) 104
81 (132, 0, 84, 0, 39, 0, 24, 7) 104
77 (120, 30, 66, 12, 15, 12, 24, 7) 104
78 (120, 30, 66, 12, 15, 12, 24, 7) 104
75 (123, 30, 57, 12, 21, 12, 24, 7) 104
76 (123, 30, 57, 12, 21, 12, 24, 7) 104
82 (126, 0, 108, 0, 18, 0, 27, 7) 104
83 (126, 0, 108, 0, 18, 0, 27, 7) 104
86 (120, 30, 72, 12, 6, 12, 27, 7) 104
87 (120, 30, 72, 12, 6, 12, 27, 7) 104
84 (126, 30, 54, 12, 18, 12, 27, 7) 104
85 (126, 30, 54, 12, 18, 12, 27, 7) 104
88 (123, 30, 69, 12, 3, 12, 30, 7) 104
89 (123, 30, 69, 12, 3, 12, 30, 7) 104
90 (132, 0, 102, 0, 12, 0, 33, 7) 104
91 (132, 0, 102, 0, 12, 0, 33, 7) 104
92 (132, 0, 54, 0, 90, 0, 0, 10) 104
93 (132, 0, 54, 0, 90, 0, 0, 10) 104
94 (132, 18, 30, 36, 45, 0, 15, 10) 104
98 (138, 0, 66, 0, 57, 0, 15, 10) 104
99 (138, 0, 66, 0, 57, 0, 15, 10) 104
100 (138, 0, 96, 0, 12, 0, 30, 10) 104
101 (132, 30, 60, 12, 0, 12, 30, 10) 104
102 (132, 30, 60, 12, 0, 12, 30, 10) 104
104 (126, 0, 108, 0, 36, 0, 0, 16) 104
105 (126, 0, 108, 0, 36, 0, 0, 16) 104
106 (135, 0, 81, 0, 54, 0, 0, 16) 104
107 (135, 0, 81, 0, 54, 0, 0, 16) 104
103 (162, 0, 0, 0, 108, 0, 0, 16) 104
108 (144, 0, 72, 0, 45, 0, 9, 16) 104
111 (144, 0, 90, 0, 18, 0, 18, 16) 104
109 (162, 0, 36, 0, 54, 0, 18, 16) 104
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Table 4.15: All 129 designs ranked by G-aberration.

design (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

110 (162, 0, 36, 0, 54, 0, 18, 16) 104
112 (153, 0, 81, 0, 9, 0, 27, 16) 104
116 (162, 0, 54, 0, 27, 0, 27, 16) 104
117 (162, 0, 54, 0, 27, 0, 27, 16) 104
118 (162, 0, 72, 0, 0, 0, 36, 16) 104
119 (162, 0, 72, 0, 0, 0, 36, 16) 104
120 (180, 0, 0, 0, 81, 0, 0, 25) 104
121 (180, 0, 54, 0, 0, 0, 27, 25) 104
122 (234, 0, 0, 0, 0, 0, 0, 52) 104



CHAPTER 4. MULTI-LEVEL J-CHARACTERISTICS 90

Table 4.16: Top G-aberration designs for m = 12.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

1 (1) (60, 0, 120, 0, 40, 0, 0, 0) 80
24 (1) (40, 100, 0, 40, 0, 40, 0, 0) 80
53 (1) (66, 18, 84, 0, 50, 0, 0, 2) 80
73 (3) (66, 24, 70, 12, 44, 0, 2, 2) 80
74 (3) (66, 24, 70, 12, 44, 0, 2, 2) 80
73 (2) (71, 21, 58, 24, 39, 0, 5, 2) 80
74 (8) (71, 21, 58, 24, 39, 0, 5, 2) 80
73 (1) (70, 30, 46, 24, 43, 0, 5, 2) 80
74 (13) (70, 30, 46, 24, 43, 0, 5, 2) 80
73 (8) (73, 18, 63, 18, 40, 0, 6, 2) 80
74 (1) (73, 18, 63, 18, 40, 0, 6, 2) 80
95 (2) (70, 26, 54, 28, 33, 0, 7, 2) 80
96 (3) (70, 26, 54, 28, 33, 0, 7, 2) 80
97 (13) (70, 26, 54, 28, 33, 0, 7, 2) 80
73 (7) (72, 20, 66, 16, 37, 0, 7, 2) 80
74 (5) (72, 20, 66, 16, 37, 0, 7, 2) 80
113 (2) (68, 36, 42, 32, 29, 4, 7, 2) 80
114 (3) (68, 36, 42, 32, 29, 4, 7, 2) 80
115 (13) (68, 36, 42, 32, 29, 4, 7, 2) 80
95 (3) (72, 20, 70, 16, 31, 0, 9, 2) 80
96 (13) (72, 20, 70, 16, 31, 0, 9, 2) 80
97 (3) (72, 20, 70, 16, 31, 0, 9, 2) 80
113 (3) (72, 28, 54, 24, 23, 8, 9, 2) 80
114 (7) (72, 28, 54, 24, 23, 8, 9, 2) 80
115 (2) (72, 28, 54, 24, 23, 8, 9, 2) 80
95 (1) (77, 19, 54, 26, 31, 0, 11, 2) 80
96 (6) (77, 19, 54, 26, 31, 0, 11, 2) 80
97 (8) (77, 19, 54, 26, 31, 0, 11, 2) 80
113 (1) (74, 34, 36, 32, 25, 6, 11, 2) 80
114 (8) (74, 34, 36, 32, 25, 6, 11, 2) 80
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Table 4.17: Top G-aberration designs for m = 11.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

1 (1, 2) (45, 0, 90, 0, 30, 0, 0, 0) 60
24 (1, 2) (30, 75, 0, 30, 0, 30, 0, 0) 60
53 (1, 4) (49, 12, 64, 0, 39, 0, 0, 1) 60
73 (3, 7) (49, 16, 56, 8, 33, 0, 2, 1) 60
74 (3, 5) (49, 16, 56, 8, 33, 0, 2, 1) 60
73 (2, 3) (49, 18, 50, 12, 33, 0, 2, 1) 60
74 (3, 8) (49, 18, 50, 12, 33, 0, 2, 1) 60
73 (1, 3) (49, 24, 40, 12, 37, 0, 2, 1) 60
74 (3, 13) (49, 24, 40, 12, 37, 0, 2, 1) 60
95 (2, 3) (49, 20, 48, 16, 27, 0, 4, 1) 60
96 (3, 13) (49, 20, 48, 16, 27, 0, 4, 1) 60
97 (3, 13) (49, 20, 48, 16, 27, 0, 4, 1) 60
73 (2, 8) (54, 12, 45, 18, 31, 0, 4, 1) 60
74 (1, 8) (54, 12, 45, 18, 31, 0, 4, 1) 60
73 (1, 8) (53, 18, 38, 18, 33, 0, 4, 1) 60
74 (1, 13) (53, 18, 38, 18, 33, 0, 4, 1) 60
113 (2, 3) (49, 24, 40, 20, 23, 4, 4, 1) 60
114 (3, 7) (49, 24, 40, 20, 23, 4, 4, 1) 60
115 (2, 13) (49, 24, 40, 20, 23, 4, 4, 1) 60
73 (2, 7) (53, 14, 48, 16, 28, 0, 5, 1) 60
74 (5, 8) (53, 14, 48, 16, 28, 0, 5, 1) 60
73 (1, 7) (53, 20, 38, 16, 32, 0, 5, 1) 60
74 (5, 13) (53, 20, 38, 16, 32, 0, 5, 1) 60
95 (2, 6) (53, 16, 44, 20, 25, 0, 6, 1) 60
96 (3, 5) (53, 16, 44, 20, 25, 0, 6, 1) 60
97 (1, 13) (53, 16, 44, 20, 25, 0, 6, 1) 60
73 (7, 8) (55, 12, 50, 12, 29, 0, 6, 1) 60
74 (1, 5) (55, 12, 50, 12, 29, 0, 6, 1) 60
113 (2, 6) (51, 24, 36, 22, 23, 2, 6, 1) 60
114 (3, 5) (51, 24, 36, 22, 23, 2, 6, 1) 60



CHAPTER 4. MULTI-LEVEL J-CHARACTERISTICS 92

Table 4.18: Top G-aberration designs for m = 10.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

1 (1, 2, 4) (33, 0, 66, 0, 21, 0, 0, 0) 43.3333
1 (1, 2, 3) (33, 0, 65, 0, 22, 0, 0, 0) 43.5556
1 (1, 2, 11) (32, 0, 66, 0, 22, 0, 0, 0) 44.0000
53 (1, 4, 5) (34, 8, 48, 0, 30, 0, 0, 0) 43.7037
24 (1, 2, 5) (22, 55, 0, 22, 0, 21, 0, 0) 43.2593
24 (1, 2, 3) (22, 55, 0, 21, 0, 22, 0, 0) 43.4815
24 (1, 2, 4) (22, 54, 0, 22, 0, 22, 0, 0) 43.7037
24 (1, 2, 11) (21, 55, 0, 22, 0, 22, 0, 0) 44.0000
73 (2, 3, 7) (34, 12, 40, 8, 24, 0, 2, 0) 43.7037
74 (3, 5, 8) (34, 12, 40, 8, 24, 0, 2, 0) 43.7037
73 (1, 3, 7) (34, 16, 32, 8, 28, 0, 2, 0) 44.0000
74 (3, 5, 13) (34, 16, 32, 8, 28, 0, 2, 0) 44.0000
95 (2, 3, 7) (34, 12, 40, 12, 18, 0, 4, 0) 44.0000
96 (1, 3, 13) (34, 12, 40, 12, 18, 0, 4, 0) 44.0000
97 (3, 6, 13) (34, 12, 40, 12, 18, 0, 4, 0) 44.0000
95 (2, 3, 11) (34, 16, 36, 8, 22, 0, 4, 0) 44.0000
96 (3, 4, 13) (34, 16, 36, 8, 22, 0, 4, 0) 44.0000
97 (3, 5, 13) (34, 16, 36, 8, 22, 0, 4, 0) 44.0000
73 (2, 7, 8) (38, 8, 36, 12, 22, 0, 4, 0) 43.7037
74 (1, 5, 8) (38, 8, 36, 12, 22, 0, 4, 0) 43.7037
73 (1, 7, 8) (38, 12, 30, 12, 24, 0, 4, 0) 43.5556
74 (1, 5, 13) (38, 12, 30, 12, 24, 0, 4, 0) 43.5556
113 (2, 3, 10) (34, 18, 30, 16, 14, 4, 4, 0) 43.7037
114 (1, 3, 7) (34, 18, 30, 16, 14, 4, 4, 0) 43.7037
115 (2, 6, 13) (34, 18, 30, 16, 14, 4, 4, 0) 43.7037
113 (2, 3, 7) (34, 20, 28, 12, 18, 4, 4, 0) 44.0000
114 (2, 3, 7) (34, 20, 28, 12, 18, 4, 4, 0) 44.0000
115 (2, 5, 13) (34, 20, 28, 12, 18, 4, 4, 0) 44.0000
95 (2, 6, 7) (38, 10, 36, 14, 16, 0, 6, 0) 43.5556
96 (1, 3, 5) (38, 10, 36, 14, 16, 0, 6, 0) 43.5556
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Table 4.19: Top G2-aberration designs for m = 10.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

2 (1, 2, 4) (49, 20, 22, 8, 0, 8, 11, 2) 42
101 (1, 9, 10) (49, 20, 22, 8, 0, 8, 11, 2) 42
102 (1, 2, 4) (49, 20, 22, 8, 0, 8, 11, 2) 42
113 (7, 10, 11) (49, 20, 22, 8, 0, 8, 11, 2) 42
114 (1, 2, 4) (49, 20, 22, 8, 0, 8, 11, 2) 42
115 (5, 6, 7) (49, 20, 22, 8, 0, 8, 11, 2) 42
3 (1, 2, 4) (54, 9, 0, 18, 36, 0, 0, 3) 42
4 (5, 7, 13) (54, 9, 0, 18, 36, 0, 0, 3) 42
5 (5, 6, 13) (54, 9, 0, 18, 36, 0, 0, 3) 42
6 (5, 7, 13) (54, 9, 0, 18, 36, 0, 0, 3) 42
7 (1, 2, 3) (54, 9, 0, 18, 36, 0, 0, 3) 42
8 (5, 7, 13) (54, 9, 0, 18, 36, 0, 0, 3) 42
9 (1, 2, 3) (54, 9, 0, 18, 36, 0, 0, 3) 42
10 (5, 6, 13) (54, 9, 0, 18, 36, 0, 0, 3) 42
11 (1, 2, 4) (54, 9, 0, 18, 36, 0, 0, 3) 42
12 (2, 7, 9) (54, 9, 0, 18, 36, 0, 0, 3) 42
9 (5, 6, 12) (60, 9, 0, 18, 27, 0, 0, 6) 42
10 (1, 2, 3) (60, 9, 0, 18, 27, 0, 0, 6) 42
11 (5, 9, 10) (60, 9, 0, 18, 27, 0, 0, 6) 42
12 (1, 11, 12) (60, 9, 0, 18, 27, 0, 0, 6) 42
41 (5, 8, 11) (60, 9, 0, 18, 27, 0, 0, 6) 42
42 (5, 8, 11) (60, 9, 0, 18, 27, 0, 0, 6) 42
43 (1, 11, 12) (60, 9, 0, 18, 27, 0, 0, 6) 42
44 (1, 6, 7) (60, 9, 0, 18, 27, 0, 0, 6) 42
45 (4, 9, 11) (60, 9, 0, 18, 27, 0, 0, 6) 42
3 (5, 9, 10) (54, 9, 24, 12, 9, 6, 0, 6) 42
4 (1, 2, 3) (54, 9, 24, 12, 9, 6, 0, 6) 42
5 (1, 2, 3) (54, 9, 24, 12, 9, 6, 0, 6) 42
6 (1, 2, 3) (54, 9, 24, 12, 9, 6, 0, 6) 42
7 (5, 9, 10) (54, 9, 24, 12, 9, 6, 0, 6) 42
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Table 4.20: Top G-aberration designs for m = 9.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

1 (1, 2, 4, 10) (24, 0, 48, 0, 12, 0, 0, 0) 29.3333
1 (1, 2, 3, 7) (24, 0, 45, 0, 15, 0, 0, 0) 30.0000
1 (1, 2, 3, 11) (23, 0, 46, 0, 15, 0, 0, 0) 30.4444
1 (1, 2, 3, 4) (22, 0, 47, 0, 15, 0, 0, 0) 30.8889
1 (1, 2, 3, 5) (23, 0, 45, 0, 16, 0, 0, 0) 30.6667
1 (1, 2, 5, 12) (22, 0, 46, 0, 16, 0, 0, 0) 31.1111
1 (1, 2, 11, 13) (20, 0, 48, 0, 16, 0, 0, 0) 32.0000
53 (1, 4, 5, 9) (22, 8, 36, 0, 18, 0, 0, 0) 30.3704
53 (1, 2, 4, 5) (25, 4, 32, 0, 23, 0, 0, 0) 30.7407
24 (1, 2, 5, 10) (16, 40, 0, 16, 0, 12, 0, 0) 29.0370
24 (1, 2, 3, 13) (16, 39, 0, 14, 0, 15, 0, 0) 29.9259
24 (1, 2, 3, 5) (16, 38, 0, 15, 0, 15, 0, 0) 30.1481
24 (1, 2, 3, 6) (15, 39, 0, 15, 0, 15, 0, 0) 30.4444
24 (1, 2, 4, 10) (16, 37, 0, 16, 0, 15, 0, 0) 30.3704
24 (1, 2, 4, 9) (15, 38, 0, 16, 0, 15, 0, 0) 30.6667
24 (1, 2, 3, 8) (16, 38, 0, 14, 0, 16, 0, 0) 30.3704
24 (1, 2, 4, 6) (16, 37, 0, 15, 0, 16, 0, 0) 30.5926
24 (1, 2, 3, 4) (15, 38, 0, 15, 0, 16, 0, 0) 30.8889
24 (1, 2, 7, 9) (16, 36, 0, 16, 0, 16, 0, 0) 30.8148
24 (1, 2, 4, 7) (15, 37, 0, 16, 0, 16, 0, 0) 31.1111
24 (1, 2, 11, 12) (12, 40, 0, 16, 0, 16, 0, 0) 32.0000
73 (2, 3, 5, 7) (22, 10, 31, 6, 14, 0, 1, 0) 30.2963
74 (3, 4, 5, 10) (22, 10, 31, 6, 14, 0, 1, 0) 30.2963
73 (2, 3, 7, 10) (22, 10, 29, 6, 16, 0, 1, 0) 30.7407
74 (3, 4, 5, 8) (22, 10, 29, 6, 16, 0, 1, 0) 30.7407
73 (1, 3, 5, 7) (22, 14, 23, 6, 18, 0, 1, 0) 30.5926
74 (3, 4, 5, 13) (22, 14, 23, 6, 18, 0, 1, 0) 30.5926
73 (2, 3, 7, 8) (25, 6, 28, 4, 20, 0, 1, 0) 30.7407
74 (1, 3, 5, 8) (25, 6, 28, 4, 20, 0, 1, 0) 30.7407
73 (1, 3, 7, 8) (25, 8, 24, 4, 22, 0, 1, 0) 30.8889
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Table 4.21: Top G2-aberration designs for m = 9.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

3 (1, 2, 3, 4) (54, 0, 0, 0, 27, 0, 0, 3) 24
4 (5, 6, 7, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
5 (5, 6, 7, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
6 (5, 6, 7, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
7 (1, 2, 3, 4) (54, 0, 0, 0, 27, 0, 0, 3) 24
8 (5, 6, 7, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
9 (1, 2, 3, 4) (54, 0, 0, 0, 27, 0, 0, 3) 24
10 (5, 6, 7, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
11 (1, 2, 3, 4) (54, 0, 0, 0, 27, 0, 0, 3) 24
12 (2, 7, 9, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
13 (3, 6, 10, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
14 (3, 6, 10, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
28 (1, 2, 3, 4) (54, 0, 0, 0, 27, 0, 0, 3) 24
29 (1, 2, 3, 4) (54, 0, 0, 0, 27, 0, 0, 3) 24
30 (5, 6, 7, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
31 (5, 6, 7, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
32 (5, 6, 7, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
33 (1, 2, 3, 4) (54, 0, 0, 0, 27, 0, 0, 3) 24
34 (5, 6, 7, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
46 (3, 6, 9, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
47 (3, 7, 8, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
48 (1, 11, 12, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
49 (3, 6, 9, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
50 (3, 6, 10, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
79 (3, 6, 9, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
80 (3, 6, 10, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
81 (3, 6, 10, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
92 (1, 2, 3, 4) (54, 0, 0, 0, 27, 0, 0, 3) 24
93 (3, 8, 10, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
98 (3, 6, 9, 13) (54, 0, 0, 0, 27, 0, 0, 3) 24
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Table 4.22: Top G-aberration designs for m = 8.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

95 (2, 3, 5, 8, 10) (14, 8, 20, 8, 6, 0, 0, 0) 19.4074
96 (1, 3, 11, 12, 13) (14, 8, 20, 8, 6, 0, 0, 0) 19.4074
97 (3, 4, 6, 11, 13) (14, 8, 20, 8, 6, 0, 0, 0) 19.4074
1 (1, 2, 3, 7, 13) (17, 0, 31, 0, 8, 0, 0, 0) 19.1111
1 (1, 2, 3, 4, 10) (16, 0, 32, 0, 8, 0, 0, 0) 19.5556
1 (1, 2, 4, 6, 10) (15, 0, 33, 0, 8, 0, 0, 0) 20.0000
73 (2, 3, 5, 6, 7) (14, 8, 22, 4, 8, 0, 0, 0) 19.5556
74 (3, 4, 5, 8, 11) (14, 8, 22, 4, 8, 0, 0, 0) 19.5556
53 (1, 4, 5, 9, 10) (14, 8, 24, 0, 10, 0, 0, 0) 19.7037
1 (1, 2, 3, 6, 7) (17, 0, 29, 0, 10, 0, 0, 0) 19.5556
1 (1, 2, 3, 5, 11) (16, 0, 30, 0, 10, 0, 0, 0) 20.0000
1 (1, 2, 3, 4, 5) (15, 0, 31, 0, 10, 0, 0, 0) 20.4444
1 (1, 2, 3, 4, 12) (14, 0, 32, 0, 10, 0, 0, 0) 20.8889
1 (1, 2, 3, 11, 13) (13, 0, 33, 0, 10, 0, 0, 0) 21.3333
73 (1, 3, 5, 7, 12) (14, 12, 16, 4, 10, 0, 0, 0) 19.4074
74 (3, 4, 5, 11, 13) (14, 12, 16, 4, 10, 0, 0, 0) 19.4074
95 (2, 3, 5, 8, 11) (14, 12, 16, 4, 10, 0, 0, 0) 19.4074
96 (3, 4, 7, 8, 13) (14, 12, 16, 4, 10, 0, 0, 0) 19.4074
97 (3, 4, 5, 11, 13) (14, 12, 16, 4, 10, 0, 0, 0) 19.4074
95 (2, 3, 5, 7, 8) (14, 8, 16, 8, 10, 0, 0, 0) 20.2963
96 (1, 3, 7, 8, 13) (14, 8, 16, 8, 10, 0, 0, 0) 20.2963
97 (3, 4, 7, 11, 13) (14, 8, 16, 8, 10, 0, 0, 0) 20.2963
1 (1, 2, 3, 5, 6) (16, 0, 29, 0, 11, 0, 0, 0) 20.2222
1 (1, 2, 3, 4, 8) (15, 0, 30, 0, 11, 0, 0, 0) 20.6667
1 (1, 2, 3, 5, 8) (14, 0, 31, 0, 11, 0, 0, 0) 21.1111
1 (1, 2, 3, 4, 6) (13, 0, 32, 0, 11, 0, 0, 0) 21.5556
73 (2, 3, 5, 7, 13) (15, 4, 22, 4, 11, 0, 0, 0) 20.3704
74 (1, 3, 4, 5, 10) (15, 4, 22, 4, 11, 0, 0, 0) 20.3704
73 (1, 3, 5, 6, 7) (14, 12, 14, 4, 12, 0, 0, 0) 19.8519
74 (3, 4, 5, 12, 13) (14, 12, 14, 4, 12, 0, 0, 0) 19.8519
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Table 4.23: Top G2-aberration designs for m = 8.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

3 (1, 2, 3, 4, 5) (36, 0, 0, 0, 18, 0, 0, 2) 16
4 (1, 5, 6, 7, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
5 (1, 5, 6, 7, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
6 (1, 5, 6, 7, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
7 (1, 2, 3, 4, 5) (36, 0, 0, 0, 18, 0, 0, 2) 16
8 (1, 5, 6, 7, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
9 (1, 2, 3, 4, 5) (36, 0, 0, 0, 18, 0, 0, 2) 16
10 (1, 5, 6, 7, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
11 (1, 2, 3, 4, 5) (36, 0, 0, 0, 18, 0, 0, 2) 16
12 (1, 2, 7, 9, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
13 (1, 3, 6, 10, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
14 (1, 3, 6, 10, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
28 (1, 2, 3, 4, 5) (36, 0, 0, 0, 18, 0, 0, 2) 16
29 (1, 2, 3, 4, 5) (36, 0, 0, 0, 18, 0, 0, 2) 16
30 (1, 5, 6, 7, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
31 (1, 5, 6, 7, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
32 (1, 5, 6, 7, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
33 (1, 2, 3, 4, 5) (36, 0, 0, 0, 18, 0, 0, 2) 16
34 (1, 5, 6, 7, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
46 (1, 3, 6, 9, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
47 (1, 3, 7, 8, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
48 (1, 2, 11, 12, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
49 (1, 3, 6, 9, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
50 (1, 3, 6, 10, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
79 (1, 3, 6, 9, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
80 (1, 3, 6, 10, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
81 (1, 3, 6, 10, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
92 (1, 2, 3, 4, 5) (36, 0, 0, 0, 18, 0, 0, 2) 16
93 (1, 3, 8, 10, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
98 (1, 3, 6, 9, 13) (36, 0, 0, 0, 18, 0, 0, 2) 16
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Table 4.24: Top G-aberration designs for m = 7.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

95 (2, 3, 5, 6, 8, 10) (9, 4, 15, 4, 3, 0, 0, 0) 11.9259
96 (1, 3, 5, 11, 12, 13) (9, 4, 15, 4, 3, 0, 0, 0) 11.9259
97 (1, 3, 4, 6, 11, 13) (9, 4, 15, 4, 3, 0, 0, 0) 11.9259
95 (2, 3, 5, 7, 9, 12) (9, 6, 11, 6, 3, 0, 0, 0) 11.7778
96 (1, 3, 7, 11, 12, 13) (9, 6, 11, 6, 3, 0, 0, 0) 11.7778
97 (3, 4, 6, 9, 11, 13) (9, 6, 11, 6, 3, 0, 0, 0) 11.7778
73 (2, 3, 5, 6, 7, 10) (9, 6, 14, 2, 4, 0, 0, 0) 11.7037
74 (3, 4, 5, 8, 9, 11) (9, 6, 14, 2, 4, 0, 0, 0) 11.7037
95 (2, 3, 5, 8, 10, 11) (9, 6, 14, 2, 4, 0, 0, 0) 11.7037
96 (1, 3, 4, 11, 12, 13) (9, 6, 14, 2, 4, 0, 0, 0) 11.7037
97 (3, 4, 5, 6, 11, 13) (9, 6, 14, 2, 4, 0, 0, 0) 11.7037
73 (2, 3, 5, 6, 7, 9) (9, 4, 16, 2, 4, 0, 0, 0) 12.0000
74 (3, 4, 5, 6, 8, 11) (9, 4, 16, 2, 4, 0, 0, 0) 12.0000
95 (2, 3, 5, 7, 8, 10) (9, 2, 14, 6, 4, 0, 0, 0) 12.5926
96 (1, 2, 3, 7, 8, 13) (9, 2, 14, 6, 4, 0, 0, 0) 12.5926
97 (1, 3, 4, 6, 9, 13) (9, 2, 14, 6, 4, 0, 0, 0) 12.5926
73 (2, 4, 5, 7, 10, 13) (11, 0, 12, 8, 4, 0, 0, 0) 12.1481
74 (1, 4, 5, 8, 9, 10) (11, 0, 12, 8, 4, 0, 0, 0) 12.1481
95 (1, 2, 5, 7, 9, 13) (10, 3, 9, 9, 4, 0, 0, 0) 12.2222
96 (1, 3, 5, 6, 8, 12) (10, 3, 9, 9, 4, 0, 0, 0) 12.2222
97 (1, 4, 6, 8, 9, 13) (10, 3, 9, 9, 4, 0, 0, 0) 12.2222
1 (1, 2, 3, 5, 6, 11) (12, 0, 18, 0, 5, 0, 0, 0) 11.3333
1 (1, 2, 3, 4, 8, 10) (11, 0, 19, 0, 5, 0, 0, 0) 11.7778
1 (1, 2, 3, 4, 5, 9) (10, 0, 20, 0, 5, 0, 0, 0) 12.2222
1 (1, 2, 3, 5, 8, 13) (9, 0, 21, 0, 5, 0, 0, 0) 12.6667
1 (1, 2, 3, 4, 6, 10) (8, 0, 22, 0, 5, 0, 0, 0) 13.1111
95 (2, 3, 5, 8, 9, 11) (9, 10, 9, 2, 5, 0, 0, 0) 11.3333
96 (3, 4, 7, 8, 11, 13) (9, 10, 9, 2, 5, 0, 0, 0) 11.3333
97 (3, 4, 5, 9, 11, 13) (9, 10, 9, 2, 5, 0, 0, 0) 11.3333
73 (2, 3, 5, 7, 8, 12) (9, 4, 15, 2, 5, 0, 0, 0) 12.2222
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Table 4.25: Top G2-aberration designs for m = 7.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

3 (1, 2, 3, 4, 5, 6) (22, 0, 0, 0, 12, 0, 0, 1) 10
4 (1, 4, 5, 6, 7, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
5 (1, 4, 5, 6, 7, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
6 (1, 4, 5, 6, 7, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
7 (1, 2, 3, 4, 5, 6) (22, 0, 0, 0, 12, 0, 0, 1) 10
8 (1, 4, 5, 6, 7, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
9 (1, 2, 3, 4, 5, 7) (22, 0, 0, 0, 12, 0, 0, 1) 10
10 (1, 4, 5, 6, 7, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
11 (1, 2, 3, 4, 5, 6) (22, 0, 0, 0, 12, 0, 0, 1) 10
12 (1, 2, 3, 7, 9, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
13 (1, 3, 5, 6, 10, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
14 (1, 3, 5, 6, 10, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
28 (1, 2, 3, 4, 5, 6) (22, 0, 0, 0, 12, 0, 0, 1) 10
29 (1, 2, 3, 4, 5, 6) (22, 0, 0, 0, 12, 0, 0, 1) 10
30 (1, 4, 5, 6, 7, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
31 (1, 4, 5, 6, 7, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
32 (1, 4, 5, 6, 7, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
33 (1, 2, 3, 4, 5, 6) (22, 0, 0, 0, 12, 0, 0, 1) 10
34 (1, 4, 5, 6, 7, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
46 (1, 3, 5, 6, 9, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
47 (1, 3, 5, 7, 8, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
48 (1, 2, 3, 11, 12, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
49 (1, 3, 5, 6, 9, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
50 (1, 3, 5, 6, 10, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
53 (1, 2, 3, 4, 8, 12) (22, 0, 0, 0, 12, 0, 0, 1) 10
73 (1, 2, 3, 4, 8, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
74 (1, 2, 3, 5, 6, 7) (22, 0, 0, 0, 12, 0, 0, 1) 10
79 (1, 3, 5, 6, 9, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
80 (1, 3, 5, 6, 10, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
81 (1, 3, 5, 6, 10, 13) (22, 0, 0, 0, 12, 0, 0, 1) 10
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Table 4.26: Top G-aberration designs for m = 6.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

64 (1, 3, 5, 7, 10, 11, 12) (6, 0, 14, 0, 0, 0, 0, 0) 6.2222
65 (1, 2, 3, 7, 9, 10, 11) (6, 0, 14, 0, 0, 0, 0, 0) 6.2222
95 (2, 3, 5, 6, 7, 9, 12) (5, 4, 9, 2, 0, 0, 0, 0) 6.2222
96 (1, 3, 5, 7, 11, 12, 13) (5, 4, 9, 2, 0, 0, 0, 0) 6.2222
97 (1, 3, 4, 6, 11, 12, 13) (5, 4, 9, 2, 0, 0, 0, 0) 6.2222
113 (2, 3, 5, 6, 8, 9, 11) (5, 4, 8, 3, 0, 0, 0, 0) 6.2963
114 (1, 3, 5, 7, 9, 10, 12) (5, 4, 8, 3, 0, 0, 0, 0) 6.2963
115 (1, 2, 6, 10, 11, 12, 13) (5, 4, 8, 3, 0, 0, 0, 0) 6.2963
73 (2, 3, 5, 6, 7, 9, 10) (5, 3, 10, 1, 1, 0, 0, 0) 6.5185
74 (3, 4, 5, 6, 8, 9, 11) (5, 3, 10, 1, 1, 0, 0, 0) 6.5185
15 (1, 4, 5, 6, 7, 8, 13) (6, 2, 9, 2, 1, 0, 0, 0) 6.2963
16 (1, 4, 7, 10, 11, 12, 13) (6, 2, 9, 2, 1, 0, 0, 0) 6.2963
17 (1, 2, 5, 6, 8, 10, 13) (6, 2, 9, 2, 1, 0, 0, 0) 6.2963
18 (1, 4, 6, 8, 11, 12, 13) (6, 2, 9, 2, 1, 0, 0, 0) 6.2963
19 (2, 4, 5, 6, 8, 9, 12) (6, 2, 9, 2, 1, 0, 0, 0) 6.2963
20 (1, 2, 4, 6, 11, 12, 13) (6, 2, 9, 2, 1, 0, 0, 0) 6.2963
21 (2, 4, 5, 6, 8, 9, 12) (6, 2, 9, 2, 1, 0, 0, 0) 6.2963
22 (1, 2, 4, 6, 11, 12, 13) (6, 2, 9, 2, 1, 0, 0, 0) 6.2963
23 (1, 4, 6, 7, 10, 11, 12) (6, 2, 9, 2, 1, 0, 0, 0) 6.2963
15 (2, 4, 5, 6, 8, 9, 12) (6, 4, 5, 4, 1, 0, 0, 0) 6.1481
16 (1, 5, 7, 8, 9, 11, 12) (6, 4, 5, 4, 1, 0, 0, 0) 6.1481
19 (1, 3, 5, 6, 11, 12, 13) (6, 4, 5, 4, 1, 0, 0, 0) 6.1481
20 (1, 2, 5, 7, 8, 9, 11) (6, 4, 5, 4, 1, 0, 0, 0) 6.1481
113 (1, 2, 5, 6, 9, 11, 13) (6, 3, 6, 4, 1, 0, 0, 0) 6.2963
114 (1, 3, 5, 6, 8, 9, 12) (6, 3, 6, 4, 1, 0, 0, 0) 6.2963
115 (1, 3, 4, 7, 9, 10, 13) (6, 3, 6, 4, 1, 0, 0, 0) 6.2963
113 (1, 2, 5, 6, 9, 10, 13) (5, 4, 6, 4, 1, 0, 0, 0) 6.5926
114 (1, 3, 5, 6, 9, 12, 13) (5, 4, 6, 4, 1, 0, 0, 0) 6.5926
115 (1, 3, 4, 6, 9, 10, 13) (5, 4, 6, 4, 1, 0, 0, 0) 6.5926
95 (1, 2, 5, 6, 7, 9, 13) (6, 2, 7, 4, 1, 0, 0, 0) 6.4444
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Table 4.27: Top G2-aberration designs for m = 6.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

3 (1, 2, 3, 4, 5, 9, 10) (18, 0, 0, 0, 0, 0, 0, 2) 4
4 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
5 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
6 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
7 (1, 2, 3, 4, 5, 9, 10) (18, 0, 0, 0, 0, 0, 0, 2) 4
8 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
9 (1, 2, 3, 4, 5, 6, 12) (18, 0, 0, 0, 0, 0, 0, 2) 4
10 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
11 (1, 2, 3, 4, 5, 9, 10) (18, 0, 0, 0, 0, 0, 0, 2) 4
12 (1, 2, 7, 9, 11, 12, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
13 (1, 2, 3, 4, 6, 10, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
14 (1, 2, 3, 4, 6, 10, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
15 (1, 2, 3, 4, 5, 8, 11) (18, 0, 0, 0, 0, 0, 0, 2) 4
16 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
17 (1, 2, 3, 4, 5, 9, 10) (18, 0, 0, 0, 0, 0, 0, 2) 4
18 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
19 (1, 2, 3, 4, 5, 8, 11) (18, 0, 0, 0, 0, 0, 0, 2) 4
20 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
21 (1, 2, 3, 4, 5, 8, 11) (18, 0, 0, 0, 0, 0, 0, 2) 4
22 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
23 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
25 (1, 2, 3, 4, 5, 8, 11) (18, 0, 0, 0, 0, 0, 0, 2) 4
26 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
27 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
28 (1, 2, 3, 4, 5, 8, 11) (18, 0, 0, 0, 0, 0, 0, 2) 4
29 (1, 2, 3, 4, 5, 8, 11) (18, 0, 0, 0, 0, 0, 0, 2) 4
30 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
31 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
32 (1, 2, 3, 5, 6, 7, 13) (18, 0, 0, 0, 0, 0, 0, 2) 4
33 (1, 2, 3, 4, 5, 8, 11) (18, 0, 0, 0, 0, 0, 0, 2) 4
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Table 4.28: Top G-aberration designs for m = 5.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

95 (2, 3, 5, 6, 8, 9, 11, 12) (3, 4, 3, 0, 0, 0, 0, 0) 2.5185
96 (3, 4, 5, 7, 8, 11, 12, 13) (3, 4, 3, 0, 0, 0, 0, 0) 2.5185
97 (1, 3, 4, 5, 9, 11, 12, 13) (3, 4, 3, 0, 0, 0, 0, 0) 2.5185
113 (2, 3, 5, 6, 7, 8, 9, 12) (3, 2, 5, 0, 0, 0, 0, 0) 2.8148
114 (2, 3, 5, 7, 9, 10, 11, 12) (3, 2, 5, 0, 0, 0, 0, 0) 2.8148
115 (1, 2, 5, 9, 10, 11, 12, 13) (3, 2, 5, 0, 0, 0, 0, 0) 2.8148
95 (2, 3, 5, 6, 7, 9, 11, 12) (2, 3, 5, 0, 0, 0, 0, 0) 3.1111
96 (1, 3, 4, 5, 7, 11, 12, 13) (2, 3, 5, 0, 0, 0, 0, 0) 3.1111
97 (1, 3, 4, 5, 6, 11, 12, 13) (2, 3, 5, 0, 0, 0, 0, 0) 3.1111
13 (1, 2, 3, 5, 7, 8, 12, 13) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
14 (1, 2, 3, 4, 5, 8, 10, 11) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
25 (1, 4, 5, 6, 7, 8, 10, 12) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
26 (1, 2, 5, 7, 8, 9, 10, 12) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
27 (1, 2, 3, 4, 5, 7, 8, 9) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
28 (3, 4, 5, 6, 7, 10, 11, 13) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
29 (1, 4, 5, 6, 7, 8, 10, 13) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
30 (1, 2, 3, 4, 6, 7, 8, 10) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
31 (1, 2, 5, 7, 8, 9, 10, 12) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
32 (1, 2, 6, 8, 9, 10, 12, 13) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
35 (2, 3, 5, 7, 8, 9, 10, 12) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
36 (1, 2, 3, 5, 6, 7, 10, 13) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
37 (3, 4, 5, 6, 7, 10, 11, 12) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
38 (1, 2, 3, 5, 6, 10, 11, 13) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
39 (2, 4, 5, 6, 7, 10, 11, 12) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
40 (1, 2, 3, 5, 6, 9, 10, 13) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
46 (1, 2, 3, 5, 7, 9, 10, 11) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
47 (1, 2, 3, 4, 5, 9, 11, 13) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
48 (1, 2, 3, 4, 5, 7, 9, 13) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
64 (1, 2, 3, 5, 7, 9, 10, 11) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
65 (1, 2, 3, 4, 5, 8, 10, 11) (4, 0, 6, 0, 0, 0, 0, 0) 2.6667
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Table 4.29: Top G2-aberration designs for m = 5.

design removed (0, 8
27
, 4
9
, 14
27
, 2
3
, 20
27
, 10

9
, 2) A3

80 (1, 2, 6, 8, 9, 11, 12, 13) (6, 0, 3, 0, 1, 0, 0, 0) 2
116 (1, 3, 5, 6, 7, 8, 12, 13) (6, 0, 3, 0, 1, 0, 0, 0) 2
117 (1, 3, 5, 6, 7, 8, 10, 12) (6, 0, 3, 0, 1, 0, 0, 0) 2
73 (1, 2, 7, 8, 9, 10, 11, 12) (7, 0, 0, 0, 3, 0, 0, 0) 2
74 (1, 4, 5, 6, 7, 8, 12, 13) (7, 0, 0, 0, 3, 0, 0, 0) 2
92 (1, 2, 5, 6, 7, 9, 10, 11) (7, 0, 0, 0, 3, 0, 0, 0) 2
93 (1, 4, 5, 6, 7, 8, 9, 10) (7, 0, 0, 0, 3, 0, 0, 0) 2
94 (1, 3, 5, 6, 7, 8, 10, 13) (7, 0, 0, 0, 3, 0, 0, 0) 2
95 (1, 3, 5, 6, 7, 8, 11, 13) (7, 0, 0, 0, 3, 0, 0, 0) 2
96 (1, 4, 5, 6, 7, 8, 9, 13) (7, 0, 0, 0, 3, 0, 0, 0) 2
97 (1, 2, 3, 4, 5, 7, 8, 11) (7, 0, 0, 0, 3, 0, 0, 0) 2
98 (1, 2, 6, 8, 9, 10, 11, 12) (7, 0, 0, 0, 3, 0, 0, 0) 2
99 (1, 2, 6, 7, 9, 11, 12, 13) (7, 0, 0, 0, 3, 0, 0, 0) 2
113 (1, 3, 5, 6, 7, 8, 10, 13) (7, 0, 0, 0, 3, 0, 0, 0) 2
114 (1, 2, 5, 6, 7, 8, 9, 11) (7, 0, 0, 0, 3, 0, 0, 0) 2
115 (1, 2, 3, 4, 5, 6, 9, 11) (7, 0, 0, 0, 3, 0, 0, 0) 2
120 (1, 3, 5, 6, 7, 8, 9, 10) (7, 0, 0, 0, 3, 0, 0, 0) 2
95 (1, 2, 6, 7, 8, 9, 10, 11) (7, 0, 2, 0, 0, 0, 1, 0) 2
96 (1, 2, 3, 4, 5, 6, 7, 12) (7, 0, 2, 0, 0, 0, 1, 0) 2
97 (1, 4, 5, 6, 7, 8, 12, 13) (7, 0, 2, 0, 0, 0, 1, 0) 2
98 (1, 2, 3, 5, 6, 7, 10, 11) (7, 0, 2, 0, 0, 0, 1, 0) 2
99 (1, 2, 3, 4, 5, 6, 7, 11) (7, 0, 2, 0, 0, 0, 1, 0) 2
100 (1, 2, 3, 4, 5, 6, 7, 9) (7, 0, 2, 0, 0, 0, 1, 0) 2
101 (1, 2, 3, 5, 6, 7, 8, 12) (7, 0, 2, 0, 0, 0, 1, 0) 2
102 (2, 3, 5, 6, 8, 9, 11, 13) (7, 0, 2, 0, 0, 0, 1, 0) 2
121 (1, 2, 3, 4, 5, 6, 7, 8) (7, 0, 2, 0, 0, 0, 1, 0) 2
2 (1, 2, 3, 4, 5, 6, 7, 13) (9, 0, 0, 0, 0, 0, 0, 1) 2
3 (1, 2, 3, 4, 5, 6, 7, 8) (9, 0, 0, 0, 0, 0, 0, 1) 2
4 (1, 2, 3, 4, 5, 6, 7, 13) (9, 0, 0, 0, 0, 0, 0, 1) 2
5 (1, 2, 3, 4, 5, 6, 7, 13) (9, 0, 0, 0, 0, 0, 0, 1) 2



Chapter 5

Summary and Future Work

We conclude this thesis with a brief summary of the work in each chapter, and some

general discussion about potential directions for future work.

5.1 Partially Clear Two-factor Interactions

In Chapter 2 we introduced the concept of robust designs through partially clear

two-factor interactions. We allowed effects of interest to be aliased with two-factor

interactions that prior knowledge supported as being negligible, while still remaining

robust to nonnegligible two-factor interactions. By allowing this aliasing, the goal

was to entertain more factors in comparison to designs with clear two-factor interac-

tions. The set of two-factor interactions were separated into three distinct categories:

the requirement set, the set of nonnegligible interactions and the set of negligible

interactions. By breaking the set of factors into two groups, we looked at different

configurations of the sets of two-factor interactions within and between groups. In

particular, one of these configurations, which we denoted type 1, showed substantial

gain in terms of the number of factors versus designs with clear two-factor interac-

tions. We gave constructions for robust designs of type 1, and showed that these

constructions match with the optimal results for designs of 32 and 64 runs. The con-

structions are even more powerful, as they also apply if we allow nonorthogonality

within the requirement set. The Chapter concluded with a bound on the number of

104
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clear two-factor interactions in an orthogonal array.

From a practical standpoint, the concept of partially clear two-factor interactions

is appealing as it allows prior knowledge to be used to gain more from a design, while

still keeping the robustness properties of clear designs. In general, if we have knowl-

edge about some interactions being negligible, we can separate the interactions into

the three categories and do a computer search for robust designs. One future direc-

tion this research can take is to look at more than two groups of factors which allows

more flexibility for the two-factor interactions between groups. With these additional

groups, it would be useful to establish bounds on the number of factors that can be

entertained depending on the configuration of factors, similar to Lemma 2.2. Another

consideration is the D-efficiency for these robust designs when non-orthogonal require-

ment sets are used. For the robust designs in Chapter 2, we saw good performance

in terms of D-efficiency, but it would be worthwhile to see what sacrifice towards the

efficiency is made in general by ensuring robustness to the nonnegligible two-factor

interactions. In the case of a non-orthogonal requirement set, the approaches in Chap-

ters 2 and 3 take different directions. Here, our primary concern is the robustness to

the nonnegligible two-factor interactions with D-efficiency as a secondary criterion,

whereas in Chapter 3, D-efficiency was the first priority and then the robustness to

nonnegligible two-factor interactions. This consideration depends on what the experi-

menter deems as more serious. Lemma 2.2 showed that requiring A22 = 0 places quite

a restriction on the factors in a design, and we focused our considerations to robust

designs of type 1. For robust designs of type 3, that A22 = 0 is required for orthogonal

estimation of the requirement set and A31 = 0 gave the robustness to nonnegligible

2fi’s. It is possible that introducing nonorthogonality into the requirement set could

lead to robust designs of type 3.

We conclude our discussion on partially clear designs by discussing robust param-

eter design. In robust parameter design, factors are separated into control and noise

factors, where noise factors are those that are hard to control. The goal is to find

optimal settings for the control factors that minimize the variability of a system by

making it less sensitive to noise variation. Wu and Hamada (2000) give the following

ordering for the importance of effects:
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1. control-by-noise interactions, control main effects and noise main effects;

2. control-by-control interactions and control-by-control-by-noise interactions;

3. noise-by-noise interactions.

The setup is similar by having the two groups of factors and separating the interactions

into these subsets. The idea of partially clear designs should be useful for robust

parameter design problems but this warrants further investigation.

5.2 Multi-Level Orthogonal Arrays for Estimating

Main Effects and Specified Interactions

Chapter 3 investigated the use of multi-level orthogonal arrays for estimating a re-

quirement set. Designs were ranked firstly based on D-efficiency followed by contam-

ination from the two-factor interactions not estimated. Focus was on designs with

three-level factors to allow curvature of factors to be studied. These designs are an

attractive alternative to other methods that require follow-up experimentation. Fac-

tors were grouped into two sets: the core set, which were those factors involved in

an interaction in the requirement set, and the set of remaining factors in which only

the main effects are of interest. We showed that level permutations of factors outside

of the core set maintain many of the optimality measures, including D-efficiency and

contamination from the interactions outside of the requirement set. A result giving a

lower bound on the number of factors outside of the core set that can be entertained

was provided, and a method was proposed to aid in searching for designs. The chapter

was concluded with a search for three-level designs with 27 runs.

That the results from Chapter 3 hold for mixed level designs is particularly ap-

pealing, as it provides flexibility in how to treat some of the factors, such as only

concerning ourselves with two levels for the factors outside of the core set (ie. if there

is no interest in the curvature). It would be interesting to see how designs that are not

a subset of columns from a saturated orthogonal array perform for the objectives of

Chapter 3. The (M.S)-approach shows promise as an efficient means of improving the
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search for good designs when the complete search is infeasible. This idea of studying

the space occupied by the two-factor interactions rather than the model matrix for

multi-level designs requires further study to see if anything else can be gleaned from

it. Returning to the theme of Chapter 2, we can approach the problem by trying

to make the design robust to certain interaction components, such as the linear-by-

linear. Dealing with certain interaction components is likely to need consideration of

level permutations - but it is worth noting that depending on the level assignments,

the linear-by-linear components should contain many zero entries.

5.3 J-Characteristics for Multi-Level Factorial De-

signs

Whereas Chapters 2 and 3 focused on a specific set of effects, Chapter 4 made no such

separation of effects. Instead, the focus was on the distribution of design points, and

an ANOVA decomposition to study the uniformity in lower dimensions. This allowed

a means of measuring the projection properties of a design through G2-aberration that

is equivalent to generalized minimum aberration as defined by Xu and Wu (2002). We

also proposed more conservative approaches using G-aberration and G2(i)-aberration.

The J-characteristics were used to examine three-level designs of 18 and 27 runs. The

ranking between G and G2-aberration was consistent for 18 runs, but not so for 27

runs.

In terms of measuring near-orthogonality, algorithmic approaches such as Xu

(2002), Yamada and Matsui (2002), and Lekivetz, Sitter, Bingham, Hamada, Moore

and Wendelberger (2011) are typically driven by G2-aberration through some equiva-

lent measure to B2. The approach here has a natural extension to higher dimensions

by using B3, B4, . . . if the experimenter wants to consider higher dimensional prop-

erties. The designs given in Xu, Cheng and Wu (2004) were found by constructing

many orthogonal arrays and choosing the best among them. Using these algorithms

to find designs for G-aberration rather than G2 is currently being investigated. From

Propositions 4.1 and 4.2, G2(i) and G(i)-aberration may warrant some further research
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as a tool for searching for designs through their connection to G and G2-aberration.

One of the most exciting potential uses for the J-characteristics is in measuring

the projection properties of designs for computer experiments such as those described

in Bingham, Sitter and Tang (2009) and Lin, Bingham, Sitter and Tang (2010). In

terms of using designs as building blocks, particularly for nearly-orthogonal arrays, the

J-characteristics can help select designs that have good lower-dimensional projection

properties in terms of the spread of design points. As another use, we can create

a grid over the lower dimensional projections and determine how many points fall

within a partition. Ideally, we want to see the points spread out evenly within each

of the partitions. We can use the J-characteristics to measure this spread, and still

maintain properties such as generalized minimum aberration.
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