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Abstract—Large-scale information dissemination in multicast
communications has been increasingly attracting attention, be it
through uptake in new services or through recent research efforts.
In these the core issues are supporting increased forwarding
speed, avoiding state in the forwarding elements and scaling in
terms of the multicast tree size. This paper addresses all these
challenges – which are crucial for any scalable multicast scheme
to be successful – by revisiting the idea of in-packet Bloom filters
and source routing. As opposed to the traditional in-packet Bloom
filter concept, we build our Bloom filter by enclosing limited
information about the structure of the tree. Analytical investi-
gation is conducted and approximation formulae are provided
for optimal length Bloom filters, in which we got rid of typical
Bloom filter illnesses such as false-positive forwarding. These
filters can be used in several multicast implementations, which
is demonstrated through a prototype. Thorough simulations are
conducted to demonstrate the scalability of the proposed Bloom
filters compared to its counterparts.

Index Terms—Bloom filter, source routing, information centric
networking, multicast addressing

I. INTRODUCTION

In the current Internet, IP multicast is hardly deployed
beyond single providers due to incentive, security and scal-
ability problems. These issues rendered multicast research a
cold topic [1] in the last decades. However, recent trends in
networking – such as Information Centric Networking (ICN),
which is built on a publish/subscribe service model – urges
the need of efficient multicast-based architectures. Common
to these trends is that they are leaving the issue of scalable
forwarding as a major challenge, which makes efficient mul-
ticast a core requirement for any successful solution in this
space. Therefore, multicast routing research is in its second
blossom [2]–[4]. The scalability challenge in these networks
is driven by three factors, namely
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Goal 1: the need to scale the speed of the forwarding opera-
tion with the growing need for speed in the Internet,

Goal 2: the scalability in terms of state to be maintained in
the routers for the forwarding operation, and

Goal 3: the scalability in terms of supported sizes of multicast
trees.

While solutions such as IP multicast generally support
multicast trees that span across the Internet, its realization
comes at the cost of lookup-based forwarding operations,
hindering Goal 1. These operations require appropriately
configured entries in forwarding tables within the individual
network elements, which clearly hinders Goal 2. On the other
hand, recent trends in networking, such as ICN or Software
Defined Networking (SDN), are deeply committed to the clear
separation of the data and the control plane in order to achieve
this goal [5]–[8].

Tackling Goal 2, an appealing approach to minimize, or
even avoid state in the network is that of source routing, which
is therefore in its second blossom after decades of ignorance in
the IP world. Here, instead of encoding next hop information
of the multicast tree at the intermediate nodes, as done in
traditional approaches, efficiently encoding link information of
the graph in a compact header allows for avoiding any state
at these intermediary elements. Such design issues manifest
in recent efforts towards using in-packet Bloom filters [2]–[4],
[9] for encoding the edges of the multicast tree into the packet
header. Bloom filters are originally designed for membership
queries i.e., for determining whether an element/edge belongs
to a set/tree or not. Placed in packet headers, the in-packet
Bloom filters can effectively address a set of nodes or links [2].
Conceptually, the LIPSIN method in [2] is closest to source-
specific multicast (SSM, RFC3569) where the multicast traffic
originates from a dedicated source node. However, this flat
type of tree representation in LIPSIN (i.e., the structure of the
whole tree is represented in an implicit manner as a set of
edges) in a single fixed size (256 bit) filter while keeping the
number of false-positive forwardings – i.e., sending data on a
link which was not involved in the multicast tree – low is very
limited (about 20 links). Note, that false-positive forwarding
e.g. in IPTV has a severe affect as unnecessarily sending a



high-quality video stream on a link highly degrades network
performance. Thus, a single fixed length header like LIPSIN
clearly not suitable to reach Goal 3.

In this paper we show that Goal 3, i.e., the scalability
problem in terms of multicast tree size can be tackled by
using some topology-related information when composing
the in-packet Bloom filter, which was not present in the
previous approaches. Although the excellent scalability of our
solution would make it suitable for Interned-wide adoption,
some technological concerns (e.g. simultaneous deployment
of the required functionality at networking hardware) ren-
der an incremental domain-by-domain deployment scenario
much more realistic. This promotes the thorough intra-domain
investigation of the problem, which will be made in this
paper. First, we propose the so called multi-stage Bloom filter
(MSBF) which consists of consecutive Bloom filters encoding
only the membership of the edges residing at a given hop-
distance (stages) from the source. Second, optimal (varying)
length false-positive-free Bloom filters are introduced in order
to eliminate false-positive forwardings, which is of utmost
importance in any practical realization of in-packet Bloom
filter based multicast forwarding. Our analytical investigations
and simulations prove that our MSBF solution not only
provides excellent space efficiency but it also remedies besides
false-positive forwarding several other anomalies arising when
Bloom filters are at use, like forwarding loops and packet
storms [4].

The rest of the paper is organized as follows. Section II
expands on the related work in this area. In Section III, we
define the architectural background in which we embed our
solution and introduce the concept of our new multicast archi-
tecture. As the main contribution of this paper, the analytical
results on creating minimal length false-positive-free Bloom
filters are presented in Section IV. In Section V we discuss the
implementation details of multi-stage Bloom filters in SDNs,
IP routers and in an ICN prototype followed by Section VI,
where we present our simulation and measurement results on
the proposed false-positive-free scalable multicast architecture.
Finally, Section VII concludes the paper.

II. RELATED WORK

A. Multicast Routing

Standard IP multicasting can provide a way of transmitting
packets from a source to many recipients in a bandwidth eco-
nomical way. Multicast routing protocols like DVMRP [10],
[11] and PIM-SM [12] for performing the transmission main-
tain Multicast Forwarding Tables (MFT) in the routers along
the multicast trees. This stateful approach is not only in full
contradiction of the stateless design of unicast IP, but is also
the Achilles’ heel of IP multicast. Due to the potentially
high number of multicast groups in the network according
to massive multi-party applications like video conferencing or
networked games, the states to be maintained in a router could
be untenable due to the unaggregability of the MFT’s.

For better scalability in terms of Goal 1 explicit multicast
solutions have been suggested in the literature, in which

forwarding information (e.g. list of destination IP addresses)
on the targeted group is encoded in the packet headers.
This flat type of stateless multicast routing protocols (like
Xcast, Xcast+ [13]) undoubtly has the drawback that every
intermediate node along the multicast tree should process the
header, even in the case the node is not a branching point
of the tree. To avoid mandatory packet header processing,
tree encoding schemes have been proposed to integrate into
multicast protocols, like in ERM and Linkcast [14], [15]. In
these methods, the entire tree structure is encoded into the
headers, moreover, in the latter case (and its successors [13])
forwarding at intermediate nodes is based on interpreting
the tree code, unicast lookups are completely eliminated.
Nevertheless, the tree encoding scheme in Linkcast uses fixed
length link codes by the assumption on the maximum size of
multicast groups and imposes large computational overhead
when interpreting the encoded tree.

B. In-packet Bloom Filters

The Bloom filter [16] is a simple yet efficient data structure
to answer membership queries. Let S be a set of elements,
assigned with b bit long binary codes, in which a maximum
of k bits are set in positions indicated by k different hash
functions. Each of the k hash functions maps the given element
onto one of the b bit positions. The hash functions are assumed
to be independent and each position is selected with equal
probability. The Bloom filter representing T ⊆ S is a b bit
long binary array consisting of the bitwise OR of the codes of
the elements in T. As the main feature a membership test can
simply be performed by checking if all bit positions that are
set in the code of the underlying element s are also set in the
filter. The performance of the filter is measured by the false-
positive rate that is the probability that an element s appears to
be included (by test) but actually it is never added (s ∈ S\T).

The application of Bloom filters is becoming increasingly
popular in future Internet architectures [2], [3] for tackling
Goals 1 and 2. Placed in packet headers, the in-packet Bloom
filters can effectively address a set of nodes or links, hereby
qualifying themselves as a strong candidate solution for effi-
cient stateless multicast addressing. When a packet with in-
packet Bloom filter arrives to a router, membership testing is
performed on the outgoing link identifiers. The bitwise AND
and compare (CMP) operation on the Bloom filter placed
in the header and on the address of the outgoing link is
extremely fast when implemented on a digital signal processor,
which leads to a simpler router architecture compared to
current IP routers. Realizations of this solution, e.g. in [7],
demonstrate that 1 GB/s throughput can be easily achieved
in prototypes. Moreover, Bloom filters are favored for their
space efficiency since the filter requires much less space than
listing the identifiers for each links/hosts in the multicast
tree. Furthermore, this allows routers to stay quasi-stateless,
because the routers only need to know the address of the
neighboring nodes and links.

A clear weakness of such an in-packet Bloom filter concept
is the total ignorance of



(i) the topology information and
(ii) the tree structure in addressing.

In [4] the first issue (i) was touched by generating the Bloom
filter addresses of each link according to the number of
adjacent links, which is intuitively beneficial because the links
with fewer adjacent links has a smaller chance to give false-
positive. However, it still not able to fully support Goal 3,
which is addressed in this paper.

C. Our Contribution

In this paper, we propose an addressing scheme for arbitrary
size trees and multicast groups which lies somewhat between
the two extreme approaches of explicit routing, i.e., the
completely flat solution and the complete tree encoding based
ones, and suits well for the requirements of ICNs by tackling
Goal 3. In our solution link identifiers at equal hop-distances
from the source of the multicast tree (referred to as stages
hereafter) are to be confined into Bloom filters, but without
any exact encoding of the tree topology hereby providing an
appealing mixture of space and forwarding efficiency.

Furthermore, we address both weaknesses (i) and (ii) of in-
packet Bloom filters by introducing (i) optimal length varying
size (ii) multi-stage Bloom filters, as opposed to the traditional
(single stage) fixed size in-packet Bloom filter concept [2]
(which represent the trees flatly as sets in a fixed length
header). The idea of multi-stage Bloom filters was first intro-
duced in [17], followed by an ICN prototype implementation
in [18]. However, these works contained nor clear guidelines
for the proper dimensioning of the filters from the theoretical
side, neither any tool for processing the required parameters
(e.g. the number of hash functions) in an implementation.
Thus, in this paper we also introduce the concept of false-
positive-free Bloom filters and provide approximation and
analytical results for filters with minimal length which can be
directly used in practice. The effectiveness and applicability of
the derived approximation formulae are demonstrated through
simulations and in our ICN prototype implementation as well.

III. ARCHITECTURAL BACKGROUND

For the reasons discussed earlier assuming a domain-by-
domain introduction of our MSBF approach, in the rest of
the paper we assume that information is disseminated across
a single domain. As link identifiers are used instead of end-
point addresses, from an overall network design perspective,
an important consideration is the scheme being used for
encoding the link information. Usually the usage of fixed
size identifiers is favored, enabling line-speed execution of
the forwarding operation (see the 256 bit long identifier in [2]
for an example). Such fixed size, however, limits the ability
to appropriately encode any given size tree within the limited
size of the identifier. While varying size header approaches
have been clearly at a disadvantage compared to fixed size
approaches, it is our contribution in this paper to provide
a solution that closes this gap in possible forwarding speed
while providing the previously outlined design advantages.
For this, we contrast our work against existing source routing

approaches and provide insight into the performance and
implementation issues of our scheme.

Crucial to our approach is the knowledge of the overall
topology over which the multicast tree is formed. Such topol-
ogy knowledge is not unreasonable to assume, as can be seen
in technologies like Multi-Protocol Label Switching (MPLS)
or software defined networks as well as in proposals envision-
ing future information-centric solutions. Common here is the
existence of a topology manager (or network controller) with
knowledge of link information between forwarding elements
under the management of this entity. It is the role of this topol-
ogy manager to compute an appropriate forwarding header
(MSBF in our multicast architecture) that can be used within
its topology. We argue that the existence of such topology
management in today’s networks points towards the possibility
to improve information delivery in existing IP networks as
well.

A. Architectural Concept of Information Centric Networks

The architectural context of information-centric networks is
based on the work in [7], [19]. Here we summarize the main
design principles onto which we set the foundations for our
proposed addressing scheme:

Spatially and temporally decouple communicating parties.
A publish/subscribe service model is exported to all applica-
tions and ancillary network components. Hence, the producer
of information (publisher) does not need to coexist in time
with the consumers (subscribers), i.e., a subscriber can receive
information even if the initial information producer is not
online, since the information can be replicated or cached
throughout the network. Moreover, communicating entities do
not know the location of each other, spatially decoupling them.

Clearly separate network functions. As discussed in [19],
the core network functions are cleanly separated with each
node supporting three network functions. The first one, ren-
dezvous, matches demand for and supply of information. This
results in some form of (location) information that is used for
binding the provisioning of information to a network location.
This information is used by the second function, topology
management and formation, to determine a suitable multicast
tree for the transfer of the information, this transfer being
executed by the third function, forwarding.

B. Traditional Bloom Filter Based Forwarding (1SBF)

Based on the previous discussion on the ICN architecture,
similarly to previous works on Bloom filters [2]–[4], [9], the
existence of the rendezvous point is assumed in the network.
However, it is important to note that this function can be
easily implemented in a distributed fashion, e.g., target nodes
subscribe to source nodes directly. Similarly to other source
routing approaches we assume that the up-to-date topology of
the network is available at the topology manager. It is also the
task of this topology manager to compute the multicast trees
(or DAGs) for each multicast group after consulting with the
rendezvous point. Following the architecture of [2] the links
are assigned by binary addresses and the topology manager
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Fig. 1. Traditional and multi-stage in-packet Bloom filters at the forwarding
phase (AND & CMP at each interface) on a multicast tree with four
subscribers s1, s2, s3 and s4.

computes the multicast packet headers by combining the
addresses of the links residing in the corresponding multicast
tree. In order to better understand the details of the proposed
multi-stage filter let us first recall how this computation is
done using the traditional in-packet Bloom filters.
• Each link is assigned by a binary link address (consisting

of b bits of which at most k are set to 1).
• The topology manager computes the multicast header

by bitwise OR-ing the addresses of the links in the
corresponding multicast tree.

At each router outgoing link addresses are tested against the
Bloom filter (i.e., testing at each bit-position where the link
address is set if the filter is also set with a binary AND
and CMP function) and forwarded if positive. Note that this
approach is totally topology unaware since it simply traces
back the forwarding decision to a classical membership testing
problem. As an example in the multicast tree of Fig. 1a the in-
packet Bloom filter contains the bitwise OR of 5 link addresses
(with fixed length b = 10 and k = 4 hash functions). The filter
is tested 9 times (against every outgoing interface) during the
forwarding process, and producing false positive forwarding
even with such low number of links.

C. Varying Length False-Positive-Free Multi-Stage Bloom Fil-
ters (MSBF)

In-packet Bloom-filters are an efficient representation of
the links of a multicast tree in an ICN context. However,

it was shown in [2] that the multicast tree size which can
be efficiently represented in a single fixed size filter while
keeping the false-positive rate low is very limited (about 20
links), contradicting with Goal 3.

Our contribution in this paper is to use a sequence of
shorter, so called stage filters instead of a single large one.
Each stage filter contains only the forwarding information
for the edges with the same hop-distance from the source
node in the multicast tree. Thus, we improve the completely
flat addressing structure of the original in-packet Bloom filter
concept, and some topology-related information is added to the
packet header through the stage filters for tackling Goal 3. The
efficiency of this approach will be demonstrated analytically
in Section IV, while empirically in Section VI.

Another desired property of the introduced Multi-Stage
Bloom Filters (MSBF) approach is that when forwarding a
packet the already used stage filters can be truncated at each
hop one-by-one, as it contains only information for the already
traversed links. That is, a tree of h hops is represented by h
stage Bloom filters, where the ith one contains only the links
residing at i hop-distance from the source. When leaving the
source the multicast in-packet Bloom filter header consists of
h stage filters, which then shrinks as the packet travels along
the tree, highly reducing the overhead introduced by the in-
packet Bloom filter.

In ICNs and also in traditional multicast applications, un-
necessarily forwarding a high-bandwidth video stream on a
link could result in degraded network performance owing to
congestion. In terms of security and business considerations, it
is also not desirable if a node receives a stream unintendedly.
Thus, in order to keep the number of false-positive forwardings
on a tolerable level in arbitrary size multicast trees, applying
false-positive-free (FPF) varying length stage filters could
be a solution, discussed in Section IV. For ensuring space
efficiency, the length of the FPF filters are optimized at each
stage as the function of the number of elements (i.e., links) it
contains, which clearly results in varying size stage filters.
Thus, for identifying filter boundaries we propose to store
the length of each filter in the header e.g. by applying the
commonly used Elias gamma universal code [20], where the
length γ of a b bit long filter is coded as follows (notations
can be found in Table I):
• first dlog2(b)e − 1 zero bits are written,
• followed by the binary representation of b on dlog2(b)e

bits.
As it is shown in the example of Fig. 1b, the packet header

at Stage 1 consists of two parts, a γ1 = 3 bit long Elias gamma
code, and a b1 = 4 bit long Bloom filter. This filter at Stage 1
is tested against four links, out of which two are expected to be
chosen. Similarly, at Stage 2 the second filter (γ2 = 5, b2 = 5)
is tested five times with three expected positive outcomes.

The benefit of our MSBF approach with respect to the
introduced overhead is clear, for example, if we investigate
Fig. 1b. Note that, the average Bloom filter length is bavg = 10
for 1SBF, while bavg = 6.6 for MSBF. The average overhead
bits for our MSBF approach is maximally mavg = 17, while



applying the header truncation mechanism it could be reduced
to mavg = 12.8 (as the number of overhead bits is 17 on the
two links of Stage 1, while 10 for the three links of Stage 2).
One can observe that even on this small multicast tree (where
1SBF still performs well), the number of extra overhead bits
paid for varying length multi-stage filters is negligible (12.8
in contrast with 10 of the 1SBF approach), while with the
application of the MSBF filter false-positive forwarding was
completely eliminated.

Note that the main idea behind eliminating false positive
forwarding is to move the uncertainty from the forwarding
phase to the Bloom filter generation phase, i.e., generating an
FPF filter can be considered as a randomized algorithm (with
controllable uncertainties). However, once an appropriate filter
is found, the forwarding will be surely FPF, i.e., the forwarding
phase is deterministic. Thus, in order to characterize the
properties of the FPF filter generation process, in Section IV
we will derive and analyze the distribution and the expected
value of FPF filter length in several settings, and provide some
practical guidelines which can be used in an implementation.

IV. ANALYSIS AND DESIGN OF FPF BLOOM FILTERS

In case of the original Bloom filter, elements of a certain
subset T of a much larger (often unknown) set S can be
collected (encoded) into the filter in such a way that mem-
bership queries can justify the inclusion of the elements of
T. Unfortunately, other elements from T\S can also happen
to be tested positively, although they were never added.
The frequency of the events of these false reportings of the
membership test is called false-positive probability. The design
goal is to generate a Bloom filter for T which can provide
the false-positive probability under a prescribed value. After
generation, the operation of such a filter can be erroneous;
however, the false-positive rate can be kept under a small
value.

As opposed to this, in multicast communication both T = L
and S = E are known and their cardinality are quite compa-
rable. This fact may be utilized in the filter generation process
in such a way that after generating a filter for L, all the
elements of E\L can be tested against the false inclusion.
If the inclusion of one or more of the elements of E\L are
reported, then another filter can be generated for L and tested
against for false inclusion again. In principle, it is possible
to find a filter with appropriate length which does not contain
any of the elements of E\L. As opposed to the original Bloom
filter, such a filter will be false-positive-free in operation and
thus inherently suitable for error-free multicast forwarding.

The generation of such filters at the topology manager for
any given multicast tree L is not a trivial issue and will be
discussed in this section. Shortly foreshadow this, the main
tasks in an FPF filter generation can be summarized as follows:

• computing expected filter lengths based on the number of
elements α to be included in and the number of elements
β to be excluded from the filter (called Scalability,
discussed in Section IV-A and Section IV-B),

TABLE I
NOTATION LIST

Notations Description
G = (V,E) the directed graph representation of the

topology with nodes V and edge set E
L multicast tree
α number of in-tree links (= |L|)
β number of out-tree links (≤ |E\L|)
b Bloom filter length
γ total length of the Elias-gamma function in the

varying length in-packet Bloom filters
ml = γl + bl total overhead bits at link (or stage) l

mavg average number of overhead bits per link
in multicast tree L

η(L) filter compactness, mavg divided by
the number of links in the multicast tree

bavg average number of in-packet Bloom filter
bits per link in multicast tree L

λ(L) Bloom filter compactness, bavg divided by
the number of links in the multicast tree

δ test range where FPF Bloom filters are most probable
in a practical implementation ([E[L]− δ, E[L] + δ])

h number of stages (maximal hop distance from source)
L random variable representing the Bloom filter length

L̃(α, β) approximation of the expected FPF Bloom filter length
kopt optimal (real) number of hash functions

k∗(α, β) approximation (integer) number of hash functions
D set of multicast trees given in the network
ηavg average filter compactness for all multicast trees D

(with header abbreviation, if MSBFs are considered)
µavg average filter compactness for all multicast trees D

(without header abbreviation, if MSBFs are considered)
λavg average Bloom filter compactness

for all multicast trees D

• computing/estimating the required test range δ based on
the expected filter length (called Insensitivity, discussed
in Section IV-C),

• testing the filter lengths in increasing order in the test
range against the FPF property, stop when the filter tested
is FPF using the appropriate number of hash functions
(called Implementability, discussed in Section IV-D).

We will also demonstrate that breaking down the Bloom
filter into stages with optimal length can significantly reduce
the overall filter length b compared to
• the traditional (single stage) Bloom filter with optimal

length, and
• to the LIPSIN approach using fixed length in-packet

Bloom filters.
The notations are summarized in Table I.

A. The Expected Length of the False-Positive-Free Bloom
Filter

Let α and β denote the number of in-tree (which are
contained in the multicast tree L, denoted by bold lines in
Fig. 1) and out-tree (which are not contained in the multicast
tree E\L, dotted lines in Fig. 1) links in a given stage,
respectively, and we assume that there are h stages. For the
sake of simplicity, we conduct our analysis for identical α
and β values in each stage. However, in Section VI general
settings are used.
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TABLE II
COMPARISON OF TRADITIONAL (1S) AND MULTI-STAGE (MS) BLOOM

FILTERS IN EXPECTED FILTER LENGTH WHEN αi = 10, βi = 30,
i = 1, . . . , 5.

No. of hops E[L]1S from Eq. (8) E[L]MS from Eq. (9)
1 54.31 54.31
2 127.94 108.62
3 210.01 162.93
4 297.69 217.24
5 389.61 271.55

First we recall how to design an optimally sized Bloom filter
to meet a prescribed false-positive requirement [21]. Without
loss of generality, the false-positive probability for a Bloom
filter with length b can be calculated as:

Pf =

(
1−

(
1− 1

b

)αk)k
. (1)

Introduce the notation p =
(
1− 1

b

)kα
and minimizing Pf

using the first derivative transforms to

∂Pf
∂k

= (1− p)k−1 · [(1− p) · ln(1− p)− p ln p] = 0. (2)

It is easy to see that the optimal k, that is the optimal number
of hash functions is attained when p = 0.5:

kopt =
1

α

ln(0.5)

ln(1− 1
b )

, and P optf = 0.5

ln(0.5)

α ln(1− 1
b ) , (3)

or using (
1− k

b

)α
≈ e− kαb (4)

we get the approximation

P optf ≈ 0.5
−b ln 0.5

α = c
b
α , where c =

1

2ln 2
. (5)

In the following the length of false-positive-free Bloom
filters is discussed, i.e., a large enough filter is created for
which the expected number of false-positives will be zero.
For this let us define the following probability:

P (b, α, β) =
(
1− c bα

)β
. (6)

This expresses the probability, that in a b length filter con-
taining α elements none of the β out-tree links are included
in the filter. The probability distribution of the shortest FPF
filter length L is shown in Figure 2, which can be calculated
as follows:

P (L = b) = P (b, α, β)

b−1∏
i=1

(1− P (i, α, β)). (7)

Now the length L of the false-positive-free Bloom filter
comes from the random process of trying with increasing size
filters and stop when false-positive cannot be found. That is
this expected length in case of the traditional (single stage)
filter is

E[L]1S =

∞∑
b=1

b · P (b, hα, hβ)
b−1∏
i=1

(1− P (i, hα, hβ)), (8)

because there are |L| = hα links to be included and E\L =
hβ links are to be excluded in the filter. The expected length
of the false-positive-free multi-stage filter is

E[L]MS = h

∞∑
b=1

b · P (b, α, β)
b−1∏
i=1

(1− P (i, α, β)), (9)

because there are h identical false-positive-free filters (each
containing α links and not containing β links) confined in
the stage filter. Using the above formulae Table II shows a
comparison between the expected length of the traditional and
multi-stage Bloom filters, when αi = 10, βi = 30 and the
number of hops increases from 1 to 5. Evidently for a single
hop (h = 1) Eq. (8) and Eq. (9) results the same expected value
54.31, as the number of α and β links are the same. However,
notice that the improvement due to using more stages can be
stunning even if the number of stages is relatively small, for
trees with larger depth 30-40% improvement can be reached.

Although the expected length of FPF Bloom filter can not
be used directly for filter generation (according to Figure 2 the
filter with length of the expected value will be false-positive-
free with only about 2% probability1), it plays an important
role in finding an appropriate minimal length for obtaining
a false-positive-free filter, hence it is worth being analyzed.
Based on this analysis, a test region of lengths (δ) around
the expected value can be determined, in which the false
positive free filter can be found with very high probability.
For example, according to the minimal length distribution in
Figure 2, the minimal length of the FPF Bloom filter can be
found in the region [80, . . . , 240] with probability 1− 10−5.

B. Approximations and Analysis of Minimal Filter Length

In this subsection we provide analytical approximations
for the probability distribution and the expected value of the
minimal length of the false-positive-free Bloom filters. Based
on these we analyze how these quantities depend on α and
β, and also provide quantification on improvements in multi-
stage filters against the single-stage FPF Bloom filter.

1This also means that the filter length generated by the FPF filter generation
process may largely deviate from the expected FPF filter length.
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Fig. 3. The tail probability and its approximation for α = 30, β = 40.

As previously presented in Eq. (6)-(7) the distribution of
the filter length L can be characterized as

P (L = b) = (1− c bα )β
b−1∏
i=0

(1− (1− c iα )β) . (10)

Based on this the tail of the distribution (CCDF) of the filter
length L can be written as

P (L > b) =

b∏
i=0

(1− (1− c iα )β) . (11)

First we show a useful approximation for this tail probability.
Lemma 1:

P (L > b) ≈ Exp

(
−
αEi

(
−cb/αβ

)
ln(c)

)
, (12)

where c = 1
2ln 2 and Ei(z) = −

∫∞
−z

e−t

t dt is the so-called
exponential integral function.

The proof is relegated to Appendix. Extensive numerical
investigation showed that this tail probability approximation is
accurate enough for practical size problems α = (2, . . . , 100) ,
β = (10, . . . , 1000), and in the region 1, . . . , 10−10 of P (L >
b). In Fig. 3 one can observe good coincidence of the curves,
and even in the range under 10−10 the ”horizontal”2 relative
difference between the curves are under few percent.

In what follows, an accurate approximation is presented on
the expected filter length E[L] (either for E[L]1S or E[L]MS).
In principle, E[L] can be expressed as the sum of the tail prob-
abilities as E[L] =

∑∞
b=0 P (L > b). Unfortunately, it seems

that it can not be directly used as an integrate approxima-

tion sum, because the integral
∫∞
x=0

Exp

(
−αEi(−cx/αβ)

ln(c)

)
dx

turned out being not characterizable by using elementary
and/or special functions. Instead, we utilize the property of
the CDF P (L = b) that it is close to a symmetric distribution,
therefore, the median b∗ is an acceptable approximation for

2From practical point of view, the ”horizontal” relative difference has higher
significance than the ”vertical” one. That is for given prescribed tail probability
ε the smallest b and b̃ for which P (L > b) ≤ ε, P̃ (L > b̃) ≤ ε are to be
find and compared as a ”horizontal” relative difference b

b̃
− 1.
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Fig. 4. The expected filter length and its approximation for α =
(20, . . . , 100), β = 40.

the expected value, for which P (L > b∗) = 1/2. The next
theorem presents the main result of this subsection:

Theorem 1: The expected false-positive filter length can be
approximated by the following formula

E[L] ≈
α ln

(
− β

Ei−1
(
− ln3(2)

α

)
)

ln2(2)
=: L̃(α, β) , (13)

where Ei−1(.) is the inverse function of the left branch3 of
Ei(.) .

The statement of the theorem immediately follows from
Lemma 1 and the symbolic solution of the equation with
respect to b

Exp

−αEi
(
−
(

1
2ln 2

)b/α
β
)

ln2(2)

 =
1

2
. (14)

The approximation L̃(α, β) is worth rephrasing as

L̃(α, β) =
α

ln2(2)
(lnβ − s(α)) , (15)

where s(α) = ln
(
−Ei−1

(
− ln3(2)

α

))
is a very slowly in-

creasing function of α (s(α) is approximately proportional to
ln(lnα)). This mean filter length approximation is in very
good agreement with the ”exact” average length numerically
computable by Eq. (9) or

∑∞
b=0 P (L > b). Two figures are

presented for illustration, one is on the α dependence with
fixed β and the other is on the β dependence with fixed α
(Fig. 4 and Fig. 5)4.

Now, the main message of Theorem 1 is that the expected
false-positive-free filter length is approximately proportional
to the number of elements included (α), and to the logarithm
of the number of elements excluded (β). This is referred to as
the property of Scalability.

3Ei(.) has a branch cut discontinuity at 0, the left branch (with negative
arguments) is a negative valued function.

4Note that in Fig. 5 the horizontal axe with β has logarithmic scale
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Fig. 5. The expected filter length and its approximation for α = 30, β =
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The formula of the expected filter length can also be used
to quantify the expected gain in filter length using multi-stage
filters against a single one-stage filter as

L̃

(
h∑
i=1

αi,

h∑
i=1

βi

)
−

h∑
i=1

L(αi, βi) . (16)

Taking the simple example of the previous section (h = 5 and
for each stage α = 10, β = 30) this formula gives 121.9 bits,
while the previous numerical calculation (see the last row of
Table II) provided 118.06 bits as expected gains.

C. Approximation of The Required Test Range

From a practical point of view, it is important to find the
optimal length FPF Bloom filter as fast as we can. It is
straightforward to search for a minimal length FPF Bloom
filter in [1, E[L]MS ] with increasing filter length. However, it
requires a lot of unnecessary computations as from Figure 2
one can observe that the most probable range to find an FPF
filter is around the expected value E[L]MS . In this section,
we are interested in the size of this test range δ, i.e., the test
interval [E[L]MS−δ, E[L]MS+δ], where it is practical to seek
an FPF filter, as a simple and accurate enough approximation
can also be given for the required test range based on the
CCDF (tail probability) approximation in Lemma 1. If the
prescribed success rate for the test range is 1 − ε, then we
find b1 and b2 such that the probability of the lower tail
(1 − P (L > b1)) and the upper tail (P (L > b2)) of the
distribution should be at most ε/2. Using our tail probability
approximation, the required test range is about

b2 − b1 ≈
α

ln2(2)
(s(α, ε/2)− s(α, 1− ε/2)) , (17)

where s(α, x) = ln
(
−Ei−1

(
ln2(2) ln x

α

))
.

With α = 30 and β = 40 the required test interval is
160 with 1 − 10−5 (99.999%) success ratio. The formula in
Eq. (17) gives us 159. On Fig. 6 one can observe the small
differences between (half of the) test interval (previously noted
by δ) and its approximation vs. the success rate, with the
same α and β. Based on extensive numerical investigations, we
observed that the analytical formula of the test range provides
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Fig. 6. The required test range and its approximation with success rate
10−1, ..., 10−6 .

good approximation when β > α (i.e., the multicast tree
includes less links than it excludes, which is true in most
practical scenarios). Moreover, for these cases the numerical
computation reveals that the test range hardly depends on β.
For example, if β is increased from 40 to 4000, in the previous
example the test range increase from 160 to 174. Note that this
is also reflected by Equation (17) in which the approximation
of the test range b2 − b1 does not depend on β.

The main message of this subsection is that the required test
range for finding the minimal false-positive-free filter length
is approximately independent from the number of elements
excluded. This is referred to as the property of Insensitivity.

D. Approximation of the Number of Hash Functions

Up until this point in the optimized Bloom filter and hence
in the analysis of the false-positive-free Bloom filter the
number of hash functions is implicitly treated as a positive
real-valued number (Eq. (3)), nevertheless, in implementations
it should be positive integer number. Recall that the optimal
number of hash functions (in case of an b length filter with α
number of elements to be included) is

kopt(α, b) = ln(0.5)
1

α ln(1− 1
b )
≈ ln(2)

b

α
. (18)

With given parameters, this value should be rounded to a
positive integer number. In finding the one with the mini-
mal length among the false-positive-free Bloom filters, the
rounding means that for every length to be tested a rounded
value of kopt should be used. Based on thorough numerical
assessment of the effect of this rounding procedure, we can
state that all the numerically computable formulae and their
analytical approximations for the required test range and the
expected filter length change negligibly. Moreover, it can also
be demonstrated that it is enough to use a single integer
number of hash functions, and a suitable choice for this is

k∗ = Round
(
ln 2

E[L]

α

)
≈ Round

(
1

ln 2
(lnβ − s(α))

)
,

(19)
due to the approximation L̃(α, β) in Eq. (15). As an illustrative
example for the robustness of the filter length calculation



against the rounding effect is as follows: The expected mini-
mum filter length is 161.2 for α = 30, β = 40 based on Eq. (9)
and its approximation is 159.1 based on Eq. (15) (using real-
valued numbers of hash functions). The rounded number of
hash functions for this length is k∗ = 4. Recalculating the
expected filter length with this fixed number of hash functions
is 162.4. Moreover, if we use 3 instead of 4 for the number
of hash functions, the expected length is 162.1 . Intuitively,
this may be due to the fact that around the mean value there
are the most probable minimal filter lengths having principle
impact on the mean-value calculation, and in this region the
rounded kopt may be constant or change its value only once.
The very similar observations can also be performed for the
required test range.

In Fig. 7a the contour plot of k∗(α, β) are presented on the
α, β plane. It can be observed that for a given β, k∗ remains
intact through a wide range of α. It is also confirmed by the
slow increase of the s(α) function. The contours represent the
implicit function β(α) with fixed k∗, which is approximately
logarithmic due to the observation that s(α) ∼ ln(lnα). In
Fig. 7b the contour plot of the expected filter length E[L] is
presented on the same plane. It can be observed that for fixed
expected length β is quickly decreasing when α is increasing,
that is, a filter with given length could exclude fewer elements
if the number of elements to be included is larger. It is also
justified by the L̃(α, β) approximation formula, because from
this β is approximately ∼ Exp(−α) if L̃ is fixed. In Fig. 7c
the ratio of the number of hash function k∗ and the expected
filter length E[L] is plotted. From the previous figures and
considerations one may expect that this quantity does not
significantly depend on β for a given α. This is acknowledged
by the contours of the figure, which are almost ”vertical”.

The main message of this subsection is that the expected
filter length and the required test range remain intact when the
unimplementable real (continuous-valued) numbers of hash
functions is replaced by a single integer number (therefore
implementable) of hash functions. This is referred to as the
property of Implementability.

V. IMPLEMENTATION ISSUES ON BLOOM FILTER BASED
FORWARDING

In Section III-C an efficient multicast addressing mech-
anism in information centric networks, called multi-stage
Bloom filters, was introduced. The optimal length MSBF
header was calculated at the topology manager based on
publisher/subscriber information of the rendezvous function
using our results in Section IV. In this section, the implemen-
tation issues of Bloom filter based forwarding are discussed
in several architectures and environments.

A. Implementation Details in Software Defined Networks

In this section we discuss the implementation details of
single-stage Bloom filter based forwarding in OpenFlow. We
note here, that to the best of our knowledge our imple-
mentation [8] is the only one which is fully supported by
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Fig. 7. The optimal number of hash functions.

TABLE III
FLOW ENTRIES IN THE Ith FLOW TABLE IN OUR OPENFLOW BLOOM

FILTER BASED FORWARDING APPROACH.

match condition associated actions
(in-packet filter AND Bloom IDi) CMP Bloom IDi output(porti)

goto-table(i+1)
(always match) goto-table(i+1)

standard OpenFlow v1.0 protocol5. Although the extension of
this implementation for multi-stage filters can not be done in a
standard OpenFlow v1.0 conform manner, the basics of Bloom
filter based forwarding can be easily demonstrated through it.
Thus, we shortly summarize this approach.

In the model of [8] Bloom IDs are assigned to switch ports.
These Bloom IDs are used to generate the in-packet Bloom
filter, i.e., port IDs, which the packet needs to pass through are
bitwise OR-ed and put into the packet’s destination Ethernet
address field. In our implementation we need to slightly
deviate from the regular usage of flow entries. Normally,
flow entries correspond to a specific set of flows, whereas we
proactively configure a separate flow table for each port as
shown in Table III. The first entry in the table matches if the
packet’s Bloom filter contains the port’s Bloom ID. In case of
a match the switch forwards the packet via the corresponding
port and independently of the outcome, the packet is matched

5Our implementation is open source and can be downloaded at
http://sb.tmit.bme.hu/mediawiki/index.php/Sigcomm2012



against the next port’s flow table hereby providing the stateless
multicast switching capability. Hence, the packet is matched
against the port ID of each outgoing interfaces, and forwarded
on all necessary ports.

B. Implementation Issues in Intermediary Forwarding Ele-
ments

Next, we discuss the implementation issues of the proposed
MSBF framework [17]. The forwarding process of the multi-
stage filter runs in each relay node along the multicast tree
and consists of the following steps.
(1) The header of the incoming multicast packet is loaded into

a fast access type of memory.
(2) The starting number of 0’s is counted, and the length field

is loaded accordingly (Elias-gamma function).
(3) The following length number of bits is identified as the

current stage filter and prepared for Bloom filter member-
ship testing.

(4) The Bloom filter membership testing is executed in par-
allel at each link interface card.

(5) If the test is positive then at the current bit position the
header is truncated, that is the current stage filter with the
length field is removed from the header.

(6) If the header size is greater than zero the packet is
forwarded using the new header.

The membership testing requires a bitwise logical AND opera-
tion of the Bloom filter and the link address. The result is then
tested (bitwise CMP) if equals to the link address itself. Recall,
that the filters at different stages can have different sizes, which
requires link addresses of varying sizes. To store the addresses
of all possible lengths for each link can be overwhelmingly
memory consuming, prompt generation can provide a better
solution instead. For this purpose [22] proposes a lightweight
mechanism, where two uniformly distributed random hash
functions (even two can be enough) are used to generate
varying size hash codes to implement Bloom filters without
any loss in the asymptotic false-positive probability. In this
case two hash functions h1(x) and h2(x) are stored at line
cards, where x is the link address. The ith hash function
gi(x) is generated by the formula gi(x) = h1(x) + i · h2(x)
mod b, where b is the length of the hash code of the link to
be established, and i = 1, . . . , k. Finally, it is tested whether
the gi(x)th bit in the stage filter is 1 for every i. Note that in
such implementation membership testing depends mainly on
the number of hash functions and less on the size of Bloom
filters, allowing fast forwarding even for large Bloom filters.

With respect to the processing power required by the
proposed method only h1(x) and h2(x) should be stored for
each port, which can be stored in the local Level 1 (L1) cache
of the CPU. L1 cache can be accessed in just a few CPU
cycles and its typical size is tens of kilobytes. Recall that in
the proposed method instead of address lookup we need to
decode the length of the first stage, performing 2− 3 modulo
divisions with remainder using the two hash functions of h1(x)
and h2(x), and test the related bit-positions in the header.
These operations should not require more than a few tens of

CPU cycles6, which is not considered to be overwhelmingly
expensive.

In comparison e.g. forwarding an IPv4 packet requires 6−8
memory access operations (and up to 16 for IPv6) taking up
most of the forwarding time. Note that a 3 GHz processor has
a CPU cycle of 0.3 nanoseconds, while a single DDR SDRAM
memory access operation requires ∼ 20 nanoseconds (that
is about 66 CPU cycles) for each memory access, summing
up to 396 − 528 CPU cycles for the whole IPv4 address
lookup strongly depending on the applied advanced cache
technology [24]. In traditional label switching technologies no
extra processing is needed besides changing the label in the
header; however, this comes for the price of keeping states in
the switches (clearly not satisfying Goal 2).

C. Implementation Details in an ICN Prototype

We realize our solution in an available ICN prototype [7]
for evaluation and demonstration. The rendezvous compo-
nent implements the respective network function, as outlined
in Section III-A. All publish/subscribe requests finally reach
this element, which matches publishers with subscribers and
triggers the formation of a forwarding path/tree. The topology
manager manages the network topology and, upon request by
a rendezvous component, creates forwarding paths from one
or more publishers to one or more subscribers. These paths are
sent to the respective publishers that use them when publishing
information for a specific information identifier, utilizing the
forwarding component for the delivery across the network.

We integrate our solution into the platform in [7] by
adapting two modules [18]. First, we replace the forwarding
component, which is currently based on [2], with a realization
of the forwarding operation described in Section V-B. The
platform design allows for forwarding functions to co-exist,
delimited by the dissemination strategy for a particular part of
the information structure. Second, we also adapt the topology
manager by extending the current minimal spanning tree
mechanism with the header encoding, i.e., the topology man-
agement function splits the tree into stages and calculates stage
Bloom filters by executing the following steps (initializing the
filter length to b := bmin):
Step 1 Create the stage filter BF as the bitwise OR of the

first b bits of the α in-tree links (if b ∈ [bmin, bmax]
calculated in Section IV-C).

Step 2 Check whether BF contains any of the β out-tree
link identifiers.

Step 3 If BF if false-positive-free, return BF , else go to
Step 1 with b := b+ 1.

Note that the test interval [bmin, bmax] can be efficiently
computed based on the Scalability and Insensitivity properties
(presented in Section IV-B and Section IV-C), that is given α

6Note that as h1(x), h2(x) ≤ b computing the remainder requires at most
k subtractions and k comparisons in the worst case even without applying
any software or hardware optimized algorithm. In general case a native
and single (i.e., not considering pipeline execution) 32-bit unsigned integer
division operation costs around 26-38 cycles in IA-32 or 64 bit Intel processor
architectures [23].



and β, the expected filter length can be approximated by (15)
and the required test range (given a prescribed success ratio
1− ε) around this mean value can be determined by (17).

Observe also that the three-step loop above succeeds to
find the false-positive-free Bloom Filter in [bmin, bmax] with
probability 1− ε.

In the stage filter creation BF in Step 1 a single integer
number of hash functions is used (according to (19)) and its
applicability is credited with the Implementability property
discussed in Section IV-D.

The length of the FPF Bloom filter (b) is included into
the stage filter using an Elias gamma encoding with γ =
2 · dlog2 (b)e+ 1 bits used for the length encoding per stage.

VI. SIMULATION AND MEASUREMENT RESULTS

A. Measures on Filter Length

In order to ensure the fair comparison of different Bloom
filter based approaches, in this section we define performance
measures to compare the header length of different forwarding
schemes. Remember that the filter length ml at link l in the
proposed architecture stands for:

ml = γl + bl, (20)

where γl is the total length of the Elias gamma codes of the
stage filters, while bl is the total bits consumed by (stage)
Bloom filters in the header at link l.

Definition 1: The filter compactness of a multicast tree L
is denoted by η(L), which is the sum of the header overhead
along each link in the multicast tree divided by the square of
the number of links |L| in the multicast tree, formally

η(L) =
∑
l∈Lml

|L|2
=
mavg

|L|
.

Obviously, a lower η(L) refers to a more compact filter. To
further explain, filter compactness refers to the average filter
length divided by the number of tree links stored in the filter.
Using this definition the performance of an architecture does
not depend on the tree size, and the average filter length can
be obtained by η(L) · |L|.

To compare the overall performance of different filters, in
the simulations a set of multicast tree is generated for a given
network topology G = (V,E), denoted by D, and the average
filter compactness

ηavg =

∑
L∈D η(L)
|D|

of these trees is evaluated in the investigated architecture.
Recall that in our multicast architecture the headers are

truncated at forwarding (i.e., the route information already
traversed by the packet is erased), which leads to a better
filter compactness ηavg. Therefore as a reference average filter
compactness is also evaluated without abbreviating the headers
at forwarding, denoted by µavg. In order to obtain a fair
comparison of the traditional and our stage filters, similarly
to the filter compactness we define the following metric.

TABLE IV
IN-TREE AND OUT-TREE LINKS PER STAGE IN THE COST 266

PAN-EUROPEAN BACKBONE NETWORK WITH 37 NODES AND 57 LINKS
(D = 2000).

Hop-distance (stage h) from source 1SBF
1 2 3 4 5 6 7 Total

α 1.85 2.66 2.67 2.90 2.28 1.87 1.32 15.55
β 1.08 3.90 7.01 6.86 8.26 6.17 6.24 39.52

Definition 2: The Bloom filter compactness of a multicast
tree L is denoted by λ(L), which is the sum of the lengths
of the in-packet Bloom-filters along each link in the multicast
tree divided by the square of the number of links |L| in the
multicast tree, formally

λ(L) =
∑
l∈L bl

|L|2
=
bavg
|L|

.

Similarly, average Bloom filter compactness without abbrevi-
ating the headers is defined as λavg for a set of D multicast
trees.

B. False-Positive-Free Bloom Filter Length Analysis

In the simulation we compare the two Bloom filter
based forwarding approaches, namely the traditional in-packet
Bloom filters [2] which was modified to handle varying size
headers (drawn with filled marks on the charts), and the
proposed MSBF approach (drawn with empty marks on the
charts). We compare their performance in terms of the metrics
proposed in Section VI-A, i.e., ηavg and µavg to investigate
the effect of abbreviating the header, and µavg and λavg to
investigate the effect of varying size headers.

Fig. 8 shows the result on the COST 266 pan-European
backbone network with 37 nodes and 57 links. The demands
were classified according to the maximum hop distance in the
multicast tree. D = 2000 random demands were generated
with unicast traffic only on Fig. 8(a), and multicast traffic
with up to 10 terminal nodes on Fig. 8(b). Coinciding with
our analytical evaluation the multi-stage Bloom filter has
significantly shorter filter sizes. Surprisingly this is true even
when the multi-stage Bloom filter consists of one Bloom filter
in one hop trees. This is because in multi-stage Bloom filters
the number of links on which false-positive can occur is
smaller, since none of the links, which are two hops away
from the source node can generate a false-positive, due to the
header truncation mechanism, i.e., zero sized header prevents
the forwarding of a packet in the multi-stage case. Note that
the size of the multicast trees increases as the number of hops
increases and shows the great scalability multi-stage Bloom
filter can achieve. This is validated by the number of in-tree
and out-tree links per stage as well in Table IV.

In the case of traditional in-packet Bloom filters encoding
the size adds small overhead, especially for large multicast
trees. Since multi-stage Bloom filters consists of several con-
secutive Bloom filters, one may argue that encoding these
boundaries may end up in a larger overhead. Our results
support that this is not the case, since due to the truncation
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TABLE V
TOPOLOGIES USED FOR THE NUMERICAL EVALUATIONS WITH FILTER LENGTH MEASURES FOR THE TRADITIONAL IN-PACKET BLOOM FILTERS (1SBF)

AND FOR THE MULTI-STAGE (MSBF) USING THE EXACT AND APPROXIMATION FORMULAE.

Xcast ηavg µavg λavg δ
Topology Nodes (|V |) Edges (|E|) IPv4 MSBF Approx 1SBF MSBF MSBF 1SBF Incremental E[L]± δ
Cost266 [25] 37 57 18.77 4.33 4.33 10.97 6.79 3.90 9.90 52.38 34.28
Germany [25] 50 88 17.88 5.97 5.97 11.79 8.14 5.13 10.42 66.69 40.15
Deltacom [26] 113 161 9.89 4.18 4.07 12.11 6.87 3.92 11.27 105.38 70.53
Random E-R 1001 1997 150.15 5.15 4.97 5.77 7.41 3.15 3.73 13.38 21.21
AS level 34306 71448 10.23 10.88 10.93 19.75 16.39 13.53 18.78 366.27 151.84

of the header at forwarding and the space efficiency of the
multi-stage filter, in average header length the multi-stage
Bloom filters remarkably outperform the original approach.
The advantage of the MSBF approach is even more significant
for unicast demands.

Next we investigate the performance respect the network
density. 20 random 50-node, two-connected networks are gen-
erated with different network density. Fig. 9 shows the results
of D = 500 demands where the horizontal axis corresponds
to the number of links in the graph. One can observe that the
performance gain of multi-stage Bloom filter is always 3− 4
bit per link and does not depend on the density of the topology.

Finally, we investigate the scalability of the approaches as
the network grows. Table V shows the results on topologies
with different sizes and with multicast demands of terminal
nodes at most 10. As a reference Xcast based solution is also
added to the table, in which the header consists of a series
of IPv4 addresses with 32 bit for each destination. However,
note that IPv4 and Xcast are not source routing solutions
and require large routing tables at the routers (i.e., clearly
not supporting Goal 1 and Goal 2). We were surprised to see
that, although the forwarding decision for an in-packet Bloom
filter is significantly simpler and faster compared to traditional
IPv4 forwarding, using in-packet Bloom filters even at the AS-
level has similar performance than Xcast. Further note that
using the approximation formula developed in Section IV-C
for the test range δ requires a lower number of tested filter
lengths in order to find an FPF Bloom filter, which is important

from a practical point of view. Furthermore, these filters are
comparable to those in ηavg which were generated with the
greedy approach.

C. Forwarding Complexity in the ICN Prototype

We compare the complexity of our scalable multicast ar-
chitecture in each forwarding element with LIPSIN [2], based
on the MSBF implementation within our ICN prototype [18].
Referring to Section V-B, the MSBF forwarding complexity
not only includes the Bloom filter based membership test but
also the on-demand hash creation as well as the extraction
of the stage FPF Bloom filter. On the other hand, traditional
Bloom filter approach (LIPSIN) only performs a constant-
length Bloom filter membership test. For comparison, we cre-
ated three different multicast trees on the same topology with
3, 4, and 5 stages, respectively. We repeatedly executed the
forwarding function in our prototype (processing the LIPSIN
header at each stage as well), and determined the average of
the execution times at the various stage boundaries. Table VI
shows the results of these tests, compared to the constant filter
length and forwarding time of the LIPSIN. One can observe
that the execution times for stage Bloom filters with length
smaller than 50 are faster than comparable LIPSIN times.
This is due to the membership test operating on smaller bit
sets compared to the 256 bits used in the LIPSIN alternative.
Again, these results can only be indicative since our current
implementation is not optimized through, e.g. replacing the
on-demand hash function through table lookups or utilizing
hardware assistance could be further improve the performance



TABLE VI
HEADER LENGTH AND FORWARDING EXECUTION TIMES.

Header Length at Forwarding Forwarding time
Stage Elias Filter MSBF LIPSIN MSBF LIPSIN
(h) (γ) (b) (m = γ + b) (m = b) (µs) (µs)
1 5 7 12 256 8.0 16.1
2 15 9 24 256 11.8 16.1
3 18 11 29 256 12.4 16.1

Total 38 27 65 256 32.3 48.3
1 2 3 5 256 4.9 16.1
2 21 11 32 256 12.9 16.1
3 31 11 42 256 14.2 16.1
4 18 11 29 256 12.4 16.1

Total 72 36 108 256 44.4 64.4
1 2 3 5 256 4.9 16.1
2 17 11 28 256 12.2 16.1
3 56 13 69 256 16.3 16.1
4 59 13 72 256 16.5 16.1
5 37 13 50 256 14.9 16.1

Total 171 53 224 256 64.8 80.5

of our MSBF approach based on varying length FPF Bloom
filters.

D. Discussion on Forwarding Loops and Packet Storms

A well-known problem of Bloom filters is that through a
chain of false-positives a packet can loop back to a previously
visited node where generates a false-positive again and stuck
in an infinite loop. In extreme situations such a behavior may
cause even packets storms. In [4] a bit permutation technique
was proposed to prevent such anomalies with very high
probability. Our proposed multi-stage Bloom filters remedy
these illnesses in a fairly natural way (even without using
FPF filters), since due to the truncation of the filter after every
stage, the packets cannot go further than a few hops. In such
a way our MSBF approach certainly prevents the formation
of infinite loops by encoding the stage decomposition into the
header. Note that the flow duplication is indirectly prevented
by limiting the multi-cast routing on tree without false positive
forwarding.

VII. CONCLUSIONS

In this paper we addressed the scalable multicast forwarding
problem, and introduced a novel multi-stage Bloom filter
based architecture, which tackles Goals 1-3. Although in ICN
architectures and with the application of in-packet Bloom
filters Goals 1 and Goal 2 have been addressed, the scal-
ability in terms of supported multicast tree size was lost
in these concepts owing to neglecting topology information
when creating the in-packet filter. Furthermore, false-positive
forwarding was a serious issue in these environments. We
gave a thorough analysis on the design of minimal length
false-positive-free Bloom filter both for the traditional Bloom
filter approach with varying size filters, and also for our novel
multi-stage architecture in order to avoid such anomalies.
Approximation formulae were proposed, which can be directly
used in a practical implementation of e.g. an ICN prototype.
Our simulation results suggest that encoding topology related
information into varying length multi-stage filters results in

much better efficiency in several topologies than its previous
counterparts.
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APPENDIX

A. Proof of Lemma 1

Proof: First we rewrite and approximate (1− c iα )β as

(1− c iα )β = Exp
(
β ln(1− c iα )

)
≈ Exp

(
−βc iα

)
(21)

due to ln(1 − x) ≈ −x for small x. Based on this, consider
the following approximation of the logarithm of P (L > b) :

lnP (L > b) =

b∑
i=0

ln(1− (1− c iα )β) ≈

≈
b∑
i=0

ln(1− Exp
(
−βc iα

)
≈

b∑
i=0

(
−Exp

(
−βc iα

))
, (22)

where the last approximation again due to ln(1 − x) ≈ −x.
This sum above can also be viewed as an integrate approxi-
mation sum, hence

b∑
i=0

(
−Exp

(
−βc iα

))
≈
∫ b

x=0

(
−Exp

(
−βc xα

))
dx (23)

The integrate on the right hand side can be expressed by the
exponential integral Ei(z) function as

αEi
(
−c1/αβ

)
ln c

−
αEi

(
−cb/αβ

)
ln c

≈ −
αEi

(
−cb/αβ

)
ln c

, (24)

for larger b, from which the statement follows.


