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Abstract

Nearest centroid classifiers have recently been successfully employed in high-dimensional

applications. A necessary step when building a classifier for high-dimensional data is feature

selection. Feature selection is typically carried out by computing univariate statistics for each

feature individually, without consideration for how a subset of features performs as a whole. For

subsets of a given size, we characterize the optimal choice of features, corresponding to those

yielding the smallest misclassification rate. Furthermore, we propose an algorithm for estimating

this optimal subset in practice. Finally, we investigate the applicability of shrinkage ideas to

nearest centroid classifiers. We use gene-expression microarrays for our illustrative examples,

demonstrating that our proposed algorithms can improve the performance of a nearest centroid

classifier.
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1 Introduction

Linear Discriminant Analysis (LDA) is a long-standing prediction method that has been well char-

acterized when the number of features used for prediction is small (Mardia et al. 1979). The method

has recently been shown to compare favorably with more complicated classifiers in high-dimensional

applications, where there are thousands of potential features to employ, but only a subset are used

(Dudoit et al. 2002, Tibshirani et al. 2002, Lee et al. 2005). In the LDA setting, each class is

characterized by its vector of average feature values (i.e., class centroid). A new observation is

evaluated by computing the scaled distance between its profile and each class centroid. The ob-

servation is then assigned to the class to which it is nearest, allowing LDA to be interpreted as a

“nearest centroid classifier.”

In high-dimensional applications, it is often desirable to build a classifier using only a subset

of features due to the fact that (1) many of the features are not informative for classification and

(2) the number of training samples available for building the classifier is substantially smaller than

the number of possible features. In any case, it could be argued that a classifier built with a

smaller number of features is preferable to an equally accurate classifier built with the complete

set of features. Several approaches have been proposed for nearest centroid classifiers that rely

on univariate statistics for feature selection (Golub et al. 1999, Hedenfalk et al. 2001, Dudoit

et al. 2002, Tibshirani et al. 2002). These methods assess each feature individually by its ability to

discriminate the classes. However, it has been noted that the features that best discriminate the

classes individually are not necessarily the ones that work best together (Jaeger et al. 2003, Dabney

2005).

In the extremely simple case where features are uncorrelated and only two classes exist, it

intuitively follows that the optimal set of features are those whose means are most different between
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the two classes. However, this intuition does not easily carry over to the more complicated (and

topical) case where features are correlated and/or there are more than two classes. For example,

if we seek to classify among three classes, it has not been shown whether it is better to choose

features that distinguish one class from the other two well or those that distinguish among all three

classes well. The role of correlation between features is not currently well understood either.

In this paper, we show how to exactly choose the subset of features of a given size that mini-

mizes the misclassification rate. This optimal feature set takes into account the joint behavior of

the features in two ways. First, it explicitly incorporates information about correlation between

features. Second, it assesses how a group of features as a whole is capable of distinguishing be-

tween multiple classes. Overall, it eliminates the need for heuristically-motivated feature selection

criteria in high-dimensional settings, and shows one exactly what the optimal solution is. That is,

our main theoretical result allows one to directly aim for the optimal choice. However, one must

then estimate the optimal choice of features in practice, for which we propose a greedy algorithm

and demonstrate its operating characteristics.

Finally, we investigate the application of shrinkage ideas to the classification problem. Shrinkage

of multivariate estimates is known to improve their overall accuracy. It has also been suggested

that shrinkage can improve nearest centroid classifiers (Tibshirani et al. 2002). However, the

shrinkage approach taken in Tibshirani et al. (2002) tends to actually increase misclassification

error (Dabney 2005), leaving the question of shrinkage in classifiers open. We show that shrinkage

can, in principle, improve classification. Furthermore, we propose a novel shrinkage procedure for

nearest centroid classifiers.

Nearest centroid classifiers have been shown to perform well with gene-expression microarrays

(Dudoit et al. 2002, Lee et al. 2005, Tibshirani et al. 2002, Dabney 2005), and we illustrate our
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findings in this setting. We compare our proposed method with existing nearest centroid classifiers

on four previously-published microarray datasets, demonstrating that improvements in prediction

accuracy can be attained by estimating the optimal feature-selection criteria (Figure 2). Our

estimated optimal-feature selection algorithm can be further improved by employing our shrinkage

procedure (Figure 2).

2 Linear Discriminant Analysis (LDA)

The problem LDA addresses is to classify unknown samples into one of K classes. To build a

classifier, we obtain nk training samples per class, k = 1, 2, . . . ,K, with m features per sample.

For each training sample, we observe class membership Y and profile X. For simplicity, we will

represent the classes by the numbers 1, 2, . . . ,K. Note that each profile is a vector of length m. We

assume that profiles from class k are distributed as N(µk,Σ), the multivariate normal distribution

with mean vector µk and covariance matrix Σ. Call L(· ; µk,Σ) the corresponding probability

density function. Finally, let πk be the prior probability that an unknown sample comes from class

k, k = 1, 2, . . . ,K.

Bayes’ Theorem states that the probability that an observed sample comes from class k is

proportional to the product of the class density and prior probability:

Pr(Y = k | X = x) ∝ L(x ; µk,Σ)× πk. (a)

We call (a) the posterior probability that sample x comes from class k. LDA assigns the sample
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to the class with the largest posterior probability:

ŷ = argmaxk {L(x ; µk,Σ)× πk} . (b)

This can be shown to be the rule that minimizes misclassification error (Mardia et al. 1979).

We can rewrite (b) as

ŷ = argmink

{
(x− µk)

TΣ−1(x− µk)− 2 log(πk)
}

. (c)

Thus, a sample is assigned to the class to which it is nearest, as measured by the metric ‖x −

µ‖2
Σ − 2 log(π), where ‖x−µ‖2

Σ = (x−µ)TΣ−1(x−µ) is the square of the Mahalanobis distance

between x and µ.

3 Optimal Subsets in Theory

Misclassification rates. A misclassification occurs when a sample is assigned to the incorrect

class. The probability of making a classification error is:

Pr(error) =
K∑

j=1

[
Pr(Ŷ 6= j | Y = j)× πj

]
.

We can derive misclassification rates using the LDA rule (c). In particular, we can calculate mis-

classification rates for any subset of features. An optimal subset can be found by simply assigning

misclassification rates to all possible subsets of a given size and choosing the one with the lowest

error rate. Lemma 1 characterizes misclassification rates for a set of centroids, Theorem 1 de-
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scribes how to find the optimal subset of a given size, and the Remark shows a simplified result

corresponding to equal prior probabilities.

Lemma 1 Suppose that a sample from class k is distributed according to Nm(µk,Σ), k = 1, 2, . . . ,K.

Let πk be the prior probability that a sample comes from class k, k = 1, 2, . . . ,K. The misclassifi-

cation rate of a nearest-centroid (LDA) classifier is

Pr(error) =
K∑

j=1

{[
1− φ

(
min
i6=j

{
‖µj − µi‖2

Σ + 2 log(πj

πi
)

2‖µj − µi‖Σ

})]
× πj

}
, (d)

where φ is the cdf of the standard normal distribution, and ‖µj −µi‖2
Σ = (µj −µi)T Σ−1(µj −µi)

is the square of the Mahalanobis distance between µj and µi.

This allows us to state the following theorem showing how to determine the optimal subset of

features of size m0 for LDA classification.

Theorem 1 (LDA Optimal Subset Selection) Under the setting described in Lemma 1, the subset

of features of size m0 ≤ m that minimizes the misclassification rate is the one with the lowest value

of equation (d).

Remark 1 If π1 = π2 = . . . = πK , then

Pr(error) =
1
K

K∑
j=1

[
1− φ

(
min
i6=j

{
1
2
‖µj − µi‖Σ

} )]
.

A subset of features can be evaluated using (d), where only the subset of features are included in the

centroids. Note that equation (d) can be interpreted as measuring the collective distance between

all of the class centroids. In general, the misclassification rate will be small when all of the class
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Table 1: Simulated class means with 10 features and 3 classes.

Feature µ1 µ2 µ3 Score
1 1.25 0.00 0.00 0.35
2 1.50 0.00 0.00 0.50
3 2.00 0.00 0.00 0.89
4 -3.00 0.00 0.00 2.00
5 0.00 1.00 0.00 0.22
6 0.00 1.10 0.00 0.27
7 0.00 -0.90 0.00 0.18
8 0.00 0.00 0.75 0.12
9 0.00 0.00 0.85 0.16
10 0.00 0.00 -0.65 0.09

centroids are far away from each other. Note, however, that the score in (d) is actually a complicated

combination of the pairwise differences between the centroids and the class priors. Furthermore,

correlations between features are explicitly incorporated through the distance functions ‖µj−µi‖Σ,

i 6= j. Further intuition into (d) can be attained by considering the following simple example.

A Simple Example. The data in Table 1 represent a simulated example with 10 features and 3

classes. The population means of each class are shown in columns two through four; we assume that

each feature has variance 0.5 and that all features are uncorrelated. Suppose that we wish to select

the five features that correspond to the lowest misclassification error. The final column of the table

lists univariate scores for each feature, where we have used the average squared difference from the

feature mean as the score. A high value for a feature on this score indicates large overall differences

between this feature’s class means. The five largest univariate scores correspond to features 1, 2,

3, 4, and 6.

An alternative approach to using univariate scores to select features is to consider all
(
10
5

)
= 252

possible quintuplets and choose the set with the lowest overall misclassification rate. Note that,

to do this, we must be able to assign misclassification probabilities to arbitrary feature subsets.
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This highlights the novelty and usefulness of the multivariate score (d). Using (d), we find that

the set of features chosen by the univariate scores has an overall misclassification rate of 15%.

Similarly, we find that the optimal set in this example contains features 4, 5, 6, 7, and 9, with an

associated error rate of 6%. The most obvious difference between this subset and that chosen by

univariate scores is the exclusion of features 1, 2, and 3. Apparently, class one can be sufficiently

characterized by feature 4. The other features do not contain sufficient additional information to

merit their selection.

Correlation between features. An important aspect of the optimal feature-selection procedure

is its explicit incorporation of correlation between features. It is not necessarily clear what effect

correlation between features should have on a classifier. Some have argued that it is inefficient

to select correlated features (Jaeger et al. 2003). Bickel & Levina (2004) show that estimating

correlations as zero can lead to better prediction when the number of features is large relative to

the number of samples. Meanwhile, recent optimality results in the context of multiple hypothesis

testing (Storey 2005, Storey et al. 2005) suggest that correlated features may be beneficial in

distinguishing groups. Intuitively, many weakly informative, correlated genes might be expected to

collectively be highly informative.

We briefly investigate the effect of different correlation patterns in the example of Table 1. Let

Σ be the 10× 10 covariance matrix. In Table 2, we refer to the 4× 4 diagonal block corresponding

to features 1 − 4 as “Block 1.” The diagonal blocks corresponding to features 5 − 7 and 8 − 10

are similarly referred to as “Block 2” and “Block 3.” “Block 1∼2” refers to the off-diagonal block

relating features 1−4 to features 5−6, etc.. In all cases, we include a common pairwise correlation

of 0.9; no qualitative differences were found when considering negative correlation.
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Table 2: The effect of covariance on the optimal feature-selection procedure.

Covariance Selected Features P̂r(error)
None 4, 5, 6, 7, 9 6.2%

Block 1 4, 5, 6, 7, 9 6.2%
Block 2 2, 3, 4, 6, 7 0.2%
Block 3 3, 4, 8, 9, 10 0.4%

Block 1 ∼ 2 4, 5, 6, 7, 9 6.3%
Block 1 ∼ 3 4, 5, 6, 7, 9 6.6%
Block 2 ∼ 3 4, 5, 6, 8, 9 4.2%

In this example, correlation between features in Blocks 2 and 3 has the largest effect, on both

the optimal set of features and the probability of misclassification. The features in Blocks 2 and

3 are individually less informative than those in Block 1. Note, in particular, that when the

features in Block 3 are correlated, all three components are selected, whereas only one is selected

in the absence of correlation. These results suggest that correlated features can be useful together,

particularly when the correlated features contain relatively little information individually. More

generally, there are many possible scenarios in which correlation could play a role. The main

point is that the feature-selection procedure (d) automatically identifies the optimal combination

of features, even in the presence of correlation.

4 Optimal Subsets in Practice

Often, there will be many more than 10 features from which to choose. With gene expression

microarrays, for example, there are thousands of genes under consideration. Thus, in practice, it

may be impossible to perform an exhaustive search for a best subset. Even if we could perform

an exhaustive search, we would still need to estimate the class centroids, and this may not lead to

the correct solution. We propose a greedy algorithm for estimating the optimal subset of given size

9
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when an exhaustive search is not possible. We compare our algorithm with a more conventional

univariate scoring algorithm for choosing subsets on both simulated (Figure 1) and real (Figure 2)

datasets.

Univariate Scoring Procedures. The novelty of our proposed method can better be understood

by first considering some of the available methods for choosing features, which are all based on

univariate scoring of features. An early suggestion in the context of gene expression microarrays

used F -statistics to evaluate each feature (here, a gene) individually on the basis of comparisons of

between-class variation and within-class variation (Dudoit et al. 2002):

Fi =
BSS

WSS
=

∑n
j=1

∑K
k=1 I(yj = k)(µ̂ik − µ̂i)2∑n

j=1

∑K
k=1 I(yj = k)(xij − µ̂ik)2

,

i = 1, 2, . . . ,m. To form a classifier using only m̃ features, class centroids are formed with only the

features corresponding to the largest m̃ F -statistics. All other features are discarded.

Another example (again in the context of microarrays) is Prediction Analysis of Microarrays

(PAM) (Tibshirani et al. 2002). Instead of F -statistics, PAM uses the statistics

dik =
µ̂ik − µ̂i

wk(si + s0)

to select genes, where si is the pooled standard deviation for feature i, wk = (1/nk−1/n)1/2 makes

wk × si equal to the standard error of the numerator, and s0 is a fudge factor intended to guard

against very large statistics for very small standard errors. Without s0, dik is a t-statistic comparing

the mean of feature i in class k to the overall mean of feature i. Hence, dik measures the difference

between feature i in class k and feature i in all classes combined. PAM then shrinks the dik’s
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toward zero, eliminating the features that do not provide sufficient discriminatory information.

The Classification to Nearest Centroids (ClaNC) method (Dabney 2005) uses simple t-statistics

without fudge factors or shrinkage and outperforms PAM on both simulated and real datasets.

Algorithm for Estimating the Optimal Solution. When it is not feasible to perform an

exhaustive search for the best subset of features of a given size, we propose the following greedy

algorithm. Let s be the indices of a subset of features, and let µs denote a centroid indexed by s.

Define the estimated scoring function to be

̂Pr(error ; s) =
K∑

j=1

{[
1− φ

(
min
i6=j

{
‖µ̂s

j − µ̂s
i‖2

Σ̂
+ 2 log(πj

πi
)

2‖µ̂s
j − µ̂s

i‖Σ̂

})]
× πj

}
. (e)

1. Evaluate all m features individually using (e), and select the first feature to be the one with

the lowest score. This leaves m− 1 features from which to choose.

2. Combine each remaining feature with the one already chosen and compute the m− 1 scores

corresponding to each invidual pair.

3. Choose the second feature to be the one that produces the lowest score when combined with

the first.

4. Continue this process until the desired number of features have been selected.

Note that Σ̂ in (e) is a matrix of estimated covariances. As we saw with the examples in Tables

1 and 2, classification accuracy can be improved by incorporating correlation between features.

However, in high-dimensional settings, it may be impractical and/or unnecessary (Bickel & Levina

2004) to estimate large covariance matrices for large numbers of features. This is one motivation

behind shrinking covariances to zero when building classifiers for microarrays. In the microarray
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examples below, the classifiers we present do not include estimated covariances. There was no

gain in accuracy in these examples when estimating covariances by maximum likelihood (results

not shown). This could either mean covariances are truly irrelevant in these examples, or that our

covariance estimates are imprecise. In future work, we plan to investigate the utility of shrinkage

estimates of the covariance matrix; it is desirable to include such information, since it is fully

characterized by Theorem 1.

Illustration on Simulated Example. For each of 50 simulations, we generated random ob-

servations from the setting described in Table 1, assuming a common pairwise correlation of 0.5

within each of Blocks 1, 2, and 3, as described in Table 2. In each simulation, 15 training samples

(five per class) and 15 test samples (again, five per class) were generated. We then compared the

misclassification rates (computed on the test data) after selecting subsets of size five in different

ways (on the training data), with the results shown as boxplots in Figure 1. Our standard of

comparison was the classifier built using the optimal subset found above, labeled “Optimal.” We

also carried out an exhaustive search for the optimal subset in each simulation; these results are

labeled “Estimated Optimal.” “Greedy Approximation” refers to the algorithm described above.

Finally, the “Univariate” results correspond to choosing subsets based on univariate scores. In this

comparison, we used the F -statistic approach of Dudoit et al. (2002).

Figure 1 about here.

The true optimal subset of size five produces the most accurate classifier, as expected. The exhaus-

tive search apparently did not identify the true optimal subset, although its choice was superior

to that made by the univariate scoring procedure. The greedy algorithm estimates the optimal

feature subset well in this example.
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Illustration on Real Examples. We now illustrate our methods on four previously published

gene-expression microarray experiments. In each analysis, any missing values were imputed using

K-nearest-neighbors (Troyanskaya et al. 2001) with K = 10. We compare the methods on the basis

of error rates from five-fold cross-validation. We avoid gene-selection bias by completely rebuilding

classifiers to identical specifications in each cross-validation iteration (Ambroise & McLachlan 2002).

Cross-validated error rates are nearly unbiased, being slightly conservative (Ambroise & McLachlan

2002, Hastie et al. 2001), and they are thus sufficient for comparing classifiers.

The first example involves small round blue cell tumors (SRBCT) of childhood (Khan et al.

2001). Expression measurements were made on 2,307 genes in 83 SRBCT samples. The tumors

were classified as Burkitt lymphoma, Ewing sarcoma, neuroblastoma, or rhabdomyosarcoma. There

are 11, 29, 18, and 25 samples in each respective class. In the second example, expression mea-

surements were made on 4,026 genes in 58 lymphoma patients (Alizadeh et al. 2000). The tumors

were classified as diffuse large B-cell lymphoma and leukemia, follicular lymphoma, and chronic

lymphocytic leukemia. There are 42, 6, and 10 samples in each respective class. The third example

involves the cell lines used in the National Cancer Institute’s screen for anti-cancer drugs (Ross

et al. 2000, Scherf et al. 2000). Expression measurements were made on 6,830 genes in 60 cell tu-

mors. There are representative cell lines for each of lung cancer, prostate cancer, CNS, colon cancer,

leukemia, melanoma, NSCLC, ovarian cancer, renal cancer, and one unknown sample. We filtered

out 988 genes for which 20% or more of the tumors had missing values. We also excluded samples

from prostate cancer (due to there being only two samples) and the one unknown sample. There

are 9, 6, 7, 6, 8, 7, 6, and 8 samples in each remaining respective class. The fourth example involves

acute myeloid leukemia (AML) and acute lymphblastic leukemia (ALL) (Golub et al. 1999). The

public version of the training data used in the original analysis include expression measurements
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on 3,857 genes in 38 leukemia patients. There are 11 and 27 samples in each respective class.

Figure 2 about here.

Figure 2 shows misclassification rates for a variety of subset sizes. The estimated optimal subsets

using the algorithm described above compare favorably with both PAM and ClaNC. That is, for

any given number of active features, classifiers built with estimated optimal subsets have error rates

that tend to be smaller than (or equal to) those for PAM or ClaNC.

Shrinkage. As mentioned earlier, the LDA classification rule minimizes the misclassification rate,

because the LDA rule equals the Bayes’ rule under its assumptions (Mardia et al. 1979). For

simplicity in motivating shrinkage, assume all features are independent with variance one, and that

each class has equal prior probability. Then the Bayes’ rule is to classify a new sample to the class

for which
∑m

i=1(x
∗
i − µik)2 is smallest. However, we must estimate the centroids µk in practice,

using µ̂k in their place. Suppose x∗ comes from class k0. Then, expanding the squared distance

between x∗ to class k0 and taking expectations, we have

E
m∑

i=1

(x∗i − µ̂ik0)
2 = E

m∑
i=1

(x∗i − µik0 + µik0 − µ̂ik0)
2

= E
m∑

i=1

(x∗i − µik0)
2 + E

m∑
i=1

(µik0 − µ̂ik0)
2,

(f)

or the Bayes’ rule plus the mean squared error (MSE) of the centroid estimate.

Reducing the MSE of µ̂k0 will bring us closer to the Bayes’ rule. According to Stein’s Paradox

of statistics (Stein 1956), we can reduce the MSE of µ̂k0 by shrinking towards the overall mean∑m
i=1 µ̂ik/m (or any other constant). In our setting, this suggests shrinking each centroid across its

m components. The PAM method (Tibshirani et al. 2002) incorporates shrinkage ideas. However,

PAM shrinks each feature across classes. Since this makes the estimated class centroids more similar
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to one another, the shrinkage employed by PAM appears to actually increase misclassification

error (Dabney 2005). We now investigate whether shrinking centroids across features can improve

classification.

While there are many possible approaches to shrinking the centroids, we take the following

simple approach. Let µ̂o
k be the m-vector with each component equal to µ̂o

k =
∑m

i=1 µ̂ik/m, k =

1, 2, . . . ,K. We consider shrunken centroids of the form

µ̃k = ωkµ̂
o
k + (1− ωk)µ̂k, (g)

k = 1, 2, . . . ,K. We choose ωk so that E(‖µk − µ̃k‖2
Σ) is minimized, k = 1, 2, . . . ,K. Theorem 2

presents a general result, and the Corollary translates this result to the ideal case where all genes

are independent.

Theorem 2 Let the maximum likelihood estimates of the class centroids be µ̂k and µ̂o
k be the m-

vector with each component equal to the estimated overall mean for class k, k = 1, 2, . . . ,K. Among

all estimators of the form µ̃k = ωkµ̂
o
k +(1−ωk)µ̂k, the error measure E(‖µk− µ̃k‖2

Σ) is minimized

by choosing

ω̂k =
VΣ(µ̂k)− CΣ(µ̂k, µ̂o

k)
(µ̄k − µk)TΣ−1(µ̄k − µk) + VΣ(µ̂k) + VΣ(µ̂o

k)− 2CΣ(µ̂k, µ̂o
k)

,

where µ̄k is the m-vector with each component equal to µ̄k = 1
m

∑m
i=1 µik, VΣ(µ̂k) = E(µ̂k −

µk)TΣ−1(µ̂k−µk), VΣ(µ̂o
k) = E(µ̂o

k−µ̄k)TΣ−1(µ̂o
k−µ̄k), and CΣ(µ̂k, µ̂

o
k) = E(µ̂k−µk)TΣ−1(µ̂o

k−

µ̄k), k = 1, 2, . . . ,K.
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Corollary 1 Assuming all genes are independent,

ω̂k =
m− 1

nk
∑m

i=1
(µ̄k−µik)2

σ2
i

+ m− 2 + ( 1
m

∑m
i=1

1
σ2

i
)( 1

m

∑m
i=1 σ2

i )
,

k = 1, 2, . . . ,K.

In practice, we use plug-in estimates for the unknown parameters.

Figure 2 also illustrates the performance of classifiers with estimated optimal subsets and

shrunken centroids. The shrinkage was carried out on the complete centroids, prior to the feature-

selection step. Another alternative would be to shrink the centroids of each considered feature

subset individually. No qualitative differences were found when employing this shrinkage approach

(results not shown). Improvements are evident over the other classifiers under consideration. This

suggests that shrinkage can be successfully applied to nearest centroid classifiers and is worth

further exploration.

5 Proofs of Theorems

Proof of Lemma 1. We begin with the simple two-class case. A classification error is made if

we either predict class two for a sample that truly comes from class one or predict class one for a

sample that truly comes from class two. That is,

Pr(error) = Pr(Ŷ = 2 | Y = 1)× π1 + Pr(Ŷ = 1 | Y = 2)× π2. (h)
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Consider the first component of this sum. We can rewrite it as

Pr(Ŷ = 2 | Y = 1) = 1− Pr(Ŷ = 1 | Y = 1)

= 1− Pr
(
L(X;µ1,Σ)× π1 > L(X;µ2,Σ)× π2

)
,

where L(· ; µ,Σ) is the multivariate normal density function with mean µ and covariance matrix

Σ. Continuing,

Pr(Ŷ = 2 | Y = 1) = 1− Pr
(

exp
{
−1

2
(X − µ1)TΣ−1(X − µ1)

}
× π1

> exp
{
−1

2
(X − µ2)TΣ−1(X − µ2)

}
× π2 | Y = 1

)
= 1− Pr

(
(X − µ1)TΣ−1(X − µ1)− 2 log(π1)

< (X − µ2)TΣ−1(X − µ2)− 2 log(π2) | Y = 1
)

= 1− Pr
(

2(µ2 − µ1)TΣ−1X

< µ2
TΣ−1µ2 − µ1

TΣ−1µ1 + 2 log(
π1

π2
) | Y = 1

)
.

Using the fact that X ∼ N(µ1, Σ), we can derive the distribution of the random variable 2(µ2 −

µ1)TΣ−1X as N(2(µ2−µ1)TΣ−1µ1, 4‖µ1−µ2‖2
Σ), where ‖µ1−µ2‖Σ =

[
(µ1 − µ2)TΣ−1(µ1 − µ2)

] 1
2

is the Mahalanobis distance between µ1 and µ2. So then,

Pr(Ŷ = 2 | Y = 1) = 1− Pr
(
Z <

‖µ1 − µ2‖2
Σ + 2 log(π1

π2
)

2‖µ1 − µ2‖Σ

)
,
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where Z ∼ N(0, 1). Letting φ(·) be the standard normal probability distribution function (φ(x) =

Pr(Z ≤ x)),

Pr(Ŷ = 2 | Y = 1) = 1− φ
(‖µ1 − µ2‖2

Σ + 2 log(π1
π2

)
2‖µ1 − µ2‖Σ

)
.

Equation (h) is then

Pr(error) =

[
1− φ

(‖µ1 − µ2‖2
Σ + 2 log(π1

π2
)

2‖µ1 − µ2‖Σ

)]
×π1+

[
1− φ

(‖µ1 − µ2‖2
Σ + 2 log(π2

π1
)

2‖µ1 − µ2‖Σ

)]
×π2. (i)

Now suppose there are K ≥ 2 classes. Then,

Pr(error) =
K∑

j=1

[
Pr(Ŷ 6= j | Y = j)× πj

]
. (j)

Again beginning with the first component of the sum, and proceding as above,

Pr(Ŷ 6= 1 | Y = 1) = 1− Pr(Ŷ = 1 | Y = 1)

= 1− Pr(L(X;µ1,Σ)× π1 > max
i6=1

{L(X;µi,Σ)× πi})

= 1− φ
(

min
i6=1

{
‖µ1 − µi‖2

Σ + 2 log(π1
πi

)

2‖µ1 − µi‖Σ

})
.

The remaining components of (j) are analagous, and

Pr(error) =
K∑

j=1

{[
1− φ

(
min
i6=j

{
‖µj − µi‖2

Σ + 2 log(πj

πi
)

2‖µj − µi‖Σ

})]
× πj

}
. (k)

Proof of Theorem 1. Let s0 be the subset of m0 ≤ m features with the lowest value of equation

(d), and let s0
′ be any other subset of m0 features. By Lemma 1, the misclassification rate of the

nearest-centroid classifier based on s0
′ is greater than or equal to that of the classifier based on s0.
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Proof of Theorem 2. We begin by writing

E(‖µk − µ̃k‖2
Σ) = E

{
µk −

[
ωkµ̂

o
k + (1− ωk)µ̂k

]}T Σ−1
{
µk −

[
ωkµ̂

o
k + (1− ωk)µ̂k

]}
= E(µk − µ̂k)

TΣ−1(µk − µ̂k)− 2ωkE(µk − µ̂k)
TΣ−1(µ̂o

k − µ̂k)

+ ω2E(µ̂o
k − µ̂k)

TΣ−1(µ̂o
k − µ̂k),

k = 1, 2, . . . ,K. Differentiating with respect to ωk gives

ω̂k =
E(µk − µ̂k)TΣ−1(µ̂o

k − µ̂k)
E(µ̂o

k − µ̂k)TΣ−1(µ̂o
k − µ̂k)

,

k = 1, 2, . . . ,K. Note that

E(µk − µ̂k)
TΣ−1(µ̂o

k − µ̂k) = −E(µ̂k − µk)
TΣ−1(µ̂o

k − µ̂k)

= E(µ̂k − µk)
TΣ−1(µ̂k − µ̄k)− E(µ̂k − µk)

TΣ−1(µ̂o
k − µ̄k)

= E(µ̂k − µk)
TΣ−1(µ̂k − µk)− E(µ̂k − µk)

TΣ−1(µ̂o
k − µ̄k),

k = 1, 2, . . . ,K. Also,

E(µ̂o
k − µ̂k)

TΣ−1(µ̂o
k − µ̂k) = E(µ̂o

k − µ̄k + µ̄k − µk + µk − µ̂k)
TΣ−1(µ̂o

k − µ̄k + µ̄k − µk + µk − µ̂k)

= E(µ̂o
k − µ̄k)

TΣ−1(µ̂o
k − µ̄k) + (µ̄k − µk)

TΣ−1(µ̄k − µk)

+ E(µ̂k − µk)
TΣ−1(µ̂k − µk)− 2E(µ̂k − µk)

TΣ−1(µ̂o
k − µ̄k),

k = 1, 2, . . . ,K. Letting VΣ(µ̂k) = E(µ̂k−µk)TΣ−1(µ̂k−µk), CΣ(µ̂k, µ̂
o
k) = E(µ̂k−µk)TΣ−1(µ̂o

k−
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µ̄k) (and so on), we can now write

ω̂k =
VΣ(µ̂k)− CΣ(µ̂k, µ̂o

k)
(µ̄k − µk)TΣ−1(µ̄k − µk) + VΣ(µ̂k) + VΣ(µ̂o

k)− 2CΣ(µ̂k, µ̂o
k)

,

k = 1, 2, . . . ,K.

Proof of Corollary 1. Assuming all genes are independent (Σ = diag(σ2)),

Vσ(µ̂k) = E
m∑

i=1

1
σ2

i

(µ̂ik − µik)2 =
m

nk

Vσ(µ̂o
k) = E

m∑
i=1

1
σ2

i

(µ̂o
k − µ̄k)2 =

1
nk

(
1
m

m∑
i=1

1
σ2

i

)(
1
m

m∑
i=1

σ2
i )

Cσ(µ̂k, µ̂o
k) = E

m∑
i=1

1
σ2

i

(µ̂ik − µik)(µ̂o
k − µ̄k) =

1
nk

,

k = 1, 2, . . . ,K. Hence,

ω̂k =
m− 1

nk
∑m

i=1
(µ̄k−µik)2

σ2
i

+ m− 2 + ( 1
m

∑m
i=1

1
σ2

i
)( 1

m

∑m
i=1 σ2

i )
,

k = 1, 2, . . . ,K.

6 Discussion

We have derived the theoretically optimal subset of a given size for a nearest centroid classifier.

We have also considered the estimation of this optimal subset. Although an exhaustive search

would be ideal, it is not practical in many settings. We have thus proposed a greedy algorithm

for estimating optimal subsets and demonstrated that our algorithm can produce more accurate

classifiers in both simulated and real applications. However, it is likely that improvements can be
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made to the algorithm. Furthermore, we did not have success in estimating covariance matrices in

the examples considered. Improvements in classification accuracy may be possible in other settings

or by other procedures for estimating covariances.

We have also considered the applicability of shrinkage ideas to nearest centroid classifiers. In

particular, we have considered classifiers built with centroids that have been shrunken across their

features. Using a novel shrinkage procedure, it was demonstrated on several previously published

datasets that shrunken centroids can improve prediction accuracy, making this approach worth

exploring further.

The algorithms described here have been implemented in the point-and-click Classification to

Nearest Centroids (ClaNC) software, available from the authors’ websites.
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Figure 1: Comparisons of classification error rates on simulated data using different methods for
choosing subsets of five from 10 features. “Optimal” uses the (unknown in practice) true optimal
subset of five features. “Estimated Optimal” uses the subset derived by an exhaustive search of
the data. “Greedy Approximation” uses our greedy algorithm instead of an exhaustive search.
“Univariate” uses F -statistics to score each feature individually, without respect for how subsets
work jointly. The horizontal dashed line indicates the true misclassification error rate using the
optimal subset.
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Figure 2: Comparisons of classification error rates on four previously published microarray datasets
using different methods for choosing subsets of given size. The number of features (here, genes)
are shown on the x-axis, and misclassification error rates are shown on the y-axis. PAM is the
Prediction Analysis of Microarrays method. ClaNC is the Classification to Nearest Centroids
method. The “OS” after “ClaNC” indicates that optimal subsets have been estimated using our
algorithm. “Shrink” indicates that the class centroids have been shrunken.
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