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Perhaps the most surprising feature of the motor system

is the ease with which humans and other animals can

move. It is only when we observe the clumsy movements

of a child, or the motor challenges faced by individuals

with neurological disorders, that we become aware of

the inherent difficulties of motor control.

The efforts of systems neuroscientists to understand

how the brain controls movement include studies 

on the physics of the musculoskeletal system, neuro-

physiological studies to explore neural control, and

investigations of motor behaviour (BOX 1). As knowl-

edge continues to grow in each area, it becomes more

challenging to link these levels of the motor system and

to maintain a cohesive framework within which to

describe motor function or to interpret the role of a

brain region.

Take, for example, the primary motor cortex (M1).

It has been known for more than 100 years that M1 is

important for controlling volitional movements, but

more detailed statements on its function vary greatly1.

Studies of neural activity in M1 tend either to relate

neural activity to details of motor output, thereby 

connecting motor cortical function to the motor

periphery, or to relate neural activity to hand motion,

thereby connecting motor cortical function to the goals

of motor behaviour. Which view is correct? Are both

correct, and if so, how?

The goal of this review is to bring all three levels of

the motor system together, to illustrate how M1 is

linked to limb physics and motor behaviour. The key

ingredient is the use of optimal feedback control as a

model of motor control in which sophisticated behav-

iours are created by low-level control signals (BOX 2).

I begin with a brief review of each level of the motor

system, followed by a more detailed description of how

optimal feedback control predicts many features of

neural processing in M1.

Limb mechanics

The peripheral motor system is a complex filter that 

converts patterns of muscle activity into purposeful

movement. The basic building block of motor output is

the motor unit — a motor neuron and the muscle fibres

it innervates. The conversion of patterns of motor unit

activity into muscle force depends on muscle fibre length,

velocity, histochemical type and history-dependencies

such as fatigue2–6. Muscle force is also influenced by 

architectural features, including tendon and fascicle

length, the orientation of muscle fibres (pennation angle)

and passive muscle elasticity7,8. Muscle morphometry

varies widely even across synergistic muscles9,10. The

effective joint torque that is generated by a muscle

depends on its mechanical advantage (moment arm)

about that joint,which often varies with joint angle11.
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where 
1
and 

2
reflect properties of the upper arm and

forearm/hand, respectively, and sand e denote shoulder

and elbow, respectively. Muscular torque at a joint

depends on several parameters that relate to each 

segment’s moment of inertia (I), length (l), mass (m)

and centre of mass (c)1.

These equations of motion mean that there is no

longer a one-to-one mapping between joint motion and

muscular torque, so that torque at one joint can generate

motion at other joints12,13. The mechanics of multi-joint

movements cannot be predicted from the physics of

single-joint movements14,15 (BOX 3). The equations 

of motion expand when more joints are involved and

when joints have multiple degrees of freedom.

Furthermore, a hand-held object or environmental

forces such as ground reaction forces during walking

Skeletal organization has a profound influence on

the conversion of muscle forces into limb motion. Limb

mechanics are relatively straightforward when move-

ment is constrained to occur at only a single joint and

with only one degree of mechanical freedom (flexion or

extension). MUSCULAR TORQUE (T) is defined simply as

, where I equals the moment of inertia, and     is

the angular acceleration of the joint. This angular 

version of the familiar equation, force = mass × linear

acceleration, means that there is a direct relationship

between joint motion and torque. This simple relation-

ship disappears when movement involves more than

one joint. The equations of motion to describe muscular

torque at the shoulder (Ts) and elbow (Te) are 

(equations 1,2):

Box 1 | Three main divisions of motor system research

The musculoskeletal system is made up of

muscles that act on a multi-articulated

skeleton. The translation of limb

movement from muscle activity is

influenced by muscle and limb mechanics.

Motor behaviour describes how the limb or

body moves during a motor task, reflecting

the combined action of the neural circuit

that controls movement and the

mechanical properties of the limb. The

neural basis of movement examines how

different regions of the brain and spinal

cord control motor output.

The CNS is generally viewed as having a

hierarchical organization with three levels

— the spinal cord, brainstem and cortex.

The spinal cord is the lowest level, including

motor neurons, the final common pathway

for all motor output, and interneurons that

integrate sensory feedback from the skin,

muscle and joints with descending

commands from higher centres. The motor

repertoire at this level includes

stereotypical multi-joint and even multi-

limb reflex patterns, and basic locomotor

patterns.

At the second level, brainstem regions

such as the reticular formation (RF) and

vestibular nuclei (VN) select and enhance

the spinal repertoire by improving postural control, and can vary the speed and quality of oscillatory patterns for

locomotion.

The highest level of control is provided by the cerebral cortex, which supports a large and adaptable motor repertoire.

The diagram illustrates some of the key regions that are involved in goal-directed reaching movements. (For more

complete details, see REF. 48.) Motor planning and visual feedback are provided through several parietal and premotor

regions. The primary motor cortex (M1) contributes the largest number of axons to the corticospinal tract and receives

input from other cortical regions that are predominantly involved in motor planning. Somatosensory information is

provided through the primary somatosensory cortex (S1), parietal cortex area 5 (5) and cerebellar pathways. The basal

ganglia (BG) and cerebellum (C) are also important for motor function through their connections with M1 and other

brain regions. (RN, red nucleus;V1, primary visual cortex;7, region of posterior parietal cortex;dPM, dorsal premotor

cortex;SMA, supplementary motor area;PF, prefrontal cortex.)

Musculoskeletal mechanics

Motor behaviour

Neural control

Spinal cord

PF
S1

V1

75
dPM M1

SMA

RN

BG

C
RF

VN

Ts = (I1 + I2 + m1c1 + m2 (l1 + c2 + 2l1c2 cosΘe))Θs

+ (I2 + m2c2 + m 2l1c2 cosΘe)Θe – (m 2l1c2 sinΘe)Θe –
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MUSCULAR TORQUE 

(or moment). Each muscle

generates force from muscle

contraction (active) and elastic

forces (passive). Muscular torque

for a muscle equals its total force

multiplied by its moment arm

(the perpendicular distance

between a muscle’s line of action

and the joint centre of rotation).

Θ
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Motor behaviour

Body movements are smooth, despite the complexities

of the peripheral motor system. For example, hand 

trajectories remain relatively straight from start to end,

and hand velocity follows a smooth, bell-shaped pro-

file19,20 (FIG. 1). This smoothness at least partially reflects

the low-pass filter properties of muscle21. Perturbations

of the hand during slow movements are corrected back

towards the unperturbed trajectory, indicating that

feedback is used to maintain a relatively straight hand

trajectory, at least under these conditions22. Such simple

features of hand motion mean that the CNS compen-

sates for the complexities of limb mechanics.

The motor system can also adapt to changes in 

the mechanical environment. Lackner and DiZio23

observed how subjects performed reaching movements

before, during and after they sat in a room that rotated

at 6 rpm, creating a coriolis force on the limb. When

subjects performed their first reaching movements 

with the right arm in the rotating room, after the otolith

organs no longer sensed room rotations, the move-

ments were curved to the right. However, after several

trials, reaching movements returned to relatively

straight trajectories, similar to those seen before the

room began to rotate.When the room stopped rotating,

initial reaches were curved to the left, and subjects 

perceived that a strange force had pushed their limb.

Again, reaching movements quickly returned to near

straight trajectories. When a hand-held robot applied

loads during reaching, the results were similar24.

Many studies have shown that relatively straight hand

trajectories are preserved after various perceptual and

mechanical perturbations25–28.

Although movements are smooth, motor perfor-

mance shows considerable trial-to-trial variability,

which partially reflects inherent noise in the system

related to both sensory and motor signals29–31. However,

some features of motor performance, particularly 

task-relevant features, are tightly controlled32–34.

For example, fluctuations in joint configurations that

influence the orientation of a subject pointing a laser at

a spatial target are reduced, whereas patterns that do not

influence laser orientation are more variable35. There is a

growing body of literature that illustrates how the

motor system considers the influence of noise and 

variability in motor planning and control36–40.

Motor behaviour shows several key features.

Movements are smooth, highly adaptable and show

selective patterns of variability that reflect economy of

task-relevant features of motor performance. In spite 

of the complexities of limb mechanics, a hallmark of

motor performance is smooth and relatively straight

hand trajectories.

Neural centres of sensorimotor control

Sensorimotor function is created from a highly 

distributed circuit that includes the spinal cord,

brainstem and cerebral cortex (BOX 1). The spinal level 

supports the ‘most automatic’movements, including

reflexes, as well as more complex multi-joint and multi-

limb sensorimotor responses. The cortex supports the

can markedly influence limb mechanics13. This article

largely focuses on proximal-arm movements, but there

are more challenging mechanical problems for hand16,17

and orofacial18 motor function.

Box 2 | Optimal feedback control

For a review of this topic, see REF. 121. The basic principle of optimal feedback control is

that feedback gains are optimized on the basis of some index of performance (see panel a,

modified, with permission, from REF. 187 © (2002) Macmillan Magazines Ltd). Such

controllers correct variations (errors) if they influence the goal of the task;otherwise, they

are ignored. Optimal state estimation is created by combining feedback signals and

efferent copy of motor commands. The latter uses a forward internal model to convert

motor commands to state variables.

A key feature of optimal feedback control can be understood by considering a problem

where a system must attain a value of 2.0 using two control signals (b)38. Nominally, each

control signal could be selected to be 1.0 (X
1
= X

2
= 1.0). When these commands are

implemented, noise in the system might modify the output such that both signals equal

1.1. The best strategy is to reduce both of the control signals towards 1. In another case,

one control signal equals 1.1, but the other equals 0.9. Both values have changed, but the

objective to attain a total of 2.0 has been attained, so it is better not to modify the signals.

The left diagram illustrates how initial errors in control signals (round circle) are corrected

towards a line where X
1
+ X

2
= 2.0 (thick oval). The errors show the effects of the control

signals at four different initial states, all of which point towards the line that defines the

task goal. The right diagram illustrates how initial errors (large round circle) are reduced

equally (thick smaller circle) by a traditional controller. Note that the arrows signifying

corrective signals all point towards the middle of the circle, the nominal control signals.

The middle diagram compares the final errors of the optimal and traditional controllers.

The correct solution falls along the line X
1
+ X

2
= 2.0, and distances perpendicular to this

line reflect errors in overall performance. The traditional controller creates the greatest

errors and the optimal controller minimizes these larger errors.

Another interesting feature of optimal feedback controllers is that desired trajectories do

not need to be planned explicitly but simply fall out from the feedback control laws. The

middle panel of c illustrates the trial-to-trial variability of hand motion when subjects hit a

ping-pong ball. This variability in performance is lost if a controller is optimal for

trajectory tracking, but is captured by an optimal feedback controller that is based on

global task errors.
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The activities of the cerebral cortex can be divided

into two general problems in motor control — planning

and execution. Motor planning reflects a range of issues

that are related to the identification and selection of

goals and strategies. Several cortical regions, including

many parietal and frontal regions, participate in motor

planning47–51.

By contrast, M1 is more important for the execution

of goal-directed and skilled motor tasks42,43. Lesions of

M1 in monkeys initially cause severe difficulties in 

voluntary movement, which remain permanent for

more challenging distal limb motor tasks52. M1 has an

intimate relationship with the motor periphery. It

receives a rich mixture of sensory feedback from the

motor periphery, with many neurons responding

strongly to passive joint movements or skin contact.

Most descending signals from the cortex pass through

spinal interneurons53. However, some neurons in M1

(corticomotor (CM) neurons) form synaptic connec-

tions directly onto spinal interneurons54–56, allowing M1

to have a more direct and selective influence on muscle

activity. CM neurons are more prevalent for distal limb

musculature related to the hand42,57, and their numbers

and influence increase with the level of dexterity across

primate species58,59.

Bridging the gaps

The discussion above describes three features of the

motor system. First, the physics of moving even two

joints is complex. Second, humans can generate a range

of skilled motor tasks. In reaching tasks, the trajectory of

the hand tends to be conserved across conditions, but

there is also considerable trial-to-trial variability in the

path of the hand. Third, motor control is created by a

distributed and interconnected circuit in which M1 has

a crucial role for volitional, goal-directed tasks. An

important problem is to understand the links between

motor behaviour, limb mechanics and neural control.

How do neural circuits create purposeful movements

from the complex, nonlinear musculoskeletal system?

Does the neural activity of M1 reflect the control 

of high-level features related to behavioural goals, or of

low-level features related to the motor periphery? In

effect, this question reflects the age-old problem: does

the primary motor cortex code muscles or movements?

M1 and motor behaviour. Relatively straight hand 

trajectories and bell-shaped velocity profiles during

reaching indicate that the motor system might directly

control hand motion20,22,60,61. Neural signals in some

brain region(s) would explicitly signal hand trajectory,

and these commands would be converted into patterns

of muscle activity, potentially through intermediate 

representations62,63. For the online control of hand

motion, proprioceptive signals would need to be 

converted from muscle to hand space, but it would 

be relatively simple to compute from vision.

The idea that hand trajectory is controlled online 

is consistent with electrophysiological recordings 

from M1 in non-human primates during whole-limb

movements. More than 20 years ago, Georgopoulos and

‘most voluntary’motor tasks, such as reaching for an

object of interest, and learned associations, such as 

stepping on the car brake when a traffic light turns red.

Voluntary behaviours often include more automatic

components — for example, a voluntary reach of the

hand to a spatial target invokes automatic postural

adjustments to stabilize the body.

Neural recordings from monkeys are often used to

examine how the activity of individual neurons relates

to sensorimotor function. The anatomical and physio-

logical properties of the limbs9,41 and CNS are similar

across primates42,43, and species such as Macaca mulatta

can learn sophisticated motor behaviours (see, for

example, REFS 44–46).

Box 3 | Complexities of multi-joint movements

Point-to-point reaching movements are quite simple with regards to the motion of the

hand in space. Hand motion is relatively straight for reaching movements in different

spatial directions (panel a). Hand movements with similar magnitudes but in different

directions produce large variations (anisotropies) in the magnitude of joint motion,

torque and power.

Panel b shows a polar plot where direction defines the spatial direction of hand motion

and the distance from the origin reflects the magnitude of joint motion. Angular velocity is

greatest at the shoulder (blue) and elbow (green) for movements towards or away from the

monkey, whereas angular motions are small for movements to the right and left. This

variation in joint motion for different directions of movement is a property of limb

geometry. The magnitude of angular motions vary with limb position so that movements

starting from a more extended posture create larger anisotropies in joint motion, whereas

starting positions closer to the body are less anisotropic.Variations in muscular torques do

not simply follow the patterns of joint motions. Peak muscular torque at the shoulder is

greatest for movements to the left and away, and towards and to the right, whereas elbow

muscular torque is greatest for movements in the opposite quadrants (c). The magnitude

of angular motions at the shoulder and elbow are fairly similar, but there is a large

difference in the magnitude of shoulder and elbow muscular torque. Joint power — joint

angular velocity multiplied by muscular torque — reflects the amount of energy that is

transmitted to the limb from muscles at each joint (d). Peak torque is greatest at the elbow

for movements away from and towards the body, whereas it is greatest at the shoulder for

movements in a more clockwise direction. Nm, Newton metres;Rad, radians;W, Watts.

Modified, with permission, from REF. 15 © (2003) American Physiological Society.
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A lively debate remains on the interpretation of

correlates of hand motion taken from neural activity in

M1 (REFS 82–85). Theoretical studies have shown that

neural activity can predict the direction of hand motion

even if neurons code other details of motor performance

such as muscle activity or joint motion86–88.As described

below, neural activity correlates with many features of

movement other than hand motion. Furthermore,

recent studies in which reaching movements were per-

formed with the arm in the horizontal plane found that

population vectors did not always predict the direction

of motion89,90 (FIG. 2). Population vectors tended to be

skewed either away from and to the left of the monkey,

or towards and to the right of the monkey.Vector length

varied substantially even though hand velocity remained

invariant across spatial directions.

Clearly, for monkeys to reach to spatial targets,

population vectors are not required to point in the

direction of hand motion. More accurate mathematical

techniques can be used to predict hand motion88, but

such techniques can predict almost any other variable 

of movement. Estimates of hand direction can be 

computed from shoulder and elbow muscle activity87,

but that does not mean that these muscles directly 

control hand motion beyond the obvious link between

muscular force and limb motion.

Although concerns have been raised regarding the

importance of neural correlates of the direction of hand

motion in M1, such correlates remain appealing

because they directly link neural processing in the brain

to a key feature of motor behaviour34,60–62.

M1 and the motor periphery. A second stream of

research relates neural processing in M1 to the motor

periphery. This approach can be viewed within the

framework of internal models, neural processes that

mimic the properties of the limb or the environ-

ment23,24,91. Such models reflect the association between

motor commands and limb movement, or vice versa.

The concept of internal models has been particularly

influential for studying human sensorimotor control

and motor learning.

There is evidence that M1 behaves like or forms part

of an inverse internal model, converting spatial goals or

hand trajectories into detailed motor patterns to control

the limb musculature50,92. Such a framework explains

many of the characteristics of neural activity in M1,

such as correlations with patterns of muscle activity93,94.

More importantly, activity in M1 before the onset of

movement is altered by peripheral factors such as the

position of the limb in space70,95, arm geometry76, joint

power 89 and force output45,75.All of these provide corre-

lates of an internal model for initiating movements.

Although the concept of internal models helps to

link M1 activity and function to the management and

control of limb mechanics, this framework is rather

vague. It helps to explain why M1 activity reflects many

of the features of the motor periphery, but it does not

explain how the brain can create emergent behaviour

such as relatively straight hand paths and bell-shaped

velocity profiles. Some neurons in M1 reflect features of

colleagues trained monkeys to make whole-limb reaching

movements in different directions, and related neural

activity to hand motion64. The activity of individual 

neurons in M1 was broadly tuned to the direction of

hand motion — activity was maximal for motion in the

cell’s preferred direction, and decreased progressively for

movements away from this (FIG. 2).A population vector

that compared activity across the ensemble of recorded

neurons could predict the direction of hand movement65.

Subsequent studies have shown that neural activity in M1

correlates with many hand-related variables, including

hand direction, speed and movement distance66,67.Neural

correlates of hand motion are found in parietal area 5

(REF. 68), the primary somatosensory cortex69, the dorsal

premotor cortex66,70, the cerebellum71, the dorsal spino-

cerebellar tract72, muscle afferents73,74 and even proximal-

limb muscle activity75,76. It has been suggested that neural

activity related to hand motion provides a higher-order

common language that allows M1 to communicate with

other brain regions77.

Although neural correlates of hand motion in M1

provide an important link to motor behaviour, it leaves

the spinal cord with the problem of converting these

high-level signals into patterns of muscle activity78.

In theory, the spinal cord could support a mapping

between hand motion and proximal-limb muscle activi-

ties. The spinal cord can create complex multi-joint and

multi-limb reflexive motor responses79–81.

However, a key feature of volitional motor control is

the ability to adjust motor patterns on the basis of the

behavioural context. In addition, loads can be applied

anywhere on the body. Therefore, if some descending

commands to the spinal cord specified the kinematics of

hand motion, other descending signals would be

required to consider environmental forces.
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Figure 1 | Features of motor behaviour. a | Morasso19 illustrated several key features of how

humans made point-to-point reaching movements in the horizontal plane using a mechanical
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from the start to end of movement. c | The velocity of the hand shows a characteristic bell-

shaped profile with peak hand velocity proportional to movement distance. Modified, with

permission, from REF. 19  (1981) Springer-Verlag.
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cortex create deficits in decisional processes and 

strategies of motor action rather than in online con-

trol97–101. Motor actions are still coordinated, but are

either delayed in execution or inappropriate for the

behavioural context. With regards to online control,

temporary inactivation of the supplementary 

motor area has no substantial effect on M1 activity or

on behavioural responses to perturbations applied to

the wrist101.

After 40 years of single-cell neural recordings in

monkey M1, there is evidence that M1 neurons can code

anything from hand direction to detailed patterns of

muscle activity90. Such diversity might be a key 

feature of M1 function, reflecting a number of sensori-

motor transformations62,63. As described above, neural

processing in M1 is consistent with its role as part of an

internal model that converts global goals into motor

commands to the periphery50,92. However, both of these

frameworks provide descriptions of neural activity

rather than a formal control theory for limb motor 

control.

The oculomotor field has identified in detail many

features of the motor circuitry that is involved in eye

and gaze control102,103. The oculomotor system lacks

much of the complexity of limb motor function, and

the activity of motor neurons and pre-interneurons 

in the brainstem can be recorded. However, another key

to the success of these studies is that they took advan-

tage of formal control models to guide experimental

work104,105. Similar control models were introduced 

to characterize limb movement and neural circuitry 

predominantly in the spinal cord106, but they are limited

in their ability to reflect the complex anatomical and

physiological properties of neural circuits even at this

level107, let alone as a useful model of brain function

related to volitional movement control. EQUILIBRIUM POINT

MODELS incorporate the use of spinal stretch reflexes 

in descending commands108, but cannot explain end-

point errors induced by applied loads23,24,109 and again do

not consider supraspinal processing. Some models have

been developed to interpret the role of specific cortical

regions and the patterns of activity of their constituent

neurons for specific tasks, such as goal-directed limb

movements110,111, but they do not replicate the natural

patterns of variability in motor output.

Optimal feedback control

Optimal control has been used to interpret motor

behaviour by optimizing motor commands for some

aspect of motor performance (such as maximal jump

height or minimal end-point errors)30,112–116. Optimal

feedback control modifies feedback signals to optimize

an index of performance, creating a complex link

between sensory signals and motor output (BOX 2). It has

been used to interpret various motor behaviours,

including spinal reflexes in the cat hindlimb117, human

postural balance118 and volitional motor control38,119.

The ability of the motor system to adapt and use various

sensory signals for feedback control is exemplified by

our ability to use cutaneous signals from light finger

contact to stabilize standing posture120.

movement such as target or hand direction95,96. Is this

proportion of neurons sufficient to provide online 

control of the hand?

If M1 considers limb mechanics, perhaps other 

cortical regions support on-line control of hand

motion. However, candidate regions tend to be more

involved in planning than motor execution. Lesions in

the dorsal premotor cortex or supplementary motor

EQUILIBRIUM POINT MODELS

A class of models that assume

the CNS can control the

equilibrium position established

by the balance of force that is

generated by the spring-like

behaviour of muscle.
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Figure 2 | Neural activity in primary motor cortex (M1) during reaching. a | Mean hand

trajectory is shown in the central panel for movements to each of eight spatial targets surrounded

by the corresponding response of the neuron for each target. The rasters at the top of each panel

illustrate the times of action potentials for five trials. Data are aligned to movement onset (vertical

dashed line). Below each raster are the mean (blue) and standard deviation (green) of the

discharge rate of the neuron for each movement direction. The large black arrow denotes the

preferred direction (PD) of the neuron. b | Distribution of preferred directions of neurons in M1.

Each dot denotes the preferred direction of an individual neuron. Distribution is based on neural

activity only during the reaction time period, although similar results were found for any epoch

during reaction and movement time. (n = 154, P < 0.001.) c | Population vectors based on

reaction time activity of neurons are denoted by arrows with their base attached to the

corresponding direction of hand motion for the initial 100 ms of movement (dashed line). Orange

and blue arrows denote whether the difference between the direction of hand motion and the

population vector is significant or insignificant, respectively. Under each population vector is the

dispersion of vectors formed by random resampling of the cell population with replacements.

Modified, with permission, from REF. 90  (2003) Elsevier Science.
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can vary with time, as observed for peripheral feedback

during locomotion124. Todorov and Jordan38 have 

proposed that such flexibility in the properties of the con-

troller might be a valuable conceptual framework for

interpreting volitional motor behaviour such as reaching

and grasping. They show that such a controller captures

many of the common features of human movement,

including goal-directed corrections,multi-joint synergies

and variable but successful motor performance. Several

features of motor performance emerge despite not being

explicitly defined in the feedback controller.

The observation that reaching movements are 

relatively straight with bell-shaped velocity profiles 

provides strong circumstantial evidence that the 

CNS directly controls hand trajectory. However, hand

trajectory does not have to be directly controlled if the

brain behaves like an optimal feedback controller.

Behavioural goals (such as reaching to a spatial target)

can be converted directly into feedback laws to convert

state variables into motor commands. Hand motion

simply falls out as the optimal controller adjusts motor

output on the basis of statistical variations in state 

variables created by external perturbations and system

noise. Errors that influence the goal of the task are 

corrected, those that do not are ignored. Even if hand

trajectory itself becomes the goal of a task such as slow

reaching22, it does not need to be explicitly defined in

the controller.

An optimal feedback controller has several key 

components121. First, optimal control needs an optimal 

estimate of the state of the system (STATE VARIABLES), which

is generated from afferent feedback from sensors 

combined with efferent copy of motor signals. In

humans, both afferent feedback and efferent copy are

used to estimate ongoing motor performance122.

Support for the use of efferent copy in motor control is

provided by observations that motor commands can

undergo rapid compensation before sensory feedback

can influence them123. State variables can reflect not only

the properties of the body, but also information related

to grasped objects116.

Second, feedback gains to convert these state variables

into motor signals are not fixed, but are adjusted based

on the specific goals of a behaviour. This is essentially an

optimization problem that manipulates feedback gains

to maximize or minimize some index of performance.A

property of optimal feedback controllers is that sensed

variations in state variables lead to corrections if they

adversely affect motor performance, but are ignored 

if they do not. Todorov and Jordan38 define this as a

‘minimum intervention’principle. This selective correc-

tion of errors is particularly important for a system with

noise, which is prevalent in both motor output30 and

sensory signals29,31.

By its nature, optimal control modifies feedback

gains to suit the overall goals of the system. These gains

STATE VARIABLES

Estimates of the position of the

limb or forces acting within or

on the limb (or their derivative).

State variables are transformed

by corresponding feedback gains

to generate motor output

commands.
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Figure 3 | Response of a primary motor cortex (M1) neuron to mechanical perturbations in different contexts. Each panel

illustrates wrist position, the instantaneous firing rate and a raster display of the response of the neuron in individual trials. The top

row of panels shows responses for pronation movements and loads, and the bottom row of panels shows responses for supination

movements and loads. Each column illustrates the response of the neuron in a different context, as defined in the diagram. Note the

change in the response of the neuron to mechanical loads applied when generating a small movement (small + torque), when

holding a fixed position (torque pulse holding) and at the start of a large movement (preballistic torque). Reproduced, with

permission, from REF. 139  (1978) Karger.
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Optimal feedback control that is based on low-

dimensional state variables is consistent with the most

obvious feature of M1 — a coarse somatotopic repre-

sentation of the motor periphery with neurons related

to one or a few joints126,127. Selective changes in mechani-

cal loads applied to the elbow or shoulder joints during

posture and movement illustrate that some neurons are

sensitive to loads at both joints, whereas others respond

to loads at only one joint45,128. Corticomotor neurons

synapse on motor neurons from a few muscles that span

one or more joints54,57. These observations indicate that

neurons are exclusively associated neither with the entire

limb nor with a single joint. Rather, neurons reflect a

portion of the motor periphery that might or might not

span multiple joints.

Like M1, an optimal feedback controller should

receive a rich mix of sensory signals (for review, see 

REFS 42,43). Many neurons in M1 respond to passive

movement of one or more joints76,129, and this sensory

feedback often overlaps with their motor output76,130,131.

Many neurons respond to passive and active movements

at multiple joints, but the association between these 

sensory and motor representations remains poorly

understood. Neurons related to the distal limb often

respond to passive movements of the wrist and digits, or

to cutaneous stimulation on the hand, reflecting the

importance of cutaneous input for hand function132–134.

Neurons in shoulder-related regions of cat M1 often

have cutaneous receptive fields on the paw135, reflecting

the link between walking surface stability and proximal

muscle control for quadrupedal locomotion.

As expected for feedback control, M1 neurons

respond quickly to limb perturbations. Many neurons

respond within 20 ms, only slightly slower than the 

primary somatosensory cortex136,137. More importantly,

neural responses in M1 can be modified by behavioural

context, as predicted by optimal feedback control theory.

Sensory responses to passive limb movement can be

viewed as a default pattern of sensory feedback and

there seems to be almost an equal proportion of

neurons with the same or opposite responses for active

and passive movements at a joint138. However, such 

passive responses seem to be modifiable, as 90% of

‘sensory’ responses to mechanical perturbations

applied during posture are opposite to their responses

for active movements139. This provides only indirect

evidence that the responses of neurons to sensory 

stimuli are altered depending on context (passive

motion versus actively maintaining a constant limb

position). FIGURE 3 shows another example of changes

in M1 activity with behavioural context139. The

responses of M1 to load vary depending on whether the

monkey is trying to maintain a constant joint position

or is making a small or large movement. Although such

studies illustrate the adaptability of neural responses to

mechanical perturbations, it remains to be verified

whether and how such changes reflect an optimal strat-

egy. More complex changes in the response to sensory

feedback are predicted by optimal feedback control,

particularly for multi-joint motor tasks that create

broader and richer behavioural goals.

This property of optimal feedback controllers greatly

changes the expected computational processes per-

formed by the motor system. There is no need to convert

neural signals explicitly into a representation of hand

motion for motor execution. Therefore, the neural corre-

lates of hand motion that can be found throughout the

sensorimotor system might simply be epiphenomena125.

Not only does hand trajectory not need to be explicitly

computed,neither do any other intermediary representa-

tions.The distribution of muscle afferents do not seem to

be optimal for any specific representation of limb posi-

tion29. If there are no substantive restrictions on the state

variables used by the controller, signals related to the

motor periphery could simply reflect their natural co-

ordinates.For primary muscle spindles,natural represen-

tation is a combination of muscle length and velocity.

Convergence of various receptors would create rich, but

low-dimensional state variables and the motor system

would develop feedback laws to act on these signals.

Implications of optimal feedback control for M1.

If optimal feedback control is a useful computational

theory for describing volitional motor control, it might

also be valuable for interpreting the neural basis of

volitional motor control. This control theory is consis-

tent with several features of neural processing in M1,

including neurons that reflect only part of the motor

apparatus, and rich afferent feedback that is adaptable

based on behavioural context.
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Figure 4 | Effects of dentate cooling on the discharge pattern of a primary motor cortex

(M1) neuron. Flexion or extension loads are either abruptly applied or removed at the start of either

flexion or extension movements under control conditions (conditions 1, 3, 5 and 7). Each panel

illustrates elbow motion (mean, blue solid line, and standard deviation, green dashed line) and the

instantaneous firing rate of the neuron. Conditions 2, 4, 6 and 8 are the corresponding movements

and cell discharge pattern when the dentate nucleus was cooled temporarily. Note that the early

response of the M1 neuron (green column) remains the same before and during cooling, but the

later response started 20 ms after the perturbation is altered with dentate cooling. Reproduced,

with permission, from REF. 144  (1975) Elsevier Science.
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the importance of sensory feedback to M1 processing

with more recent advances on multi-joint mechanics,

motor behaviour and motor planning.

Optimal feedback control beyond M1. A complete

description of how optimal feedback control can be

applied to other brain regions is beyond the scope of

this review, but there are a few issues worth noting.

Optimal feedback control makes an important distinc-

tion between motor execution and motor planning.

This segregation between control and goals seems to be

reflected in the cortex, with M1 being more involved in

the former, and other frontal and posterior parietal

regions being more involved in the latter50. However, the

segregation is not complete; neural activity during

motor preparation can be observed in M1 (REFS 152,159)

and at the spinal level160.

Visual signals transmitted through the posterior

parietal cortex are important for motor planning and

the online control of movement153,154,161,162.Therefore, the

posterior parietal and premotor cortex might be

involved in both planning and online control, with 

individual neurons participating in both processes163.

State variables that are based on visual feedback

(and probably other sensory signals) seem to be modi-

fiable. For example, after a monkey has been trained 

to use a rake to grab food morsels, neurons in the 

intraparietal sulcus that normally respond to visual

stimuli near the hand now also respond to stimuli near

the rake46. Such plastic changes in vision-related neural

responses might explain how humans and monkeys

can easily use computer-based visual feedback to 

control motor actions.

Subcortical networks through the basal ganglia and

cerebellum are also important for sensorimotor control.

In particular, the cerebellum has long been associated

with motor control, coordination and learning91,164–167,

and almost certainly has a crucial role in online feed-

back control. Damage to this structure leads to motor

problems for tasks that involve multiple joints164,168.

The anatomical and physiological properties of the

cerebellum are consistent with several aspects of

optimal feedback control. The interpositus nucleus and

intermediate cerebellum receive proprioceptive feed-

back on motor performance from the ascending 

spinocerebellar tracts and also receive a strong projec-

tion from M1 through the pontine nuclei. This mixture

of afferent signals and efferent copy provides the ideal

conditions for optimal state estimation related to the

motor periphery91,169. The dentate nucleus and lateral

cerebellum are also probably involved as part of an 

optimal feedback controller. Several frontal and parietal

cortical regions project to and receive input from the

dentate nucleus through the pontine and thalamic

nuclei, respectively165. However, each cortical region

projects to largely separate regions of the dentate

nucleus and cerebellar cortex, creating distinct cerebro-

cerebellar loops170,171. Each of these loops might 

participate in distinct processes including task selection

(motor planning), optimal state estimation and feed-

back control. Monkeys trained either to assist or to resist

Long-latency muscle responses (> 60 ms), which are

generated largely through the transcortical pathway140,

illustrate the potential capability of this feedback 

system141.When the limb is perturbed from a stationary

position, the short-latency muscle response (< 60 ms)

that is generated at the spinal level parallels the pattern

of joint motions (the simple stretch reflex). By contrast,

the long-latency response produces the requisite 

motor patterns to oppose the load, indicating that 

the transcortical pathway considers the influence 

of intersegmental dynamics in converting sensed 

limb motion into compensating motor responses.

Furthermore, this long-latency response is modified to

incorporate the influence of mechanical loads during

motor learning142,143.

Several brain regions project to M1 and probably 

provide feedback from the motor periphery, including

the primary somatosensory cortex, posterior area 5 

and thalamic input from the cerebellum through the

interpositus and dentate nuclei42. The earliest response in

M1 during mechanical perturbations seems to be pro-

vided by the primary somatosensory cortex, as dentate

cooling does not influence these early responses144–146.

However, interpositus neurons respond to mechanical

loads within 20 ms (REF. 147). Later responses in M1,

starting about 60 ms after a perturbation, seem to be

strongly influenced by the cerebellum145,148 (FIG. 4). How

these different pathways contribute to feedback control

through M1 and the brainstem regions remains an

important problem.

The description above integrates feedback from the

motor periphery into motor cortical function, but 

visual feedback is also important for volitional motor 

control149–151. A proportion of neurons in M1 signal

movement or target direction independent of arm 

configuration76,95,96,152.They are often assumed to provide

a higher-level representation of movement related to the

spatial direction of movement, but such activity might

also signal visual feedback of motor performance. Such

feedback signals of hand motion are computationally

equal and not hierarchically above feedback signals from

the motor periphery that are ‘muscle-like’. Furthermore,

visual feedback is highly task dependent. For example,

when writing with the tip of the elbow in space, visual

feedback of motor performance would reflect elbow and

not hand motion. Although vision is important for

online feedback153,154, loss of proprioception has a more

profound effect on coordinated body movements155–157.

The ‘transcortical servo’ hypothesis that was put 

forward by Phillips more than 30 years ago emphasized

the importance of feedback signals in motor control

and was influential in the 1970s for interpreting 

motor cortical function on the basis of single-joint

movements158. The predominant use since the 1980s of

a whole-limb reaching paradigm to study motor behav-

iour, and the practice of relating neural activity to hand

motion, opened up issues related to the use of vision for

action, motor planning and the early, feedforward stage

of motor execution. The value of optimal feedback 

control as a computational theory is that it brings these

largely distinct fields of study back together, recognizing
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signals will have crucial consequences in one behavioural

context and be irrelevant in another. If the long-latency

muscle response reflects the feedback laws of an optimal

feedback controller, then transient perturbations during

different tasks should elicit behaviourally relevant motor

responses. Neural recordings in various brain regions

will help to disseminate how such feedback control laws

are created by the highly distributed motor system.

The mathematics of optimal feedback control are

particularly challenging. The brain does not implement

the formal mathematical methods that are available to

compute gains of optimal feedback controllers, but how

neural networks create and learn these properties is an

interesting and important process177–179. M1 is intimately

involved in motor learning, and many studies have

investigated plasticity and changes in neural processing

in M1 during learning and adaptation180–183. Optimal

feedback control requires substantive learning at two

points in the controller, one for optimal state estimation

and the other for optimal control laws. The learning

rules and mechanisms are different for these two

processes, with the former optimizing estimates of the

state of the system, independently of behavioural goals .

By contrast, the latter must also use more global rewards

that are related to behavioural success or failure.

The motor system is not just one big feedback loop;

rather, it is highly distributed and provides multiple path-

ways through which feedback can influence behaviour.

Besides M1, several other brain regions contribute to

descending signals to influence spinal processing53. Two

regions that might be of particular interest for feedback

control are the magnocellular red nucleus,which projects

to the spinal cord and receives substantive input from

both M1 and the cerebellum165,184, and area 3a in the 

primary somatosensory cortex,which receives substantial

input from muscle proprioceptors and projects to the

intermediate and ventral horn of the spinal cord137,185.

Where and how visual and proprioceptive signals are

integrated for estimating state variables and feedback

control laws at the single-cell level remains poorly

understood. Clearly there is substantive integration 

of different sensory systems for position sense and

kinaesthesia186. Visual feedback is assumed to take 

predominantly a cortical path to M1 through the 

parietal and premotor cortex48. There are several poten-

tial pathways for proprioceptive feedback to reach M1,

including through the primary somatosensory cortex,

posterior parietal area 5 and the cerebellum42. As stated

earlier, somatosensory feedback could be integrated

with visual signals in posterior parietal regions and then

transmitted through the premotor cortex. However, it is

not clear how each of these pathways is involved in

motor execution, learning or both.

Summary and conclusions

The aim of this review was to bring together three levels

of research on limb motor function — the motor

periphery, motor behaviour and the neural basis of

movement. Each level provides a unique perspective on

the characteristics of the motor system, and an impor-

tant challenge in systems neuroscience is to connect

a perturbing flexor load applied to the wrist show 

context-dependent changes in neural activity in M1. A

neuron might fire in a rapid burst when a load is applied

if the behavioural condition was to resist the load, but

would be unresponsive when instructed to assist the

applied load172. Similar coupling to instructional cues 

is also observed in the dentate nucleus147, indicating 

that the dentate nucleus might be involved in rapidly

switching from one context to another.

Descending commands from M1 and other brain

regions must consider more than just ALPHA MOTOR 

NEURON activity during motor function90. GAMMA 

MOTOR NEURON activity and the inflow of sensory signals

for motor output, and transmission to supraspinal cen-

tres for both control and perception are also important.

A substantial proportion of corticospinal axons terminate

in the intermediate horn and even the dorsal horn42.

These other features of spinal processing might account

for half of the descending signals from the cortex, but 

little is known about the nature of such signals173. If the

brain behaves like an optimal feedback controller,

it might be best to view descending commands as 

controlling the spinomusculoskeletal system, rather than

the musculoskeletal system174.

Things to do and not to do

There might be many ways to use optimal feedback 

control to guide neurophysiological research, although

several challenges remain. First, the mathematics that is

required to identify optimal feedback control laws 

is extremely challenging even for the simplest of linear

systems. This limits the conditions under which formal

solutions can be used to predict the properties of an

optimal feedback controller, although recent mathemat-

ical advances might extend this approach for nonlinear

systems175. Further theoretical work is also required to

break down the processes of optimal feedback control

into more biologically plausible algorithms and

processes176 that can help to guide experimental studies.

However, it is unlikely that such efforts will attain the

level of detail that is present in oculomotor models of

brainstem circuitry.

Identifying state variables would be a logical start for

examining neurophysiological correlates of optimal

feedback control. On its own, this is probably the 

least informative exercise and simply continues the basic

practice of correlating neural activity in M1 and 

elsewhere with engineering-inspired variables. The rich

mix of sensory signals (cutaneous, muscle propriocep-

tors and vision) that are used to guide motor function

obfuscate any simple unified representation. Further

diversity is expected in a region such as M1 owing to its

interaction with various cortical and subcortical brain

regions90. Although neural activity must be quantified

relative to some measured (or estimated) variable,

relative changes within and across task conditions are 

far more informative than interpreting absolute levels 

of neural activity.

The important feature of optimal feedback con-

trollers is that they are malleable systems defined by

behavioural goals so that variations in sensory or motor

ALPHA MOTOR NEURON

Motor neurons that innervate

extrafusal muscle fibres that

generate force.

GAMMA MOTOR NEURON

Motor neurons that innervate

intrafusal muscle fibres

associated with muscle spindles.
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be of value for interpreting the neural basis of move-

ment and in particular, neural processing in M1.

Optimal feedback control is consistent with several

aspects of neural processing in M1. Individual neurons

contribute to the control of a portion of the motor

periphery and receive rich, adaptable sensory feedback.

The link between M1 and motor behaviour emerges

through its contribution to the entire neural circuit.

Therefore, the role of M1 is not ‘muscles’ versus 

‘movement’, but muscles and movement.

these domains. Activity in M1 has been linked to motor

behaviour or to the motor periphery, but it has been dif-

ficult to reconcile a dual role for representing high-level

aspects of motor performance such as hand trajectory

and low-level details of motor execution.

Optimal feedback control, with its selective and

highly adaptable feedback laws, provides an interesting

model for describing how coordinated motor behaviour

can be created by the motor system. The argument put

forward here is that optimal feedback control can also
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