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Optimal feedback control of turbulent channel flow

By Thomas Bewley, Haecheon Choi, Roger Temam ], AND Parviz Moin

Feedback control equations have been developed and tested for computing wall-

normal control velocities to control turbulent flow in a channel with the objective of

reducing drag. The technique used is the minimization of a "cost functional" which

is constructed to represent some balance of the drag integrated over the wall and
the net control effort. A distribution of wall velocities is found which minimizes this

cost functional some time shortly in the future based on current observations of the

flow near the wall. Preliminary direct numerical simulations of the scheme applied

to turbulent channel flow indicates it provides approximately 17% drag reduction.

The mechanism apparent when the scheme is applied to a simplified flow situation

is also discussed.

1. Motivation and objectives

It is the goal of this project to study methods to counteract near-wall vortical

structures in turbulent boundary layer flow using an active control system in an

effort to reduce drag. From this study, we hope to better understand the physics of

drag producing events and the sensitivity of boundary layer flow to control. As a

more far-reaching goal, we would like to better understand how to develop control

equations for general flow control problems, utilizing the equations governing fluid

flow to achieve performance that is in some sense optimal for a given situation.

With a well-chosen scheme using wall control only, it has been shown that a

turbulent flow may be smoothed out in a near-wall region, and the drag may be

substantially reduced. This scheme applies small amounts of wall-normal blowing

and suction through the computational equivalent of holes drilled in the wall. Pre-

vious ad hoe schemes by Choi et al. (1992) have reduced the drag by as nmch as

20% by countering the vertical velocity slightly above the wall with an equal but

opposite control velocity at the wall. The objective of this work is to derive more

effective schemes by applying optimal control theory, utilizing the equations of mo-

tion of the fluid to reveal the dominant physics of the control problem and the most

efficient distribution of the control energy. This work is an outgrowth of the work

done by Choi e$ al. (1993), where optimal control theory was applied to the stochas-

tic Burgers equation. Here, we apply the theory to the Navier-Stokes equations,

which necessitates a more involved treatment of the equations and more extensive

computer resources. The scheme discussed in this report depends on measurements

of flow velocities above the wall -- this is not feasible in a practical implementa-

tion. The scheme will later be reduced to a more practical one involving only flow

quantities which are most easily measured in an experimental rig.
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The model problem we study in this work is the turbulent flow inside a small

segment of a fully developed turbulent channel (i. e. flow between two parallel walls,
far from the inlet). This flow is governed by the same vortical structures as turbulent

boundary layer flow in the near-wall region.

Thus, the problem under consideration is a turbulent channel flow with no-slip

walls and wall-normal control velocities ¢. Control will be applied to this flow in
order to decrease the drag integrated over the walls at the expense of some measure

of the net control effort. A feedback control algorithm has been developed which

minimizes a "cost functional" constructed to represent this balance of the drag and

the control effort. This method is introduced in Section 2. The control equations
have been coded and tested in a direct numerical simulation of turbulent channel

flow. Section 3 discusses preliminary results of these calculations.

2. Formulation

ILl State equation (Navier-Stokes equation)

As described above, the problem under consideration is a constant-flux turbulent

channel flow with no-slip walls and wall-normal control velocities ¢. This problem

is governed by the unsteady, incompressible Navier-Stokes equation, the continuity
equation, and a constant flux integral constraint equation inside the domain f_ and

appropriate boundary conditions on the walls w (periodic conditions are implied on
the remainder of the boundary of the domain F):

vOui 0 Op 1 0 0
+ "-ff'-'-UjUi = ---- + Ui (la)oxj Oxi Re Oxj Oxj

Oui
--=0 in _2
0zi

u1 dxl dx2 dx3 = C

(lb)

(lc)

on (2)
walls,

where xl x2 is the wall-normal direction, x3 is the

spanwise direction, ui are the corresponding velocities, and p is the pressure. The

constants in the problem are C (a measure of the flux in the channel) and Re (the
Reynolds number).

2.2 Optimal control of state equation

The goal of controlling the channel flow is to minimize the drag on a section of
wall with area A over a period of time T using the least amount of control effort

possible. The relevant quantities of interest are thus the time averaged drag

,D = A---T _ dxl dx3 dt (3)

Ul =0

'tt2_ _

U3 _--_-0

is the streamwise direction,
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(where n is a unit vector in the inward wall normal direction) and a term represent-

ing the expense of the control. The latter term may be taken to be the integral of

the magnitude of the power input, which may be written

A--V I (p+ ,it, (4a)

In addition, depending on the physical mechanism used to provide the control veloc-

ities, the rate of change of the control hardware settings might be another important

expense (for instance, representing the expense involve in changing the settings of

control valves in the system):

E,2 = A----T dxl dxs dr. (4b)

A physically appropriate cost functional for this problem, then, balances the expense
of the input versus the drag:

J(_) = _IEI -[- ,_2J_2 .-_/_, (5)

where £1 and £2 are appropriate weighting factors. We could proceed from this

point to attempt to construct a control procedure designed to minimize this cost

functional. A mathematically more simple cost functional for the purpose of control

theory (for reasons which will become evident as the control equations are derived)

is quadratic in ¢. Physically, this represents the integral of the magnitude of the

kinetic energy per unit mass input to the system, and may be written

/o//."I(¢) - 2_ AT1 T ¢2 dx, dxa dt + -_ _ dx, dxa dr. (6)

It will be seen later that, in most problems that we consider, the expense terms are

much less significant than the drag terms (in other words, the control is relatively

cheap). The use of other expense terms does not cause much additional complexity
or insight into the method.

The optimal control procedure considered, then, involves reducing the cost func-

tional (6) for some period of time T. This method is described in Abergel and

Temam (1990) in a related situation and is also discussed in Lions (1969). How-

ever, this is a prohibitively expensive procedure for present computational resources

because it involves storage and manipulation of several three-dimensional fields over

the entire time period under consideration. The complexity of such an algorithm is

discussed further in Choi et al. (1993).

We therefore resort to a suboptimal control procedure (Choiet al. 1993). In this

method, the state equation is discretized in time, then a control procedure is applied

to reduce an instantaneous version of the cost functional (6)

J(¢) = dx, dx, + dx, dx, (7)
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at each time step.

By applying the control at each time step, the algorithm gives the control which

minimizes the cost functional over some short time interval. Note, however, that

this method does not look ahead to anticipate further development of the flow, and

thus the solution by this method does not necessarily correspond to the solution by

the optimal control method. Thus, posing the problem in this suboptimal form is

another level of approximation to the physical problem of interest.

The differences in complexity between the optimal and suboptimal schemes de-

scribed above may be realized by drawing an analogy to a computer algorithm to

play chess. A suboptimal chess program looks ahead one step to determine the

move that leaves as good a position on the board as possible. Similarly, a subop-

timal turbulence control scheme looks ahead one time step to determine the set

of control velocities that leaves as good (i. e. low) a value of the cost functional as

possible at the next time step. An optimal chess program, on the other hand, in-

vestigates all possible developments of the game a certain number of steps into the

future (knowing how the other player may respond), and then moves in the direction

that leads to the best final position on the board. Similarly, an optimal turbulence

control scheme investigates all possible developments of the flow a certain amount

of time into the future (knowing approximately how the flow will respond), and

then applies the set of control velocities that leads to the best (i.e. lowest) time-

averaged cost functional. Such a method requires significantly more resources than

the suboptimal method.

_.3 Time discretization of state equation

The suboptimal control procedure introduced above is now applied to the state

equation (1). To do this, we discretize (1) in time, then apply a feedback control

algorithm to modify the flow at the next time step. A consistent approach is to

use a second order Crank-Nicolson method (implicit) on all terms. The momentum

equation (la) thus takes the form:

(s)

where a superscript n indicates the value at time step n.

It is now useful to put the time discretized form of the entire state equation

governing the flow in the domain into the form

/C" + 7_n-I = O, (9a)

where/C a contains all the terms which in some way depend on the state variables
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from the current time step, and 7_n-1 contains the remaining terms:

,, 0 0
u, - _'o_j hi

ou_'
Jc" = - _b-_,

/32 [[[ u_ dxl dx_ dx3
J JJtl

in 12

in f_ (9b)

{
oxj oxj

fop tn-a , dP n-18ix + O_; 7 _ inf_

0 in

C I "

(9c)

In the above equation, _1 = At/2Re, /_ = At�2, dP/dxl is the mean pressure

gradient in the zl direction (adjusted at each time step to provide constant mass

flux), and p' accounts for the pressure variations within the domain (periodic in xl

and xs). Note that (lb) and (lc) have been multiplied by constants to obtain (9).
Associated with this problem are the boundary conditions B:

B1 =ul =0

B2 = u2 = _b

B3 =ua =0.

(10)

The "flow problem", which will hereafter be denoted d, is taken to refer to the

differential equation (9) together with the boundary conditions (10).

2.4 Suboptimal control of state equation

In this section and the next, we develop a method to solve for the gradient of
the cost functional 3" and with this a control procedure based on this gradient

information to minimize ,7 at each time step.

Consider the Fr6chet differential (Vainberg, 1964) of the cost functional 3" in (7):

vy(_) 5 Y(_ + _) - 3"(_)
_ = lim

,--*o e (11)

t //. 1 //w C9 ['DUl= ,

The gradient of the functional ,7 with respect to the control distribution _ may be

extracted from this equation by expressing the last term on the RHS in terms of an
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inner product on _. It is for this reason that we now formulate what we shall call

the "differential problem".

Define 0 using a Fr_chet differential such that

VU(¢) _, V(¢ + _) - V(¢)
t9= _ T=,_..0lim e , (12)

where _ is some arbitrary or "test" distribution of control velocities. Thus, O"
is a differential state representing the sensitivity of the state U" to control for a

particular control distribution ¢" applied over the time duration (t "-1, t"]. The

differential t9 is decomposed into components in a fashion similar to the state U(¢):

tr(¢)= p'(xl,x2,x3) , 19= p(xl, 2, 31 •
dP/dxl

The equations governing the differential state 19" follow directly by taking the

Fr_chet differential of the state equation (9) and its boundary conditions (10). Note
that the term 7_"-1 in (9) does not depend on _" and thus makes no contribution.

The contribution from the term K:" is linear and may be written

where

AO=

A"19" = 0, (133)

_ Ou, aOi \
Oi + 32 ( _x i + _6il + O, -_zj -_-u , -_z j ]

in f/

#2 JlJf_ 81 dxl dx2 dx3.

The boundary conditions B, from (10), are

t}1 = 01= 0
/}2 = 02 = _ (14)

1}3 = 03 = 0.

The "differential problem", which will hereafter be denoted _], is taken to refer to

the differential equation (13) together with the boundary conditions (14).

Consider again the Fr_chet differential of the cost functional fl in (11):

:D¢ A ¢ _ dxl da'a + _ , _ dxl dx3. (15)

The gradient of the functional fl with respect to the control distribution 0 may be
extracted from this equation by expressing the integral of 001/On in terms of an

inner product on ¢. This may be done by solving the differential problem _2, as is
done below.

- H2_9-_-jxj in f_ (13b)
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IL5 Solution o[ differential problem _ by adjoint method

An "adjoint problem" is now formulated which may be used to bypass direct
solution of the differential problem _ itself.

Define an adjoint operator A* using the equation

< A0,_ >=< 0,A*$ > + b, (16)

where A (which depends on U) is defined in equation (13b), the boundary conditions

on O are given in equation (14), and an adjoint state _ has been defined in a fashion
similar to U and O:

The adjoint operator is formed by moving all of the deriwtives in the inner product
(the integral over the volume of the product of the two terms, denoted < .,. >)

from the differential O to the adjoint @. It is a straightforward exercise to write

out the volume integrals corresponding to the LHS of (16) and then to rearrange

this expression into the form of integrals corresponding to the RHS of (16) using
integration by parts. From this is deduced A* and the condition at the boundary

resulting from the wall terms, which are all placed into the expression for b:

b =< AO,_I, > - < O,A*O >. (17)

Through equation (13a), the first term on the RHS of equation (17) is zero. If we
form a similar homogeneous adjoint differential equation for the adjoint

A'* = O, (IS)

with boundary conditions as yet undetermined, then equation (17) reduces to

b=0. (19)

Using the method described above, it is easy to show that

flk * _I/ =

0¢i )0 0 07r Out - uj¢i - j3aOxj Ox i ¢i + j32 _xi + x _il + _l'1_ in Q

- 82 Ox i in fl (20)

_2//L¢1 dxl dx2 dxs

and

fro( 001 , 003b = /_l-O--_n(_ 1) - ,_2p,,2(_,2) + _ _-(¢3)

0_/,2
02) _ dXl =

+¢(&n27r-_l_ &¢n2 "/ dx3 O.

(21)
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(Note by comparison of (20) with (13b) that the operator A is not self-adjoint due

to the effect of the convective terms of the momentum equation.) These adjoint

equations may be exploited to solve the differential problem d.

We now formulate an "adjoint problem", which will hereafter be denoted _¢*,

defining an adjoint state • with the homogeneous differential equation (18) and

with accompanying boundary conditions B* as yet undefined. Note by the above

discussion that one of the by-products of the formulation of this problem is the

relation at the boundary given by (21). We are now at liberty to choose boundary

conditions for the adjoint problem such that this relation is useful -- it is exactly

for this reason that the formulation of an adjoint problem is considered. With this

in mind, we may choose the boundary conditions B* as

B; = = 1

B_ = _b2 = 0 (22)

B; = ¢3 = 0.

Using these boundary conditions and the continuity equation for the adjoint velocity,

equation (21) reduces to

dxl dx3 = -n2

To compute the RHS, we must solve the adjoint problem fJ*. This is done numeri-

cally and must be repeated at each time step as A* changes as the flow U develops

with time.

The differential of the cost functional (11) may be rewritten using (23) as

by(c) $ elf,,, n2Reffw= ,dx ax3, (24)

where _r is the adjoint pressure on the wall. Finally, the desired gradient of the cost

functional J may be extracted (Vainberg, 1964):

DJ(¢) e n2 Re
- ¢ (25)

/)¢ A A

A feedback control procedure using a simple gradient algorithm at each time step

may now be proposed such that

7 :r( ¢ -,k)
¢,,.k+1 _ ¢,,k = _/_ , (26)

De

where superscript n indicates the time step as before and superscript k indicates

an iteration step at that particular time step. This algorithm attempts to update

¢ in the direction opposite to the local direction of increase of ,:7. For fixed ,_ as

k ---, c_ with sufficiently small #, this gradient algorithm should converge to so,ne

local minimum of ,;7 over the control space ¢ if the approximation of :D,:7/T)p is

sufficiently accurate. Note, however, that as the time step ,_ adwances, _7 will not

necessarily decrease (Choi et al. 1993).
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3. Accomplishments and future work

3.I Elementary drag reducing raechani_mn

Choiet al. (1992) found that by applying a control velocity equal and opposite to
the vertical velocity at y+ = 10, a drag reduction of nearly 20% could be achieved.

Vertical transport of streamwise momentum in the near-wall region (primarily due

to longitudinal vortieity) produces "sweep" events and thus local regions of very
high drag. Applying a countering control velocity tends to reduce this effect. A

related mechanism described by Lumley (1993) further explains these results; con-

trol applied to reduce the spinning of the near-wall vortices reduces their energy,
stabilizing them in space and thereby reducing the "bursting" frequency, which also

tends to reduce the drag.

In the tansverse plane, countering the vertical velocity above the wall corresponds

to a control which de-spins the near-wall vortices, as shown in Figure 1. This process

leads to the removal of fluctuations in the near-wall region, which diminishes the

mixing capability of the turbulence and therefore reduces drag. This type of control

corresponds to blowing where the drag is high, which decreases the high velocity

gradients at the wall and thus smooths out the flow in the near-wall region, as
shown in Figure 2.

I/_////////////////////_ lit

suction blowing

FIGURE 1. Stabilization mechanism in cross flow plane. The effect of the control
velocities shown is to de-spin the near-wall vortex, reducing momentum transport
near the wall.

7
suction blowing

FIGURE 2. High drag is decreased by blowing at the expense of suction in the

regions of low drag, resulting in a net smoothing of the near-wall velocity profiles.
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Figure 3 shows the application of the suboptimal control scheme to a simple flow

configuration of longitudinal vortices embedded in an initially parabolic flow. A
cross flow plane is shown. In regions below downward moving fluid (sweep events)

the streamwise (into the page) drag is higher and blowing is applied. In regions

below upward moving fluid (ejection events), the streamwise drag is lower and

suction is applied. The overall control distribution from the suboptimal scheme is
in a sense that acts to de-spin the near-wall vorticity, and thus acts in accordance
with mechanisms described above.

tt _ Ucl °I.

u=0

Control velocities

ilL'

• l I I /

tll,,,111
I III

FIGURE 3. Optimal control scheme applied to longitudinal vortices. Interior
vectors are cross flow velocities and contours are of streamwise velocity, indicating

a sweep event between two near-wall vortices and ejection events outside of them.

Control velocities shown on the wall (not to scale) indicates blowing at the sweep
event and suction at the ejection events.

The adjoint analysis utilizes all the information present in the near-wall region to

extract the sensitivity of the instantaneous drag to the variation of the control. This

scheme may be reduced to an approximate one relying only on wall information by

approximating the near-wall velocities using a Taylor's series extrapolation of the

velocity gradients at the wall. The correlation between the full adjoint analysis and
approximations of the adjoint problem using only information available at the wall

is still being investigated; preliminary results indicate that the performmlce is not

severely degraded by this approximation.
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8._ Suboptimal control of turbulent channel flow

The scheme introduced in Section 2 was tested by applying it to a direct numerical

simulation of turbulent channel flow. A 17% drag reduction was seen as compared

to a flow with no control. Results are plotted in Figure 4. This calculation was
done in a flow with Re,. = 100 based on the friction velocity and the channel half

width using a 32x65x32 grid and the spectral method of Kim et al. 1987. Although
these results should be considered preliminary, they are quite promising.

ta/3
¢¢
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: u_ E
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'¢' ""; ' " l ,•-:J........................_,.-'.-i...............X,,...._-.................i........................................r............................................f........................................

'"nil\ i z ;
A_.,v V i "...¢ _ _ !
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i
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I __'t X / "\ i iti \ / v i I I
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I \_ _..._,
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80 .................:_--/, .............._,_....................................................................................... _,..........................................._,........................................

0 10 20 30 40 50

time

FIGURE 4. Performance of suboptimal scheme compared to no control and the

scheme of Choi et al. (1992). Parameters for suboptimal scheme are p = 0.01,

= 10, T + = 1. Legend: -- suboptimal scheme, ........ _ = -vJy+=10, ----
no control.

8.8 Future work

At present, the drag reduction obtained using a suboptimal control scheme is

still slightly less than the drag reduction obtained using the ad hoc scheme of Choi

et al. (1992), as shown in Figure 4. It is hoped that by further variation of the

parameters and careful study of the numerical issues of the adjoint problem, the

result using the suboptimal formulation may be significantly improved. X,Ve expect
that, using the suboptimal method, a significant improvement is possible over all

ad hoc schemes, as the suboptimal scheme uses the entire flow information in the

near-wall region and is rigorously based. Also, work is currently in progress with
Dr. Chris Hill to reduce the suboptimal control scheme to one which depends on

wall information only. Preliminary results of this work are also quite promising --

a discussion of this project is included in the next report in this volume.
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