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Abstract—Assuming perfect channel state information (CSI),
the receiver in a point-to-point multiantenna channel can com-
pute the optimal transmit beamforming vector that maximizes
channel capacity. The transmitter, which is not able to estimate
the CSI, obtains the quantized transmit beamforming vector via
a rate-limited feedback channel. We assume that time evolution
of both MIMO and MISO channels can be modeled as the
first-order autoregressive process parameterized by a temporal-
correlation coefficient. For a limited number of feedback bits,
we would like to find out how often the feedback update should
take place. Applying a large system limit and random vector
quantization (RVQ), we derive the integer optimization problem,
which determines the optimal feedback interval that maximizes
the average capacity. The analytical results show that the optimal
feedback interval depends on the temporal correlation coefficient,
available feedback, and the number of transmit and receive
antennas.

I. INTRODUCTION

Multiple-antenna array has been included in technical spec-
ifications of the latest cellular telephonies (e.g., LTE-advanced
and WIMAX). Employing multiple antennas at the transmitter
and/or receiver has been shown to increase spatial diversity and
spectral efficiency [1], [2]. For full potential of the multiple-
antenna system, channel state information (CSI) at both the
transmitter and receiver is required. At the receiver, CSI can be
estimated from pilot signals and the accuracy of CSI estimate
greatly affects the system performance [3], [4].

In a time-division duplex (TDD) with channel reciprocity,
the transmitter is able to estimate the channel from pilots sent
by the receiver. However, estimating channel at the transmitter
is not possible in a frequency-division duplex (FDD) where
forward and backward channels are in different frequency
bands. Consequently, the transmitter in FDD must obtain CSI
from the receiver via a low-rate feedback channel. Recently,
many researchers have proposed feedback schemes to quan-
tize CSI and analyzed associated performance (see [5] and
references therein). In our work, we assume that the receiver
has perfect CSI and thus, can compute the optimal transmit
beamforming vector that maximizes an instantaneous channel
capacity. With limited feedback, the beamforming vector is
selected from a quantization set or a codebook, which is known
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a priori at the transmitter and the receiver. The codebook index
of the selected vector is then fed back to the transmitter, which
subsequently adjusts its beamforming coefficients. Different
codebooks have been proposed and analyzed in [5]–[8].

Feeding back quantized beamforming coefficients may not
be useful in a fast fading channel since they can be quickly
outdated. If the channel fades slowly, the beamforming coeffi-
cients may not need to be updated frequently. Thus, a feedback
strategy should be adapted to a temporal correlation of the
channel and was considered in [9]–[12]. Switched codebook
quantization was proposed in [9] where the codebook selection
is based on channel spatial and temporal correlations. In [10],
quantized CSI is modeled as the first-order finite-state Markov
chain and the beamforming feedback is based on channel dy-
namics. In [11], [12], multiple-input and single-output (MISO)
channel is modeled as a first-order autoregressive process and
the frequency of feedback updates is determined by temporal
correlation of the channel.

Here we consider block fading for both MISO and multiple-
input multiple-output (MIMO) channels with time evolution
modeled by the first-order autoregressive process. We apply
random vector quantization (RVQ) codebook to quantize the
transmit beamformer. The RVQ codebook consists of indepen-
dent isotropically distributed vectors and is shown to perform
close to the optimum codebook [6], [13]. Furthermore, RVQ
can be analyzed to obtain some insights into the limited
feedback performance. We derive exact expressions for the
average capacity of both MISO and MIMO channels in a
large system limit in which the number of transmit and receive
antennas and feedback bits tend to infinity with fixed ratios.
For a given feedback budget, we maximize the large system
capacity over a feedback interval. We show that the solution
is a function of temporal correlation, the number of feedback
bits, and the ratio between number of transmit and receive
antennas and that selecting the right feedback interval can
increase the performance significantly.

II. CHANNEL MODEL

We consider a point-to-point discrete-time multiantenna
channel with Nt transmit and Nr receive antennas. We assume
a block fading in which channel gains remain static for the
whole coherence period and change at the next coherence
period. To allow a meaningful feedback of CSI from the

978-1-4244-9268-8/11/$26.00 ©2011 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2011 proceedings.



receiver, the coherence period is assumed to be sufficiently
long. During the kth fading block, an Nr × 1 receive vector
is given by

r = H(k)v(k)xs + n (1)

where xs is a transmitted symbol with zero mean and unit
variance, n is an Nr × 1 AWGN vector with zero mean and
covariance σ2

nI , v(k) is an Nt × 1 unit-norm beamforming
vector for the kth fading block, and H(k) = [hij(k)] is
an Nr × Nt channel matrix whose element hij(k) is the
channel gain between the ith transmit and the jth receive
antennas during the kth fading block. Here we consider a rank-
one transmit precoding or beamforming. An arbitrary-rank
transmit precoding with multiple independent data streams was
considered in [6]. Assuming an ideal scattering environment,
hij(k) is modeled as a complex Gaussian random variable with
zero mean and unit variance. Also we assume that adjacent
antennas in antenna arrays at both the transmitter and receiver
are placed sufficiently far apart that elements of H(k) are
independent.

To model a time evolution of the channel considered, we
adopt the first-order autoregressive process, which has been
widely used and was shown to predict channel dynamics
well [9], [11], [14], [15]. Thus, the channel matrix of the kth
fading block relates to that of the previous block as follows

H(k) = αH(k − 1) +
√

1 − α2W (k) (2)

where H(k − 1) is the channel matrix for the k − 1th fading
block, W (k) is an Nr × Nt matrix with independent zero-
mean unit-variance complex Gaussian entries, and α ∈ [0, 1]
denotes a temporal correlation coefficient between adjacent
blocks. Note that α = 1 produces a time-invariant channel. On
the other hand, α = 0 indicates a channel with no temporal
correlation and thus, the channel fades independently from one
coherence block to the next.

The associated ergodic capacity of this channel is given by

C = E log
(
1 + ρv†(k)H†(k)H(k)v(k)

)
(3)

where ρ = 1/σ2
n denotes the background signal-to-noise ratio

(SNR) and the expectation is over the channel matrix. To
achieve the capacity, transmitter encodes the transmitted sym-
bols across many different fading blocks. In addition to SNR,
the capacity also depends on the beamforming vector v(k). If
the transmitter can track the channel completely (perfect CSI),
the optimal v is the eigenvector of the channel covariance
H†(k)H(k) corresponding to the maximum eigenvalue. In
other words, the optimal beamforming vector is in the direction
of the strongest channel mode.

In a FDD system, the transmitter is not able estimate the
channel directly and has to rely on CSI fed back from the
receiver via a rate-limited channel. The receiver can estimate
channel from pilot signals, which is known a priori at the
transmitter and receiver. Assuming perfect CSI, the receiver
selects the optimal beamforming vector and send it back via
the feedback channel to the transmitter. Since the feedback
channel is rate-limited, the selected beamforming vector needs

to be quantized. Here we quantize the transmit beamforming
vector with random vector quantization (RVQ) codebook

V = {v1,v2, · · · ,vn} (4)

whose entries vj are independent isotropically distributed
and n denotes the number of entries in the RVQ codebook.
For given B = log2 n feedback bits for quantization, RVQ
performs close to the optimal codebook [6], [13] and RVQ is
optimal (i.e. maximizing capacity) in a large system limit [6],
[7]. The large system limit refers to the limit in which
Nt, Nr, B tend to infinity with fixed N̄r � Nr/Nt and
B̄ � B/Nt.

Given B bits and channel matrix H(k), the receiver selects
from the RVQ codebook

v̂(k) = arg max
vj∈V

log
(
1 + ρv†

jH
†(k)H(k)vj

)
(5)

= arg max
vj∈V

v†
jH

†(k)H(k)vj . (6)

The index of the selected beamforming vector is then fed
back to the transmitter, which adjusts its beamforming vector
accordingly. We assume that a time duration to feed back
the selected index is negligible when compared to one fading
block and that the feedback channel is error-free. The asso-
ciated capacity with quantized transmit beamformer is given
by

C = E log
(
1 + ρv̂†(k)H†(k)H(k)v̂(k)

)
. (7)

With infinite feedback (B̄ → ∞) and fixed N̄r, the capacity
increases with log(ρNt) [6]. Thus, for finite feedback, there
is capacity loss denoted by

C� � C − log(ρNt) (8)

= E log
(

1
ρNt

+
1
Nt

v̂†(k)H†(k)H(k)v̂(k)
)

. (9)

For an uncorrelated channel (α = 0), as (Nt, Nr, B) → ∞,

C� → C∞
� = log γ∞

rvq(B̄) (10)

where

γ∞
rvq(B̄) = lim

(Nt,Nr,B)→∞
1
Nt

v̂†(k)H†(k)H(k)v̂(k) (11)

and the expression for γ∞
rvq(x) is shown in [6], [7] as follows.

Suppose

β =
1

log(2)

(
N̄r log

( √
N̄r

1 +
√

N̄r

)
+
√

N̄r

)
. (12)

For 0 ≤ x ≤ β, γ∞
rvq satisfies

(
γ∞
rvq

)N̄r e−γ∞
rvq = 2−x

(
N̄r

e

)N̄r

(13)

and for x ≥ β,

γ∞
rvq(x) = (1 +

√
N̄r)2 − exp

{1
2
N̄r log(N̄r)

− (N̄r − 1) log(1 +
√

N̄r) +
√

N̄r − x log(2)
}
. (14)
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III. OPTIMIZING FEEDBACK INTERVAL

Since channel is time-varying, the quantized beamforming
vector needs to be updated and fed back for every fading block.
However, frequent feedbacks reduce spectral efficiency and
may not be practical. For a given feedback budget, how often
should the feedback update take place? Suppose that there are
B feedback bits available per M fading blocks and that for
every K fading blocks (K ≤ M ), the receiver quantizes and
feeds the quantized transmit beamforming vector back to the
transmitter. There are total L = M/K feedback intervals over
M blocks and each feedback update is allocated with B/L
feedback bits.

For each feedback interval, we propose that the receiver
quantizes the transmit beamformer based on the current chan-
nel matrix with B/L bits and that the quantized beamformer
is used for subsequent blocks until the next interval. The
corresponding average channel capacity over M fading blocks
is given by

C̄� � 1
M

L∑
l=1

K∑
k=1

E log
(

1
ρNt

+
1
Nt

v̂†(lK + 1)H†(lK + k)H(lK + k)v̂(lK + 1)
)

.

(15)

The proposed method may not be optimal (i.e., maximizing the
average capacity) for a given amount of feedback. However,
it is simple enough to analyze the capacity and obtain some
insights into how often the feedback update should be.

Large System With N̄r > 0
To analyze the average capacity in (15), we first compute the

effective received power by applying the first-order autoregres-
sive channel model in (2) and some algebraic manipulations.
In the large system limit, which we will consider next, the
effective received power does not depend on the index of
feedback interval l, which will be omitted as follows.

1
Nt

v̂†(1)H†(k)H(k)v̂(1) =
α2k−2

Nt
v̂†(1)H†(1)H(1)v̂(1)

+ (1 − α2)
k−2∑
i=0

α2i 1
Nt

‖W (k − i)v̂(1)‖2

+ (1 − α2)
k−2∑
i=0

k−2∑
j=0
j �=i

αiαj

Nt
v̂†(1)W †(k − i)W (j − i)v̂(1)

+ 2α
√

1 − α2

k−2∑
i=0

αi

Nt
�{v̂†(1)H†(1)W (k − i)v̂(1)}. (16)

The first product on the right-hand side of (16) converges in
the large system to [6], [7]

1
Nt

v̂†(1)H†(1)H(1)v̂(1) −→ γ∞
rvq

(
B̄

L

)
(17)

for N̄r > 0. (We will treat N̄r = 0 in the next section.) For
the second term in (16), the unit-norm v̂(1) is independent of

W (k − i) and hence,

1
Nt

v̂†(1)W †(k − i)W (k − i)v̂(1) −→ N̄r. (18)

The third and fourth terms are the cross terms consisting of
independent matrices with zero mean and thus, converge to
zero.

Therefore, we have that for N̄r > 0,

lim
(Nt,Nr,B)→∞

1
Nt

v̂†(1)H†(k)H(k)v̂(1)

= α2k−2γ∞
rvq

(
B̄

L

)
+ N̄r(1 − α2)

k−2∑
i=0

α2i

(19)

= N̄r + α2k−2

[
γ∞
rvq

(
B̄

L

)
− N̄r

]
. (20)

Consequently, we obtain the following expression for asymp-
totic capacity difference

C̄∞
� = lim

(Nt,Nr,B)→∞
C̄� (21)

=
L

M

K∑
k=1

log(N̄r + α2k−2

[
γ∞
rvq

(
B̄

L

)
− N̄r

]
) (22)

=
1
K

K∑
k=1

log(N̄r + α2k−2

[
γ∞
rvq

(
B̄K

M

)
− N̄r

]
). (23)

we would like to maximize the asymptotic capacity differ-
ence over feedback interval K. For a given feedback bits B̄
per M blocks and N̄r > 0, the optimal feedback interval that
maximizes the asymptotic capacity difference is given by

K∗ = arg max
1≤K≤M

K∈Z+

[
K∏

k=1

N̄r + α2(k−1)

[
γ∞
rvq

(
B̄K

M

)
− N̄r

]] 1
K

(24)
where Z

+ denotes the set of all positive integers.
Finding a closed-form solution for K∗ in (24) may not be

possible in general because of integer optimization. However,
a numerical solution is always possible by exhaustive search.
We note that the optimal feedback interval in (24) will depend
on the temporal correlation coefficient, amount of feedback,
and the number of transmit and receiver antennas. Next we
consider two extreme regimes for which α → 0 and α →
1. When the channel does not change (α → 1), the optimal
feedback interval equals M as follows

lim
α→1

K∗ = M. (25)

This implies that there must be only one feedback update with
all available feedback bits. The analytical result shown seems
to agree with intuition. To show (25), we take the limit on
both sides of (24) and obtain

lim
α→1

K∗ = arg max
1≤K≤M

K∈Z+

γ∞
rvq

(
B̄K

M

)
= M (26)

since γ∞
rvq(·) is an increasing function.
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With some manipulation, we can deduce from (24) that

lim
α→0

K∗ = arg max
1≤K≤M

K∈Z+

1
K

log(
1

N̄r
γ∞
rvq

(
B̄K

M

)
). (27)

Similar to (24), the solution to the problem in (27) can be
found by exhaustive search. Clearly we see a performance
tradeoff over K. Small K results in larger number of feedback
intervals, but fewer feedback bits per interval. On the other
hand, large K leads to smaller number of feedback intervals,
but larger number of feedback bits per interval.

Large System With N̄r → 0

The main result obtained previously only apply to a large
multiantenna system with N̄r > 0. In this section, we examine
the case in which the receiver is equipped with only single
antenna (MISO channel) or the case in which the number
of receive antennas increases less than linearly with that of
transmit antennas. For both cases mentioned, N̄r → 0 in a
large system limit.

First we evaluate the large system limit of
1

Nt
v̂†(1)H†(k)H(k)v̂(1), which consists of four terms

as shown in (16). For N̄r = 0, [6] showed that

1
Nt

v̂†(1)H†(1)H(1)v̂(1) −→ γ∞
rvq

(
B̄K

M

)
(28)

= 1 − 2−
B̄K
M (29)

while

1
Nt

v̂†(1)W †(k − i)W (k − i)v̂(1) −→ 0. (30)

Thus, the asymptotic capacity difference with N̄r = 0 is given
by

C̄∞
� (N̄r = 0) =

1
K

K∑
k=1

log
(
α2k−2(1 − 2−

B̄K
M )
)

(31)

= (K − 1) log(α) + log(1 − 2−
B̄K
M ) (32)

for 0 < α ≤ 1.
Maximizing the asymptotic capacity difference in (32) gives

the optimal feedback interval as follows. For N̄r = 0 and
0 < α ≤ 1, the optimal feedback interval is determined by

K∗ = arg max
1≤K≤M

K∈Z+

αK−1(1 − 2−
B̄K
M ). (33)

If we remove the integer constraint, we can find the maximum
by examining the first derivative of C̄∞

� (N̄r = 0) in (32) and
obtain the following approximation

K∗ ≈ M

B̄
log2

(
1 +

B̄ log 2
M log 1

α

)
(34)

where 0 < α < 1. We note that for large available feedback B̄,
K∗ is small. The solution implies that feedback update should
occur often when a large number of feedback bits is available.

The more practical regime is a small-feedback regime. When
B̄ → 0, the optimal K is approximated as follows

lim
B̄→0

K∗ ≈ log 2
log 1

α

. (35)

We note that K∗ is increasing with α. Thus, we can conclude
that with low feedback rate and highly correlated channel,
the feedback interval should be large and the feedback update
should occur less frequently.

IV. NUMERICAL RESULTS

In Fig. 1, we compare the capacity difference of a large
system derived in (23) with that of a finite-size system for
various N̄r, B̄, and α. We see that as the system size increases,
the simulation results approach the large system results. For a
smaller system (e.g., 4 × 4), the performance gap between
numerical simulations and the large system limit could be
large. however, both the numerical results and the large system
limits display the same trend. In Fig. 1, the feedback interval
is fixed at K = 8. As B̄ increases, performance of the channel
increases at the different rate for different α. When the channel
is less correlated (α = 0.5), the quantized beamformer of
the first block is not a good substitute for that of the next
blocks. That is why we do not see much gain although the
total feedback is increased.
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Fig. 1. The large system results are compared with those of finite-size
systems with M = 64, and ρ = 10 dB

Figs. 2 and 3 show the asymptotic capacity difference
with feedback interval K for MIMO and MISO channels,
respectively. In Fig. 2, selecting the optimal feedback interval
K∗ = 4 performs about 30% higher than setting K = 1,
which corresponds to feeding back for every fading block.
For channel with low temporal correlation (small α), feedback
should take place at every fading block. We also compare the
numerical results with the large system ones. Although the
difference between the two results can be large for a small
MIMO system. The optimal K∗’s from the two results are
very close.

In Fig. 4, we plot the optimal feedback interval K∗ found
by (24) for MIMO channel and by (33) for MISO channel
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Fig. 2. The large system performance for MIMO channel is shown with K
for M = 64, N̄r = 1, and B̄ = 16.

0 10 20 30 40 50 60 70
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

K

C
ap

ac
ity

 d
iff

er
en

t (
na

t)

MISO; M = 64; B/N
t
 = 16

 

 

large sys. w/ α = 1
large sys. w/ α = 0.9
large sys. w/ α = 0.5
sim. w/ N

t
 = 4; α = 1

sim. w/ N
t
 = 4; α = 0.9

Fig. 3. The large system performance for MISO channel is shown with K
for M = 64, N̄r = 0, and B̄ = 16.

versus α. We note that K∗ increases with α as expected. For
a low-feedback regime, the optimal feedback interval is greater
than the one with small temporal correlation.

V. CONCLUSIONS

We have determined the integer optimization problem to
find the optimal feedback interval, which can be used as a
guideline for a system designer in a practical multiantenna
wireless system. In a very limited feedback regime, the optimal
feedback interval for MISO channel largely only depends on
the temporal correlation and also increases with it. We expect
similar results for MIMO channel as well. As the numerical
results show, operating at the optimal feedback interval can
perform as high as 30 % over feeding back for every fading
block.

In the model considered, we are only concerned with flat-
fading single-user channel. The more practical model may
also include multipath fading and/or multiuser channel. For
our future work, we will extend the results shown here with
transmit beamforming to those with arbitrary-rank transmit
precoding.
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Fig. 4. The optimal feedback interval K∗ is shown with α for MIMO
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