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Optimal feeding is optimal swimming for all Péclet numbers
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Cells swimming in viscous fluids create flow fields which influence the transport of relevant nutri-
ents, and therefore their feeding rate. We propose a modeling approach to the problem of optimal
feeding at zero Reynolds number. We consider a simplified spherical swimmer deforming its shape
tangentially in a steady fashion (so-called squirmer). Assuming that the nutrient is a passive scalar
obeying an advection-diffusion equation, the optimal use of flow fields by the swimmer for feeding
is determined by maximizing the diffusive flux at the organism surface for a fixed rate of energy
dissipation in the fluid. The results are obtained through the use of an adjoint-based numerical
optimization implemented by a Legendre polynomial spectral method. We show that, to within a
negligible amount, the optimal feeding mechanism consists in putting all the energy expended by
surface distortion into swimming – so-called treadmill motion – which is also the solution maxi-
mizing the swimming efficiency. Surprisingly, although the rate of feeding depends strongly on the
value of the Péclet number, the optimal feeding stroke is shown to be essentially independent of it,
which is confirmed by asymptotic analysis. Within the context of steady actuation, optimal feeding
is therefore found to be equivalent to optimal swimming for all Péclet numbers.

I. INTRODUCTION

Swimming microorganisms can be found in a variety
of environments, and encompass a wide range of size and
locomotion mechanisms [1, 2]. For bacteria, motility is
important to achieve many biological functions, including
location and migration toward regions rich in nutrients,
oxygen or light [3, 4], swimming against gravity, or escap-
ing aggressions [5, 6]. Motility is also essential to repro-
ductive success, in particular for mammals [7]. Recently,
the collective motion of dense swimmer suspensions was
the focus of a number of studies emphasizing instabilities
and increased mixing [8–12]. In order to swim in a vis-
cous fluid, a microorganism must undergo sequences of
active and non-time-reversible deformations of its body
surface [13, 14]. This surface deformation sequence will
be referred to in the following as the stroke, which could
be either a swimming stroke (leading to a net displace-
ment of the swimmer center of mass), or non-swimming.

As such a swimmer performs work against the sur-
rounding fluid, it creates a flow field and can thus mod-
ify its immediate environment in an important fashion,
affecting in particular the transport of nutrients. The
metabolism of many microorganisms relies on the ab-
sorption at their surface of various particles or molecules
which are both diffusing and being advected by the
swimmer-induced flow. Depending on the organism con-
sidered, these can range from dissolved gases or low-
weight molecules, to complex proteins, organic com-
pounds, small particles, or even sometimes heat. This
is true from the behavior of small bacteria all the way
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to large organisms such as the protozoon Paramecium

which feeds on smaller bacteria, whose typical random
walk motion is equivalent to a diffusive process at the
scale of the larger organism [15–17]. For simplicity, all
these cases will be referred to as “nutrients”.

An interesting transport problem in the dynamics of
swimming cells concerns the coupling between the flow
created by the swimmer and the transport of nutrients.
This coupling can be essential for larger cells or cell
colonies to achieve feeding rates matching their metabolic
needs [18]. If κ is the diffusivity of the nutrient of inter-
est, and a the typical scale of the organism, the impact of
the stroke on feeding is characterized by the value of the
Péclet number, Pe = τdef/τdiff, where τdef is the char-
acteristic time scale for the shape deformation (stroke)
and τdiff = a2/κ is the diffusive time scale around the
organism.

At small Péclet number, the concentration gradients
created by the stroke-induced flow are immediately ho-
mogenized by diffusion, and therefore shape changes af-
fect only marginally the instantaneous feeding rate. In
that case, swimming can still affect feeding indirectly by
allowing to access regions of higher nutrient concentra-
tion [13]. At large Péclet number, however, the advective
transport by the flow created by the swimming stroke
can significantly modify the nutrient concentration field.
In that case, swimming directly impacts feeding both by
creating large concentration gradients near the body sur-
face and by increasing the swimmer ability to scan a large
volume of fluid [19].

The purpose of the present paper is to quantify the
impact of the swimming stroke on the feeding ability of
an organism and to determine the optimal stroke maxi-
mizing the nutrient uptake. A priori, the optimal stroke
should depend on the problem of interest through the
value of the Péclet number. In Nature, the relevant value
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of Pe varies by several orders of magnitude, due to the
large variety of sizes and time scales observed for differ-
ent microorganisms (from less than 1µm for the smallest
bacteria to several hundred µm for larger eukaryotes) and
the range of diffusivity coefficients for the nutrients of in-
terest (in aqueous solutions, κT ∼ 10−7m2 s−1 for heat,
κO2

∼ 3 10−9m2 s−1 for oxygen and small molecules, and
κ ∼ 10−11–10−10m2 s−1 for larger proteins). For a given
organism, the optimal stroke to maximize, for example,
heat fluxes might therefore not be the same as the one
maximizing the absorption of a large protein.

Performing the swimming stroke has an energetic cost
for the organism. In this paper we will consider the
portion of the energy budget which includes the rate
of working against the fluid, which is instantaneously
dissipated in the form of heat in the fluid. The or-
ganism’s metabolism imposes a restriction on the max-
imum energy available for motility, and assuming that
energy losses other than hydrodynamic can be embedded
in a fixed metabolic efficiency, optimizing the swimming
stroke for feeding is a mathematical problem which can
be formulated as follows: For a given amount of energy
available to a particular microorganism to create a flow,
what is the optimal stroke (possibly a non-swimming one)
that maximizes the nutrient uptake?

In Stokes flow, both body and fluid inertia are negli-
gible compared to viscous forces [2]. The displacement
of the microorganism and the hydrodynamic efficiency
are then entirely determined by the shape change se-
quence and not by the rate at which this sequence is per-
formed. Solving for the stroke-induced swimming motion
and the corresponding velocity field around the organism
can be tedious for complex geometries, as it generally
involves the flapping motion of a few or many flexible
flagella or cilia [1]. Most of the available literature fo-
cuses on two possible modeling approaches. In the first
one, each flexible appendage or body element is modeled
individually using slender body theory [1, 20] or singu-
larity methods [21]. The second approach, to which this
work belongs, considers a simplified geometry for which
the Stokes equations can be solved exactly. This is the
case for the classical spherical squirmer model considered
here [22, 23], an envelope model for the dynamics of cil-
iated microorganisms that has been used previously to
study hydrodynamics interactions [24], suspension dy-
namics [25, 26] and optimal locomotion [27]. For this
model, the linearity of Stokes equations can be exploited
to linearly decompose the stroke in a superposition of
swimming and non-swimming modes, which can then be
optimized to maximize the organism displacement for
a given energetic cost [27–30]. In recent work [27], we
showed that the optimal time-periodic swimming strokes,
i.e. the one leading to the largest swimming speed for
a given amount of available viscous dissipation, exhibit
wave patterns reminiscent of the metachronal waves ob-
served on the surface of ciliated microorganisms [31].

The effect of swimming on the transport of passive
scalars has been studied in the past both from Lagrangian

and Eulerian points of view. In the Lagrangian approach,
the capture or drift induced on a given particle by the
swimming motion of the organism is explicitly solved for
[19, 32, 33]. In the Eulerian approach, the organism is
modeled as being suspended in a continuous concentra-
tion field of nutrients, and the focus is on the absorption
flux on the swimmer body [30, 34, 35]. The feeding of a
model squirmer was recently addressed for steady and un-
steady tangential surface motions described by the super-
position of one swimming and one non-swimming mode
[34, 35]. The nutrient uptake was observed to be strongly
dependent on the value of the Péclet number as well as
the relative intensity of the non-swimming and swimming
mode.

In the current paper we propose to determine the
optimal feeding stroke for a squirmer, namely the one
maximizing the uptake of a nutrient by the organism
for a given hydrodynamic energetic cost. We consider
the simplest swimmer geometry (a sphere) and focus,
as our first attempt to solve the problem, on the case
of a steady stroke where the imposed surface velocity is
time-independent. Such an assumption is obviously a
simplification as cilia tips display periodic and unsteady
displacements. As recently observed [27], the optimal un-
steady stroke for locomotion can in fact be interpreted as
the periodic regularization of the solution to the steady
optimal problem. It was also shown [35] that for some
particular limit of large Pe and infinitesimal deformation,
the average feeding by the unsteady stroke is defined at
leading order by the result of a modified steady problem.
Our determination of the optimal steady feeding stroke
is thus expected to provide important physical insights
on the relation between swimming and feeding for mi-
croorganisms. In addition, although results are presented
here for an idealized organism shape, the optimization
framework detailed in this paper is applicable to more
complex geometries and is therefore relevant to a wide
class of advection-diffusion problems near self-propelled
organisms.

In this steady framework, the problem at stake is the
optimal distribution of the available hydrodynamic en-
ergy between the different actuation modes of the swim-
mer, either swimming modes that produce locomotion or
non-swimming modes that only produce stirring of the
surrounding fluid. To answer this question, the general
framework of the steady feeding problem is presented in
Sec. II. After considering an organism of arbitrary shape,
the equations are introduced for the particular case of the
squirmer and solved numerically for some specific strokes
using a spectral method, allowing us to gain qualitative
understanding of the effect of the swimming stroke on
the concentration field and nutrient uptake. In Sec. III,
we derive an adjoint-based optimization procedure to de-
termine the optimal stroke for a general swimmer, and
we apply it to characterize computationally the optimal
stroke for the squirmer as a function of the Péclet num-
ber. We show that, to within a negligible quantitative
difference, optimal feeding is equivalent to optimal swim-
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ming for all Péclet numbers. Our numerical results are
compared successfully to predictions of asymptotic anal-
ysis, at both large and small Péclet numbers. Finally, we
close by a discussion in Sec. IV.

II. NUTRIENT TRANSPORT AROUND A
SWIMMING MICROORGANISM

A. Advection-diffusion of a passive scalar near a
general swimming microorganism

We consider the transport of a passive scalar field
around a microorganism which stirs the surrounding fluid
– and possibly swims as well – by imposing a steady tan-
gential velocity along its surface, described by u

S . The
surface S and the shape of the organism is therefore as-
sumed to remain independent of time. Throughout this
paper, a body-fixed reference frame is considered. The
Reynolds number, Re = ρUa/µ is assumed to be small,
where U and a are the typical swimming velocity and
length scale of the swimmer, and ρ and µ are the density
and dynamic viscosity of the fluid medium. For Re ≪ 1,
fluid and solid inertia can be neglected and the velocity
field u around the swimmer is solution of the incompress-
ible Stokes problem

−∇p+ µ∇2
u = 0, (1)

∇ · u = 0, (2)

u = u
S for x ∈ S, (3)

u → −(U+Ω× x) for x → ∞. (4)

In Eq. (4), the translation and rotation velocities, U and
Ω, define the organism swimming motion and are deter-
mined by imposing the free-swimming conditions of zero
net hydrodynamic force and torque [36]

∫

S

σ · n dS = 0, (5a)

∫

S

x× (σ · n)dS = 0, (5b)

where σ = −pI + µ(∇u + ∇T
u) is the stress tensor in

the fluid, and n the unit normal vector pointing into
the fluid. The steady swimming problem in Eqs. (1)–
(5) is linear with respect to u

S and its solution for the
swimming velocities and fluid velocity fields can therefore
be rewritten formally as

(U,Ω) = L · uS , u = L · uS , (6)

where L and L are linear operators depending solely on
the swimmer geometry.
The hydrodynamic cost of the swimming motion, P ,

is defined as the rate of work performed by the swimmer
surface against the fluid, and equal to the energy dissi-
pation rate by viscous stresses in the entire fluid domain

Vf

P =

∫

Vf

(σ : d) dV = −
∫

S

u
S · (σ · n)dS, (7)

where d = (∇u+∇u
T )/2 is the fluid strain rate tensor.

In the following, the equations are non-dimensionalized
using a and

√

P/µa as reference length and velocity
scales respectively.
The microorganism is assumed to be suspended in an

unbounded nutrient solution with concentration C = C∞

in the far-field. The nutrient is assumed to be totally
absorbed by diffusion through the swimmer surface, and
C = 0 is imposed on S. Note that for a real swimmer,
this assumption is only valid if the nutrient flux at the
surface is smaller than the cell’s metabolic processing rate
(see Ref. [34] for a discussion of a more realistic boundary
condition).
For convenience, the nutrient concentration is rescaled

as c = (C∞ − C)/C∞. With this rescaling, c ≪ 1 cor-
responds to near-ambient nutrient concentrations in the
far-field, while c ∼ 1 corresponds to nutrient-depleted
regions near the organism. The rescaled concentration
field c(x) is the solution of the steady advection-diffusion
problem

Peu · ∇c = ∇2c, (8)

c = 1 for x ∈ S, (9)

c→ 0 for x → ∞, (10)

where u is the velocity field solution of the swimming
problem in Eqs. (1)–(5), and

Pe =
1

κ

√

Pa
µ
, (11)

is the Péclet number defined using the characteristic
length and velocity scales and the nutrient diffusion con-
stant, κ.
The flux of nutrient on the swimmer’s surface is purely

diffusive and thus defined in non-dimensional form as

Φ = − 1

Pe

∫

S

∂c

∂n
dS, (12)

where ∂c/∂n = n · ∇c and n is the normal unit vector to
the solid boundary pointing into the fluid domain. When
u
S = 0, the organism (a rigid body) does not create

any flow field and the energy consumption is P = 0.
Then Pe = 0, and the nutrient uptake is the solution
to the purely diffusive problem in Eqs. (8)–(10), with a
corresponding nutrient flux Φ0. Rather than the absolute
nutrient uptake Φ resulting from a given stroke, we are
interested here in its increase relative to the rigid body
reference case, namely J = Φ/Φ0 = Sh/2, where Sh is
known as the Sherwood number [34].
The problem solved in this paper can be formulated as

follows. For a given amount of energy available to the
organism to stir the fluid (measured in a dimensionless
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FIG. 1: Squirmer model and spherical polar coordinates used
in the paper. On the surface of the swimmer (r = 1), the fluid
velocity is purely tangential u = uS

θ (µ)eθ. In the far-field,
u ∼ −Uex with U the swimming velocity of the organism.

fashion by Pe), what is the stroke (i.e. the surface velocity
field u

S) that maximizes the relative nutrient uptake J?
Note that non-dimensionalizing the problem using the
energy used by the organism rather than its swimming
velocity allows for both swimming (U 6= 0) as well as
non-swimming strokes (U = 0).

B. The squirmer model

The general framework of the previous section is now
applied to the particular case of a spherical swimmer
prescribing axisymmetric and steady surface velocities.
By symmetry, the swimming motion of this so-called
squirmer is at best a pure translation along a fixed di-
rection ex, and using spherical polar coordinates with
respect to this axis centered on the swimmer, all fields
(velocities, pressure, nutrient concentration) only depend
on r and µ = cos θ, where θ is the polar angle with re-
spect to ex (Figure 1). By taking a to be the sphere
radius, the swimmer surface is the unit sphere r = 1,
and the surface velocity, uS = uSθ eθ, can be decomposed
into modes as [23]

uSθ (µ) =

∞
∑

n=1

αnKn(µ), (13)

with

Kn(µ) =
(2n+ 1)

√

1− µ2

n(n+ 1)
L′
n(µ), (14)

where Ln(µ) is the n-th Legendre polynomial. The swim-
ming stroke is fully characterized by the values of the
constant coefficients αn (n ≥ 1). The pressure p and
streamfunction ψ can be computed at any point of the
fluid domain as [23, 27]

p(r, µ) = p∞ +

∞
∑

n=2

αnPn(r, µ), (15)

Pn(r, µ) = −
(

4n2 − 1

n+ 1

)

Ln(µ)

rn+1
, (16)

and

ψ(r, µ) =

∞
∑

n=1

αnΨn(r, µ), (17)

Ψn(r, µ) =
2n+ 1

n(n+ 1)
(1− µ2)L′

n(µ)ψn(r), (18)

ψ1(r) =
1− r3

3r
, ψn(r) =

1

2

(

1

rn
− 1

rn−2

)

.(19)

The velocity field is easily recovered from ψ as

u = − 1

r2
∂ψ

∂µ
er −

1

r
√

1− µ2

∂ψ

∂r
eθ, (20)

and the swimming velocity is U = α1. Using this re-
lation as well as Eqs. (17)–(20), the linear operators L
and L can be expressed in terms of µ-projections on the
Legendre polynomials.

In the squirmer model, the swimming stroke uS is thus
entirely determined by the values of the different mode
amplitudes αn, or equivalently the vector α. Note that
the non-dimensonalization based on the rate of energy
dissipation leads to the normalization [23]

∞
∑

n=1

β2
n = 1, (21)

with β1 = α1, and

βn =
(2n+ 1)αn
√

3n(n+ 1)
for n ≥ 2. (22)

With this rescaling, all possible strokes correspond to a
vector β on the unit hypersphere (in the remainder of the
paper, α and β will be used equivalently to characterize
the swimming stroke). Note, that for mathematical con-
venience, the definition of the Péclet number in Eq. (11)
was modified to

Pe =
1

κ

√

Pa
12πµ

· (23)

The particular and so-called “treadmill” squirmer must
now be pointed out. That swimmer only includes one
squirming mode (βn = δn1) and maximizes the distance
travelled by the swimmer for a given amount of energy
[27, 28]. For a general squirmer, the first mode (n = 1)
entirely defines the swimming velocity, and as such is
referred to in the following as the swimming mode, as
opposed to all the other modes (n 6= 1) which do not
produce any swimming motion. The second mode (n =
2) defines the local stress applied by the swimmer on the
surrounding fluid [8, 24].

For a given stroke α, the rescaled nutrient concentra-
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tion c satisfies the advection-diffusion problem

Pe

∞
∑

n=1

αn

[

∂Ψn

∂r

∂c

∂µ
− ∂Ψn

∂µ

∂c

∂r

]

=
∂

∂r

(

r2
∂c

∂r

)

(24a)

+
∂

∂µ

(

(1− µ2)
∂c

∂µ

)

,

c(1, µ) = 1, (24b)

c(∞, µ) = 0. (24c)

The reference nutrient flux Φ0 corresponds to the case of
a non-stirring squirmer (i.e. a rigid sphere with αn = 0
for all n) for which the solution of Eqs. (24) is simply
c0 = 1/r. From Eq. (12), Φ0 = 4π/Pe , and the relative
nutrient uptake J takes therefore the simple form

J = −1

2

∫ 1

−1

∂c

∂r
(1, µ)dµ. (25)

C. Numerical computation of the concentration
field: the Legendre Polynomial Spectral Method

(LPSM)

In this section, we outline the numerical method used
to solve for the advection-diffusion problem, Eqs. (24),
and compute the nutrient uptake for a given stroke α.
The method is based on the expansion of the different
fields using Legendre polynomials in µ and generalizes
the approach presented in Ref. [34] to the entire stroke
space.
The nutrient concentration c(r, µ) is decomposed onto

Legendre polynomials as

c(r, µ) =
∞
∑

m=0

Cm(r)Lm(µ). (26)

Substituting Eq. (26) into Eqs. (24) leads after projection
on the p-th Legendre polynomial (p ≥ 0) to a system of
coupled ODEs in r

Pe

∞
∑

m=0

∞
∑

n=1

αn ( Amnp
dCm

dr
ψn +BmnpCm

dψn

dr

)

(27)

= r2
d2Cp

dr2
+ 2r

dCp

dr
− p(p+ 1)Cp,

Cp(1) = δp1, (28)

Cp(∞) = 0, (29)

where the functions ψn(r) are defined in Eq. (19) and
Amnp and Bmnp are third order scalar tensors defined in
Appendix A. The relative nutrient flux is then obtained
simply as

J = −dC0

dr
(r = 1). (30)

In the numerical simulations, the summations in
Eq. (27) are truncated at a finite number N of squirming

modes to describe the swimming stroke (1 ≤ n ≤ N),
and M Legendre polynomial modes are used to describe
the azimuthal variations of c (0 ≤ m ≤M−1). Adapting
the technique used in Ref. [34], the system of ODEs in r
is discretized on a stretched grid obtained by mapping as
r = eφ(ξ) a uniformly-spaced grid of Nr points in ξ. The
choice of an exponential stretching allows to cover both
far-field and near-field concentrations. The function φ is
a third-order polynomial in ξ such that a fixed fraction
of the total number of points are contained within the
expected concentration boundary layer at intermediate
and high Pe number. The discretized system (27) can
then be rewritten as

H ·C = R, (31)

where C is a Nr × M vector containing the values
of Cm(rj) on the different grid points, and H is a
M×M block-matrix, each block being tridiagonal of size
Nr ×Nr. The block structure of H is tightly-banded: H
is diagonal if N = 0, tridiagonal if N = 1, pentadiag-
onal if N = 2, etc. The contribution to the right-hand
side R arises from the non-homogeneous boundary con-
dition on the swimmer surface for the first mode C0(r).
This large linear system is solved using a direct block-
Gaussian elimination technique taking advantage of the
sparse structure of H.

D. Results

The Legendre Polynomial Spectral Method (LPSM)
presented in the previous section is now used to com-
pute, for different values of Pe, the nutrient concentration
around a squirmer for simple steady swimming strokes in-
cluding only the first two squirming modes. In Fig. 2, the
concentration field is shown for three different values of
Pe (1, 10 and 100) and three different swimming strokes:
the pure treadmill (βn = δn1), a combination of modes 1
and 2, and a pure mode-2 stroke. Note that in the latter
case, the organism is not swimming. The correspond-
ing relative nutrient uptake J is given for each case, and
the streamlines (independent of the value of Pe) are also
shown for each stroke.
At low Pe (typically Pe ≤ 1), the concentration dis-

tribution is close to isotropic, and only a few Legendre
modes are necessary to compute c(r, µ) accurately. The
far-field behavior is reached rapidly, so φ(ξmax) = 8 is suf-
ficient with Nr ∼ 80–100 to achieve errors of at most 0.1–
0.5% on the nutrient uptake. Note from Fig. 2 that the
nutrient concentration is not very sensitive to the swim-
ming stroke, resulting in similar relative nutrient uptake
J . In that regime, the typical diffusion time is much
shorter than the advective time, resulting in the homog-
enization of the concentration field and a weak front-back
asymmetry along the swimming direction.
As the value of Pe is increased, the concentration dis-

tribution develops a stronger angular asymmetry as a
nutrient-depleted wake (c close to 1) develops in the
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FIG. 2: (Color online) Nutrient concentration around the swimmer for Pe = 1, 10 and 100 (from top to bottom) and β2/β1=0,
5 and ∞ (from left to right), all the other βj being taken equal to zero. Far from the swimmer c = 0, while c = 1 at the
swimmer surface. The dimensionless nutrient flux J is quoted for each case. On the bottom row, the streamlines are displayed
for each stroke.

region “behind” the organism. Molecular diffusion is
not rapid enough to homogenize the sharper advection-
induced gradients as both processes now act on the same
time scale. This applies for swimming (β1 6= 0) as well
as non-swimming strokes (β1 = 0).

For Pe ≫ 1, a boundary layer develops for the nutrient
concentration in the region where the flow impinges on
the swimmer surface. In the regions where the radial flow
leaves the swimmer surface (wake of the treadmill swim-
mer or upward direction for the pure stresslet swimmer) a
nutrient-depleted region forms where molecular diffusion
processes do not have the time to smooth out the sharp

concentration gradients induced by the velocity field. Nu-
merically, more Legendre modes are required (typically
M ∼ 100 for Pe ∼ 10 up to M ∼ 400 for Pe ∼ 400), and
one needs to extend the r-grid further in the far-field (up
to φ(ξmax) ∼ 18–20 for the highest values of Pe consid-
ered) and increase its resolution (up to Nr ∼ 400 for the
highest values of Pe considered).

Figure 2 shows that for a given stroke the relative nu-
trient uptake, J , is an increasing function of Pe, empha-
sizing the systematic benefit of the swimming or stirring
motion on the feeding process. For a fixed Pe (i.e. con-
stant energy cost), it also shows that the treadmill swim-
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mer always performs better than the two other strokes
considered. The pure treadmill and pure mode-2 strokes
share the existence of a sharp nutrient-depleted ejection
zone. However, one notices easily that the gradients at
the surface of the organism are stronger in the former case
due to the swimming motion of the organism toward a
nutrient-rich zone. Swimming appears therefore, in these
preliminary results, to be a more efficient process than
simple stirring. The intermediate stroke is characterized
by a recirculation region that tends to create at high Pe a
zone of homogenized nutrient concentration in the wake
of the swimmer, thereby reducing the radial gradients in
that region as well as the nutrient uptake.
To confirm this optimality of the treadmill swimmer,

Fig. 3 shows the value of the nutrient uptake for all
possible swimming strokes obtained with only the first
three squirming modes (β1, β2, β3) (this consists of a two-
dimensional space because of the constant energy con-
straint, Eq. (21)). We see in Fig. 3 that, within this
three-parameter family of flow profiles, the optimal feed-
ing swimmer is located around β2 ∼ β3 ∼ 0, correspond-
ing to the treadmill swimmer.

III. OPTIMAL FEEDING BY A STEADY
SQUIRMER

The results of the previous section suggest that the
treadmill swimmer (βn = δn1) is a feeding optimum at
all Péclet numbers. In this section this result is con-
firmed by considering the formal optimization problem of
the relative nutrient flux J with respect to the swimming
stroke α. We start in Sec. III A by presenting the general
framework of adjoint-based optimization for a swimmer
of time-independent arbitrary shape S prescribing tan-
gential surface velocities uS on its boundaries. Although
the results presented in the remainder of the paper cor-
respond to the simplest geometry (a sphere), this frame-
work can be applied to organisms of arbitrary shapes
and is of interest for a large variety of advection-diffusion
problems. We then focus on the particular squirmer con-
figuration in Sec. III B, and present our optimization re-
sults in Sec. III C. We show that the optimal feeding
stroke is essentially the same as the optimal swimming
one, a result true for all values of the Péclet number.
These numerical results are also confirmed using asymp-
totic analysis predictions outlined in Appendices B and
C.

A. Nutrient uptake gradient for a general swimmer

To derive the optimal swimmer, the gradient of J with
respect to the swimming stroke must be mathematically
determined. This gradient indicates the changes to make
in the swimming stroke in order to increase J , leading
to a natural computational implementation of the opti-
mization search.
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FIG. 3: (Color online) Variations of the relative nutrient flux,
J , within the (β2, β3)-plane for (a) Pe = 5 and (b) Pe = 200
(β1 is adjusted so that

∑
β2
j = 1). Nutrient flux isolines are

also shown in black for clarity and correspond to the values
indicated in the colorbars. The crosses indicate the position
of the treadmill swimmer in the (β2, β3)-plane.

The gradient is obtained using variational analysis as
in Ref. [27]. Considering a small variation δuS of the
swimming stroke, and the corresponding change in the
flow velocity field δu = L · δuS (see Eq. 6), the resulting
change δΦ is given by

δΦ = − 1

Pe

∫

S

∂(δc)

∂n
dS, (32)

where n is the outward normal unit vector to the surface
of the swimmer and, at leading order, δc is the solution
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of

Peu · ∇δc−∇2δc = −Pe δu · ∇c, (33a)

δc = 0 for x ∈ S and x → ∞. (33b)

Multiplying Eq. (33a) by a test function g and integrat-
ing over the entire fluid domain Vf , one obtains after
integration by part that, at leading order,

δΦ = −
∫

Vf

c(L · δuS) · ∇g dV, (34)

provided that the function g satisfies the adjoint equa-
tion:

Peu · ∇g = −∇2g, (35a)

g = 1 for x ∈ S, (35b)

g → 0 for x → ∞. (35c)

Equation (34) defines the gradient of the absolute nutri-
ent uptake with respect to the swimming stroke. Since
Φ0 does not depend on the imposed surface velocity, the
gradient of the relative nutrient uptake J is obtained sim-
ilarly. Note that the adjoint field g satisfies the same
advection-diffusion equation as the original passive scalar
after replacing Pe by −Pe (or alternatively u

S by −u
S),

so the same analytical or numerical methods can be im-
plemented to solve for both fields.

B. Nutrient uptake optimization for a squirmer

In the particular case of a squirmer, the gradient of the
relative nutrient uptake J with respect to the swimming
stroke α is obtained from Eq. (34) as

∂J

∂αn
= −Pe

2

∫ ∞

1

∫ 1

−1

c(r, µ)

[

∂Ψn

∂r

∂g

∂µ
− ∂Ψn

∂µ

∂g

∂r

]

dµ dr.

(36)
Numerically, both the concentration and adjoint fields
are determined for a given swimming stroke α using the
method outlined in Sec. II C. The relative nutrient up-
take J is then obtained from C0(r) as in Eq. (30). Its
gradient with respect to αn is computed as

∂J

∂αn
= −Pe

∞
∑

m=0

∞
∑

p=0

[

Amnp

2p+ 1

∫ ∞

1

Cpψn
dGm

dr
dr

+
Bmnp

2p+ 1

∫ ∞

1

Cp
dψn

dr
Gmdr

]

, (37)

where the functions Gm(r) are defined in analogy with
Cm(r) from the adjoint field g(r, µ). All the above inte-
grals are well defined, taking into account the far-field be-
havior of c and g and the definitions of Amnp and Bmnp.
In the following, the optimal steady swimming stroke

for a given energy consumption is determined (i.e. the
optimal α or β at given Pe). Starting from a random

initial condition β
(0) on the unit hypersphere, the fol-

lowing steepest ascent algorithm is applied:

1. At step k, for a given stroke β(k), the LPSM is used
to solve for the concentration field c and its adjoint
g. The value of the corresponding nutrient flux J (k)

is also computed from Eq. (30).

2. From Eqs. (22) and (37), the gradient ∇βJ of the
relative nutrient flux is computed.

3. At fixed Pe , β(k) · β(k) = 1 and the gradient tan-
gential to the unit hypersphere is obtained by pro-
jection

∇‖J = ∇βJ −
(

β(k) · ∇βJ
)

β(k). (38)

4. ∇‖J defines the steepest ascent direction on the
unit hypersphere in β-space and the next iteration
is carried at a new guess for the optimal β

β(k+1) =
β(k) + s∇‖J

|β(k) + s∇‖J |
, (39)

until convergence is reached to a local maximum
when it is not possible to find a new guess with
J (k+1) > J (k) using this procedure, even in the
limit s→ 0.

C. Results

1. Optimal squirmer for various Pe numbers

The preliminary results obtained in Sec. II D suggest
that the treadmill swimming stroke corresponds to the
optimal feeding mechanism at all Péclet numbers. This
result is confirmed here using the numerical optimiza-
tion techniques outlined above. An arbitrary stroke is
characterized by an infinite number of coefficients βn; for
numerical purpose, this description must be truncated to
the firstN squirming modes, thereby exploring a reduced
stroke-space. The results of the stroke optimization are
presented below for the cases N = 3 and N = 8. Com-
putations performed for larger values of N led essentially
to the same optimal strokes and feeding rates.
For given values of N and 0.01 ≤ Pe ≤ 300, several

optimization runs were performed starting with different
random initial strokes. In each run, a rapid convergence
was observed toward an optimal stroke, only marginally
different from the treadmill swimmer (pure mode 1).
The variation of the optimal feeding rate with the

Péclet number, Pe, is shown in Fig. 4(a) and empha-
sizes the strong gain in feeding rate associated with the
performance of the swimming and/or stirring motion. As
J = 1 corresponds to the case of a rigid sphere (Pe = 0),
the quantity plotted on Fig. 4(a), J − 1, is a measure of
the excess rate of feeding induced by the surface motion.
Figure 4(a) also compares the results of the computa-
tional optimization procedure for two different values of
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FIG. 4: (a) Optimal stroke-induced nutrient flux J − 1 and
(b) Relative difference in nutrient flux, ∆J/J , between the
optimal swimmer and the treadmill swimmer as functions of
the Péclet number, Pe. Numerical results of the optimiza-
tion procedure are presented for N = 3 (crosses) and N = 8
(squares). Several sets of calculations were performed for each
value of Pe and N . In (a), the solid line corresponds to the
treadmill swimmer. In (a) and (b), the dashed and dotted
lines correspond to the asymptotic results for the treadmill
swimmer at Pe ≪ 1 and Pe ≫ 1 obtained in Appendices B
and C.

N with the feeding rate obtained for the treadmill swim-
mer. The main observation is that although the rate of
feeding is strongly dependent on the value of the Péclet
number, the numerical optimal is undistinguishable at
this scale from that of the treadmill swimmer for all val-
ues of the Péclet number. The asymptotic scalings for
the treadmill nutrient uptake Jtreadmill are obtained in

Appendices B and C (see also Ref. [34])

Jtreadmill ∼ 1 +
Pe

2
for Pe ≪ 1, (40)

Jtreadmill ∼
√

2Pe

π
for Pe ≫ 1, (41)

and show an excellent agreement with the numerical re-
sults (Fig. 4a).
The relative difference in nutrient flux, ∆J/J , between

the numerical optimal and that of the treadmill swim-
mer is shown in Fig. 4(b). We see that it is always small
– below 10−3 – across the investigated range of Péclet
numbers and is maximum around Pe ≈ 10. A clear
power-law scaling can be observed at low Pe for ∆J/J ;
for Pe ≤ 1, this power-law behavior is in excellent agree-
ment with the predictions of the asymptotic analysis (see
Appendix B):

∆J

J
∼
(

2161

1034880

)2

Pe7 ≈ 4.36 10−6Pe7. (42)

As a side note, the computational results above are
presented only for Pe ≥ 0.05. Below this value, the opti-
mization algorithm is unable to find optimal strokes per-
forming better than the treadmill swimmer. This does
not rule out the existence of a different optimum, but
indicates that this optimum differs from the treadmill
swimmer by an amount smaller than the round-off error
of our computations.
We now turn to the description of the optimal swim-

ming stroke. In the β-space where the stroke is repre-
sented by a point on the unit hyper-sphere, the differ-
ence to the treadmill swimmer is measured using the an-
gle topt = cos−1 β1 between the optimal stroke β and the
treadmill stroke. The fraction of the stroke energy cost
not dedicated to the swimming velocity, i.e. the energy
of the non-swimming modes, is sin2 topt and is directly
related to the swimming efficiency η of the stroke [27]:
topt ∼ √

1− 2η. The variation of topt with Pe is shown
on Fig. 5. For all Pe , the difference between the tread-
mill and optimal strokes remains small, with topt ≤ 0.02,
corresponding to an energy in the non-swimming modes
accounting to less than 0.04% of the total energy cost.
However, this small difference depends strongly on Pe
(see Fig. 5). At low Pe , topt scales as Pe

3, and for Pe ≤ 1
the numerical results are in excellent agreement with the
predictions of the asymptotic analysis (see Appendix B):

topt ∼
2161

517440
Pe3 ≈ 0.00418Pe3. (43)

For Pe ≫ 1, topt scales as topt ∼ Pe−1/3 (Fig. 5). Note
that the similarity in shape of Figs. 4(b) and 5 is a direct
result of topt ≪ 1, as explained below.

2. Gradient near the treadmill

The optimal feeding squirmer is essentially, but not
exactly, identical to the treadmill swimmer. Therefore,
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its properties and feeding rate are expected to be de-
termined by the nutrient flux gradient ∇J in the stroke
space, evaluated at the treadmill. For t ≪ 1, the swim-
ming stroke

β = cos tβ1 + sin tβ‖, (44)

is a perturbation of the stroke from the pure treadmill,
β1 in the direction β‖, such that β‖ · β1 = 0 (i.e. non-

swimming stroke). Then, the nutrient flux can be ex-
panded near β1 as

J = J1 + t

(

∂J

∂β‖

)

1

+
t2

2

[(

∂2J

∂β2
‖

)

1

−
(

∂J

∂β1

)

1

]

+O(t3),

(45)
where derivatives with a 1 subscript are evaluated at the
treadmill. The nutrient flux is therefore maximum for
the treadmill if and only if:

(

∂J

∂β‖

)

1

= 0 and

(

∂2J

∂β2
‖

)

1

<

(

∂J

∂β1

)

1

· (46)

More generally, the optimal value of t and corresponding
flux are given at leading order by

topt ∼
(

∂J/∂β‖
)

1

(∂J/∂β1)1 −
(

∂2J/∂β2
‖

)

1

, (47a)

∆J

J
∼

[(

∂J/∂β‖
)

1

]2

2J1

[

(∂J/∂β1)1 −
(

∂2J/∂β2
‖

)

1

] · (47b)
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FIG. 6: Dependence with the Péclet number, Pe, of the nu-
trient flux gradient ∂J/∂βn with respect to the first four odd
modes n = 1 (stars), n = 3 (squares), n = 5 (circles) and
n = 7 (triangles) and evaluated at the treadmill (the even
mode gradients are equal to zero by symmetry). The power
law dependence of each component is indicated by a dashed
line.

These results emphasize the critical role of the nutrient
flux gradient ∂J/∂βj in the localization of the optimal
feeding stroke with respect to the treadmill. Integrating
Eq. (36) by part, the gradient can be rewritten as

∂J

∂αn
= −Pe

4

∫ ∞

1

∫ 1

−1

[

∂Ψn

∂r

(

c
∂g

∂µ
− g

∂c

∂µ

)

+
∂Ψn

∂µ

(

g
∂c

∂r
− c

∂g

∂r

)]

dµ dr. (48)

Using the parity properties in µ of Ψn, one easily ob-
tains that for the treadmill, g(r, µ) = c(r,−µ), and con-
sequently

∀p ≥ 1,

(

∂J

∂β2p

)

1

= 0. (49)

The variation with Pe of the first four odd (and non-
trivially zero) gradient components of J at the treadmill
is plotted in Fig. 6. Clear scalings are identified for Pe ≪
1 and we obtain by regression [41]
(

∂J

∂β1

)

1

≈ 0.49Pe ,

(

∂J

∂β3

)

1

≈ 0.0020Pe4, (50)

and more generally
(

∂J

∂β2p+1

)

1

= O(Pe2p+2) for p ≥ 1. (51)

These results are in good agreement with the predictions
of the asymptotic analysis at low Pe (see Appendix B)

∂J

∂β1
∼ Pe

2
,

∂J

∂β3
∼ 2161

1034880
Pe4 ≈ 0.0021Pe4. (52)
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Figure 6 also shows that the gradient along the third
mode always dominates by at least one order of magni-
tude the gradients in the other directions, for all Pe. The
difference between the optimal and treadmill strokes is
therefore expected to be dominated by the third squirm-
ing mode which is confirmed by the fact that the results
presented in Section III C 1 are only marginally modified
between N = 3 and N = 8.
For large Pe, ∂J/∂β2p+1 ≪ ∂J/∂β1, which is consis-

tent with the asymptotic result that the feeding rate only
depends on β1 at leading order (see Appendix C).

IV. DISCUSSION

In this paper, the steady spherical squirmer model
was used to determine optimal feeding strategies at zero
Reynolds number. For a nutrient following an advection-
diffusion equation, we showed computationally and the-
oretically that, for a fixed amount of energy dissipated
in the fluid, the optimal feeding mechanism is essentially
equivalent to the optimal swimming problem, and its so-
lution maximizes the swimming velocity.
Perhaps surprisingly, the result that optimal feeding is

optimal swimming does not depend on the value of the
Péclet number, which is confirmed by asymptotic anal-
ysis. At low Péclet, the improvement in feeding rate
as compared to quiescent fluid environment (pure nu-
trient diffusion) is, as expected, small and, it increases
as Pe. This linear scaling arises from the proportional-
ity between the gain in nutrient uptake and the volume
swept by the swimming organism, which itself is pro-
portional to its surface area times its swimming speed.
In the high Péclet regime, the development of concentra-
tion boundary layers means that the volume swept by the
swimming organism decreases, and the relative nutrient
uptake shows a slower increase with Pe than linear.
One interesting feature of the optimal feeding (equiva-

lently, optimal swimming) solution is that it is vorticity
free. This surface treadmill solution corresponds indeed
to the only surface distribution of velocity which leads
to potential flow Stokesian swimming. This result could
very well be a simple consequence of our emphasis on
energy cost, as the presence of vorticity always increases
the rate of energy dissipation [37].
Note that the occurrence of a Pe-independent optimal

feeding stroke in our simulations is reminiscent of results
on optimal tracer mixing obtained for all Pe using flows
directed from sources to sinks [38]. Here, the optimal
stroke corresponds to the swimmer (a sink) maximizing
its velocity toward the sources of nutrients in the far-field.
One of the major assumptions of our modeling ap-

proach is the restriction of the study to steady surface
motion. In the case of our work on locomotion optimiza-
tion [27], we showed that although the treadmill swim-
mer is itself not physical (due to the non-periodicity of
the trajectories), the unsteady optimum was found to be
a superposition of the treadmill solution with periodic

shock-like recovery strokes where material elements on
the organism surface were brought back to their initial
position. We conjecture that the same will be true in
the case of feeding, and that the solution to the optimal
feeding for periodic surface motion will be a combination
of the optimal steady (treadmill) with regularization to
enforce periodicity at a rate allowed by the energetic con-
straints. Ongoing work in this direction, technically more
complex as it requires solving for the spatio-temporal
evolution of both the concentration field and the adjoint
field, will be reported in the future.
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Appendix A: Definition of the Amnp and Bmnp

tensors

The coefficients Amnp and Bmnp used in Section II C
are defined in terms of the Legendre polynomials as fol-
low:

Amnp =
(2p+ 1)(2n+ 1)

2

∫ 1

−1

Lm Ln Lp dµ, (A1)

Bmnp =
(2p+ 1)(2n+ 1)

2n(n+ 1)

∫ 1

−1

(1− µ2)L′
m L′

n Lp dµ.

(A2)

They are easily computed using

Am0p = δmp, Bm0p = 0. (A3)

and the following recursive relations for n ≥ 1

Amnp =
2n+ 1

n

[

− n− 1

2n− 3
Am,n−2,p +

m+ 1

2m+ 1
Am+1,n−1,p

+
m

2m+ 1
Am−1,n−1,p

]

, (A4)

Bmnp =
2n+ 1

n(n+ 1)

[

(n− 2)(n− 1)

2n− 3
Bm,n−2,p

+
m(m+ 1)

2m+ 1
(Am−1,n−1,p −Am+1,n−1,p)

]

.

(A5)

Appendix B: Asymptotic analyis: optimal feeding
for Pe ≪ 1

In this appendix, we focus on the treadmill stroke βj =
δj1, and determine the concentration field c, nutrient flux
J and nutrient flux gradient for Pe ≪ 1 using asymptotic
analysis.
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1. Concentration field around the treadmill

For Pe ≪ 1, c(r, µ) is sought in the form of a regular
perturbation expansion in Pe :

c(r, µ) =

∞
∑

p=0

Pepcp(r, µ), (B1)

with c0 = 1/r, the rigid sphere (Pe = 0) solution. How-
ever, this expansion is not uniformly valid over the entire
fluid domain and one must consider a boundary layer
at infinity for Pe > 0 [34, 39]. In the near-field (outer
solution), c must satisfy the advection-diffusion equation

1

r2

[

∂

∂r

(

r2
∂c

∂r

)

+
∂

∂µ

(

(1 − µ2)
∂c

∂µ

)]

=− Pe

[

µ

(

1− 1

r3

)

∂c

∂r
+

1− µ2

r

(

1 +
1

2r3

)

∂c

∂µ

]

,

(B2)

as well as c = 1 on the swimmer surface. In the bound-
ary layer C (ρ, µ) = c(r, µ), with ρ = Pe r, must instead
satisfy the boundary-layer equation as

1

ρ2

[

∂

∂ρ

(

ρ2
∂C

∂ρ

)

+
∂

∂µ

(

(1− µ2)
∂C

∂µ

)]

+ µ
∂C

∂ρ

+

(

1− µ2

ρ

)

∂C

∂µ
=

Pe3

ρ3

[

µ
∂C

∂ρ
− 1− µ2

2ρ

∂C

∂µ

]

,

(B3)

as well as C → 0 for ρ→ ∞.
Both c and C are sought as regular perturbation

series in Pe . Using Matched Asymptotic Expansion
[40], both solutions are computed up to order O(Pe p)
(p = 1, 2, 3) and integration constants at each order
are obtained by identifying the two solutions up to
terms O(Pe p,Pe p−1/r, ..., 1/rp) over a matching region

Pe−p/(p+1) ≪ r ≪ Pe−1.
The final solution valid up to O(Pe 4) is given by

c(r, µ) =

3
∑

p=0

Pe p

p
∑

q=1

cqp(r)Lq(µ), (B4)

valid for 1 ≤ r ≪ Pe−1 and

C (ρ, µ) =

{

Pe +
Pe2

2
+Pe3

[

17

80
+

3µ

8

(

1 +
2

ρ

)]}

× 1

ρ
exp

[

− (1 + µ)ρ

2

]

, (B5)

valid for Pe1/(p+1) ≪ ρ, where the functions cqp(r) are
defined in Appendix D. Using Eq. (30), the nutrient flux
is then obtained as

J = 1 +
Pe

2
− 13Pe 2

80
+

7Pe 3

80
+O(Pe 4). (B6)

2. Gradient computation

Using the previous expansion and Eq. (36), one can
compute ∂J/∂βn at the treadmill. Using the front-back
symmetry of the treadmill velocity field, the asymptotic
expansion of the adjoint field is obtained as g(r, µ) =
c(r,−µ) and G (r, µ) = C (r,−µ). Splitting the integral
in r in Eq. (36) between inner and outer regions, one
obtains

∂J

∂αn
= −Pe

2
(Iint + IBL) (B7)

Iint =

∫ Pe−7/8

1

{

dψn

dr
Fn

[

c
∂g

∂µ

]

+ ψnF
∗
n

[

c
∂g

∂r

]}

dr

(B8)

IBL =

∫ ∞

Pe1/8

{

dψn

dρ
Fn

[

C
∂G

∂µ

]

+ ψnF
∗
n

[

C
∂G

∂ρ

]}

dρ

(B9)

where Fn and F ∗
n are projection operators on the Leg-

endre polynomials

Fn[f ](r) =
2n+ 1

n(n+ 1)

∫ 1

−1

f(r, µ)(1− µ2)L′
n(µ)dµ,

(B10)

F
∗
n [f ](r) = (2n+ 1)

∫ 1

−1

f(r, µ)Ln(µ)dµ. (B11)

For n = 3, the integral in Eq. (B9) is at least O(Pe4). Us-
ing Eq. (B4) and the definition of cqp in Appendix D, the
gradient with respect to the third mode is then computed
as

∂J

∂β3
=

2161

1034880
Pe4 +O(Pe5). (B12)

Following a similar approach, the gradient with respect
to β1 is computed as

∂J

∂β1
=

Pe

2
+O(Pe2). (B13)

Note that a similar but longer approach consists in
computing the gradients directly from the expansion of
c for an arbitrary combination of two modes [34]. This
calculation, omitted here for clarity, also provides the
second derivative ∂2J/∂β2

3 evaluated at the treadmill:

∂2J

∂β2
3

=
27

7840
Pe2 +O(Pe3). (B14)

Using the results of Sec. III C 2, J has a maximum
in the (β1, β3)-space at βopt

3 corresponding to a relative
increase ∆J/J of the nutrient flux:

βopt
3 ∼ 2161

517440
Pe3 ≈ 0.00418Pe3, (B15a)

∆J

J
∼
(

2161

1034880

)2

Pe7 ≈ 4.36 10−6Pe7.(B15b)
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Appendix C: Asymptotic analysis: optimal feeding
at Pe ≫ 1

As shown in Fig. 2, the feeding problem at Pe ≫ 1
is characterized by the formation of a boundary layer in
the concentration distribution near the squirmer’s sur-
face, whose thickness scales as Pe−1/2 due to the bal-
ance between tangential advection and radial diffusion
near the swimmer’s surface. Generalizing the analysis in
Ref. [34] to arbitrary strokes, Eq. (8) becomes at leading

order in 1/
√
Pe ,

∂2c

∂R2
= ζ′(µ)R

∂c

∂R
− ζ(µ)

∂c

∂µ
, (C1)

with R =
√
Pe (r − 1) and ζ the axial component of the

tangential surface velocity:

ζ(µ) =
√

1− µ2 uSθ (µ). (C2)

A self-similar solution is sought for the previous equa-
tion in terms of the variable η = R/g(µ), where g(µ)
represents the boundary layer thickness. Equation (C1)
then becomes

∂2c

∂η2
= η

∂c

∂η

{

ζ(µ)g(µ)g′(µ) + g(µ)2ζ′(µ)
}

. (C3)

Provided that

ζ(µ)g(µ)g′(µ) + g(µ)2ζ′(µ) = −2, (C4)

a self-similar solution compatible with the boundary con-
ditions Eq. (9)-(10) exists, given by

c(R, µ) =
2√
π

∫ ∞

R/g(µ)

e−η2

dη. (C5)

Equation (C4) can be solved for g(µ) with the addi-
tional constraint that the boundary layer thickness g(µ)
is finite at µ = 1

g(µ) =
2

ζ(µ)

√

∫ 1

µ

ζ(t)dt . (C6)

If the surface velocity uSθ is positive everywhere (i.e. there
are no recirculation regions), then g(µ) remains finite for
all µ > −1, and the boundary layer solution above is valid

over the entire surface of the squirmer. This condition is
satisfied by the treadmill swimmer, and in some vicinity
of it. At µ = −1, g(µ) = ∞ and the boundary layer
separates into the wake observed on Fig. 2.
The nutrient flux at the surface of the squirmer is then

obtained from Eqs. (25) and (C5) as

J =

√

Pe

π

∫ 1

−1

dµ

g(µ)
+O(1), (C7)

and can be computed exactly from Eq. (C6) as

J =

√

Pe

π

∫ 1

−1

ζ(µ)dµ+O(1) =

√

2β1Pe

π
+O(1). (C8)

One observes that at leading order J depends on β1 only.
Appendix D: Definition of the functions cqp(r)

The functions cqp(r) in Eq. (B4) are given by

c01 =
1

2

(

1

r
− 1

)

(D1)

c11 =− 1

2
+

3

4r2
− 1

4r3
(D2)

c02 =
r

6
− 1

4
+

7

80r
+

1

24r2
− 1

16r4
+

1

60r5
(D3)

c12 =
r

4
− 1

4
+

1

8r2
− 1

8r3
(D4)

c22 =
r

12
− 1

4r
+

5

24r2
+

3

56r3
− 1

8r4
+

5

168r5
(D5)

c03 =− r2

24
+

r

12
− 17

60
+

11

240r
+

1

48r2
− 1

96r4
+

1

120r5
(D6)

c13 =− 3r2

40
− r

8
− 23

160
− 3

40r
+

527

1120r2
− 11

320r3

− 3

112r4
− 3

560r5
+

3

160r6
− 9

2240r7
(D7)

c23 =− r2

24
+

r

24
− 1

12r
+

5

48r2
− 5

336r3
− 1

48r4
+

5

336r5
(D8)

c33 =− r2

120
+

3

80
− 1

20r
− 9

560r2
+

3

40r3
− 9

224r4

− 9

1120r5
+

1

80r6
− 1

420r7
(D9)
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