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Abstract

A double stage sequential optimization algorithm for findingdpemal fiber content and its
distribution in solid composites, considering uncergasign parameterss presented. In the
first stage, the optimal amount of fiber in a Fiber Raicéd Composite (FRC) structure with
uniformly distributed fibers is conducted in the framework oRealiability Based Design
Optimization (RBDO) problem. In the second stage, the filigrilobution optimization having
the aim to more increase in stru@blreliability is performed by defining a fiber distribution
function through a Non-Uniform Rational B-Spline (NURBS)face. The output of stage
1(optimal fiber content for homogeneously distributed fipeysonsidered as the input of stage
2. The output of stage 2 is Reliability Index (RI) of theustiure with optimal fiber content and
optimal fiber distribution. First order reliability metth in order to approximate the limit state
function and a homogenization approach, based on thenpten of random orientation of
fibers in the matrix, are implementethe proposed combined model is able to capture the role
of available uncertainties in FRC structures through apctationally efficient algorithm using
all sequential, NURBS and sensitivity based techniquedorifed case studies show as an
increase in model uncertainties yields to structural waivdiy. Moreover, wkn system

unreliability increases fiber distribution optimization bews more influential.

Keywords. Reliability Based Design Optimization (RBDO), Reliability Analyss, Fiber
Reinforced Composite (FRC), Fiber Distribution Optimization, NURBS

1. Introduction

Uniform mechanical properties of FRCs depend on uniform dismeos$ fibers in the matrix.
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Nomenclature of homogenization technique:

Cs(x),Cip(x) Elastic tensor of the fiber and of the matrix material, respsgtiv
Ceq Homogenized elastic tensor of the composite
Ef Ep, Young’s modulus of the fiber phase and of the matrix, respectively
i Unit vector parallel to the generic fiber axis
Q=(®Ii Second-order tensor related to the fiber lying along tieection
V.V, Vs Volume of the composite, volume of the matrix phase and volu
of the fiber fraction present in the RVE, respectively
w' Composite work rate
x Generic position vector
€& Strain and virtual strain rate tensors, respectively
£, gf?f Fiber strain, virtual strain and virtual strain rate, respectively
K(x) Point function denoting the presence of the matrix at the locatic
x(x) Point function denoting the presence of the fiber at the location
Vin RVE matrix volume fraction
=5
Vy RVE fiber volume fraction
np = 7
G,05,0,, Stress in composite, axial stress in a fiber and in the aiquiv

material

Many efforts have been made to quantify, improve and ingpeittrm dispersion of reinforcing
elements in the matrix phase [1-6]. In contrary, fesearches have been done to obtain non-
uniform distribution of fibers in order to obtain optimalustural response. Huang and Haftka
[7] tried to optimize fiber orientation (not distributjpnear a hole in a single layer of multilayer
composite laminates in order to increase the load caspgoity by using Genetic Algorithm
(GA). Optimal distribution of the fibers in a FRC structure has bemsented in [8] and [9] by
using GA and sensitivity based approaches, respectively.optinal fiber content and also
available uncertainties are addressed neither indi8]j.

Actual characteristics of a FRC material are inflleshby many of uncertainties which come
from variety of sources such as constituent materiapgnties, manufacturing and process
imperfections, loading / boundary conditions or even stratjgometry. Neglecting the role of
these uncertainties may affect the reliability of sheicture. Structural reliability can be defined
as the ability of a structure to fulfill some sought design p@wgok order to quantify these

design purposes, limit state concept has been introducetdm @ quantitative measure for



structural safety. Deterministic limit states without sidering uncertainties can be unreliable
and might bring to overestimate the bearing capacityhef structure, with the risk of its
catastrophic failure. However, the traditional approach wigchased on safety factor is not
always efficient and could result in a costly and unresmgsconservatism [10].

There are some methods for considering the role of taiBes in design performance. One of
these methods is the so-called RBDO which tries to fpidmal performance considering some
probabilistic design constraints. Motivated by capabilities RBDO in uncertainty
guantification, some researchers have implemented thandesign of composite structures.
Though there are some exceptions, most cfethesearchsare related to composite laminates
However, to the knowledge of the authors, the solid FR@tstres are not thoroughly explored.
Thanedar and Chamis [11] developed a procedure for theirgilaf layered composite
laminates subjected to probabilistic constraints and loduswbrk of Jiang et al. [12] suggested
a methodology to optimize the plies orientations obmposite laminated plate having uncertain
material properties. Gomes and his coworkers [13] addressgdotiliem of composite laminate
optimization by using GA and Artificial Neural Networks (ANN); while Antonio’s work [14]
presented reliability based robust design optimization odetiogy. Noh et al. [15] have
implemented RBDO methodology for purpose of optimizing va@urnaction in a Functionally
Graded Material (FGM) laminate composite.

Generally, increasing the fiber volume fraction in a F&@nposite will increase its structural
strength and stiffness. However the existence of a paaatpper limit should be considered.
Normally, composite structural elements under mechanit®@ires have some regions which are
on the edge of design constraints (e.g. the maximum alloveatass is exceeded) and can be
identified as failure zones. Usually these failure zonesatgicthe required content of the
reinforcing element in order to get a properly strengtheneeratl structure, fulfilling
everywhere the design constraints. Considering uniforstrilsution of fibers through the
structure, initially safe regions that already fulfiletdesign constraints will inevitably increase
their fiber content. Thus, an efficient optimizatiapproach which seeks towards ogtlrfiber
content should also pay attention to ogtirdistribution of fibers in order to strengthen only
those portions of the structure (failure zones) for wilitide necessary to improve their bearing
capacity. From the above discussions it appears thatoiht manipulation of these two

parameters (i.e. fiber content and its distributionhilev available uncertainties are also



addressed, will be a necessary approach towards moreemffiand reliable structural
optimization. Such an approach could obviously have promisidgstrial application such as
patch repair optimization in cracked plates [16-A8d minimizing stress concentration in
sandwich beams [15[t can alsde extended to cement composites [19-20].

The outline of the present paper is as follows: Section Zepte an overview of
homogenization technique for obtaining equivalent material prppeile a description of
reliability analysis and RBDO is presented in Section XtiGe 4 briefly describes fiber
distribution optimization procedure followed by the presgsmaof sequential optimization
methodology which is discussed in more details in Se&idSection 6 contains some numerical
examples. The concluding remarks are presented in S&ction

2. FRC homogenization methodology

Basically, the aim of homogenization techniques is to fopdvelent material characteristics in
a Representative Volume Element (RVE) of composite mahteThere are some classical
approaches in order to model the material properties ofrgpasite material among which are
the Rule of Mixture, Hashin-Shtrikman type bounds, [24], Variational Bounding Techniques
[23], Self Consistency Method [24] and Mori-Tanaka Meth@®b][ The homogenization
approach used in this research work is a simplified versiearecently developed mechanical
model to get the FRC constitutive behavior based on emeggptivalence between the real FRC
material and the macroscopically homogeneous one. Thigisated through the evolution of
the shear stress distribution along the fiber-matrierface during the loading process. The
adopted model for fiber homogenization can be considerbd toechanically-based, since the
fiber contribution to the FRC mechanical properties arerdehed from the effective stress
transfer between matrix and fibers. The possibilityiledrE matrix debonding can be easily taken
into account [8, 26]. Since the goal of this paper i$otms on fiber content and distribution
through the structure rather than developing micromechamicdel, for the sake of simplicity,
we neglect this issue in the present work. It can be dstiadédor not too high stressed composite
elements (as followed in our numerical examples) teath shear fiber-matrix interface stresses
well below the allowable limit shear bimaterial stress, thebonding phenomenon can
reasonably assumed not to occur. Fiber failisrealso neglected. This approach is briefly

summarized below; however interested reader can ref2r129] for more details.



The equivalent elastic properties of a fiber reinforcethmusite material- for which the
hypotheses of short, homogeneously and randomly dispersesl ditemade- can be obtained
by equating the virtual work rate of constituents for a RMEhe composite material (Fig.1)

with equivalent homogenized one as shown by:

composite's work rate homogenized material’s work rate
——
W'=f K(x)?,:adV+f x(x) & :0pdV = f E:0.,dV (D
14 v v

where€;, o; are the virtual strain rate and the stress in a fiempectively, while the scalar

functionsk(x) andy(x) assume the following meanings:

1 if(x)e V, 1 if (@) e V;
0 if (x) & Vy 0if (x) &V

and allow us to identify the location of the material paomneither in the matrix or in the

K@) = and  y(x) = { @)

reinforcing phase.
The constitutive relationships of the fibers and of biodk material can be simply expressed
through the following linear relations:

or=E (iQi):¢€ and Ooq(x) = Coq(x): € 3)
in which Efis the fibers’ Young’s modulus, & is the fiber strain, C., is the composite
equivalent elastic tensor whikeis the actual matrix strain tensor. Eqg. (3) has heetten by
taking into account that the matrix strain measured @ fther direction is given by, =
(i®i): € where i = (sinfcos¢ sinbsing cosh) is the unit vector identifying the generic
fiber direction, (Fig.1); and analogously for the virtéigland the virtual strain rate,

& =iz and &=>1QIi):E 4)

by substituting the above expressions in the virtual waik eguality (Eqg. (1)) we can finally

identify the composite equivalent elastic tensor:
1
Ce@ =55 | @) €+ 2GOE; - [Q® QNIaV =
14

:.u'cm-l'anf'fV Q®Qadv (5)



% W
Fig.1. Fiber reinforced composite material: definition of theER{vith a characteristic length d, while

the composite has a characteristic length D>>d) and ofitéedrientation angleg, 6, ref. [26.

where the second-order tenge= (i @ i) has been introduced and the matrix and fiber volume
fractionsu = % fV k(x)dV = V7m andn, = % fV x(x)dv = {;—f have been used.

It can be easily deduced as the equivalent material isos@pically homogeneous at least at
the scale of the RVE witthe volumeV. So, the equivalent elastic tensy,(x) does not
depend on the position vector, i.6.,(x) = C,,.

The calculation of the equivalent elastic ten6gy through Eq. (5), needs to evaluate the below

integral over a sufficiently large volume, represtémeaof the macroscopic characteristics of the
composite. The above integral can be suitably assessadhemisphere volume which allows
considering all possible fiber orientations in the contpos

ol
Vhem

Vhem

R pr2m ,m/2
Q®QdV=J;j; _]; Q®Q)rdprsinfdb dr =

R3 1 2n /2
= J0 0
3
1 2 /2
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0 0

3. Réliability assessment and optimization for mulations (stage-1)
The fundamentals of structural reliability are briefly qgeted below however, interested

readers can refer to [30] and references therein foe ohetails. The structural reliability concept



can be simply described by the exampleasteel rod with constant cross sectional area under
uniaxial tension (see Fig. 2). In the deterministic c#sthe applied load L) is less than rod

strength @), failure will not occur and the rod will be safe and twoaventional safety factor
index S.F = g) Is used to quantify the system level of confidencepraabilistic casel, andR

are not fixed values but instead they are random vari@blesining uncertainties. In this case
X, and X are nonnegative independent random variables with BiltpaDensity Functions

(PDF) f.(x;) and fr(xg), respectively. In essence, for a vector of randomakies X =
{x4,...,x, } T, the PDF can be calculated Iy(x) = ;—xe(x), where Fx(x) is the so called

Cumulative Distribution Function (CDF) and relates thebpbility of a random everib a
prescribed deterministic value (i.e. Fxy(x) = Prob[X < x]).

In considering the rod example, the boundary between @& x; > x, ) and failure (i.e.
xg < x;) regions can be defined gyfx) = xz — x, which is called Limit State Function (LSF).
Thus,g(x) < 0 denotes a subset of the space, where failure occurs.

The concept of Reliability Indexs] which has been proposed by Hasofer and Lind [31] in 1974
requires standard normal non-correlated variables; esaréimsformations from correlated non-
Gaussian variableX to uncorrelated Gaussian variablégwith zero means and unit standard
deviations) is needed. According to this definitionfofthe design point is chosen such as to
maximize the PDF within the failure domain. Geometricallgpitresponds to the point in failure
domain having the shortest distance from the originadced variables to the limit state surface
(i.,e. g(U) =0, as shown in Fig.2). Mathematically, it is a minintiaa problem with an

equality constraint:

B = min(U. UT)%

s.t: (7)
g) =0
which leads to the Lagrange-function:
1
L = min {E UTU + Ag(U)} (8)

The solution of Eq. (8) is called the Most Probable P@iRt,,) or briefly MPP and can be

obtained by a standard optimization solver.
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Fig.2. Structural reliability concept

The failure probabilityP;, can be measured by the probability integral as:

Ps = Prob[g(x) < 0] = j fx(x)dx (9

x]g(x)<0

The evaluation of the integral in Eq. (9) (the fundamesgaation of reliability analysis) in most
cases is not an easy task and needs specific solatibniques. One approach is to analytically
approximate this integral, in order to get simpler functionrsHo Such techniques can be
categorized ito two major groups: First and Second Order Reliability Method (AO&R
SORM) which respectively approximate LSF with the first oleat the second order of Taylor
expansion at the MPP (Fig. 3).
There are also alternative methods for calculativegdrobability integral: among them Monte-
Carlo Method (MCM) may be the most important one sihds usually used as the reference
method due to its precision to calculate failure probabiigch of the above cited methods has
advantages and disadvantages which should be considecesklyréefore implementation. For
instance even though MCM is a precise method, it stasesious drawback in the case of small
values of the failure probability [32]. Computational castanother dominant parameter for
sdecting the appropriate solution method. Methods baseith@SORM and MCM approaches
are usually numerically more expensive in comparison WRM. In practical problems an
appropriate balance must be necessarily considered betwe@mcy and cost of the analysis. In

the present work FORM has been implemented since ittebdeiifor cases with a small number

8



of random variables. Such an approach is usually suffigiextcurate to be used for real
applications of structural design [33]. In the followirtge implementation of the FORM is
briefly described, however more details about availaldthads for structural reliability analysis

can be found in [32].

Failure
Domain

mapping of failure surface
from X-Space to U-Space FORM

Safe
Domain
N Failure
g(X)=0 &/ gafe Domain
Domain

‘Xi )__/\Ui

X-Space U-Space sUy0

Fig.3. Graphical representation of the FORM approximation

3.1. First order reliability method (FORM)

The FORM approximation can be traced back to First OrdernSedoment (FOSM) method
which is based on first order Taylor series approximabtibthe LSF, linearized at the mean
values of random variables, while a Second-Moment stati§theans and covariances) is used.

In this context the limit state function can be approxedas below:

gx) =g(xy) + Z o, ~e=ao (i — Xi0) + ZZ Z axlaxk | =y (X — X30) (g — Xpep) + -+

i=1k=
(10)
Terminating the series after the linear terms yields:
n ag
ElZ] = Elg(0] = g(xo) + ) =T Elx; — xi] (11)
i=1 "

whereE stands for expected value (or ensemble average) of amamaantityg(X) and can be
defined in terms of the probability density functiornads:

ElgX)] = [ g()fy (x)dx (12)
If the mean value vectdf is chosen as the starting expansion pajnfor the Taylor series, then

E[Z] = g(x,) and the variance becomes:



_ _ o 0 _
of = El(Z — 2] = El(g(X) - g1 = E|( ) =2 (X = %)

D> 52 2% B0k~ R — Ko (13)

X
i=1k=1

finally the distribution functiorF,(z) is approximated by a normal distribution:

z—7
F,(z) = d>< > (14)
0z
then we obtain the approximate result:
Z
P; = F;(0) = @ <——> (15)
0z

the reliabilityR can finally be expressed as:
R = ®(pB) (16)

wheref = az and the probability of failure consequently becomes expiess.
Z

Pr=1-R=1-®(p) = d(-p) (17)
3.2.RBDO
In its basic form the problem of RBDO can be expresseoelow:
0),...f,-1(0)<0
mmc(e) f1( ) fq 1( ) (18)

}Z(X,B) =p—BX,0)<0
where 0 is the vector of the design variahle6(@) is the cost or objective function,
f1(0), ..., f,-1(8) is a vector ofl to (¢ — 1) deterministic constraints over the design variables
0, f;(X,0) is the reliability constraint enforcing the respect @FLand considering the
uncertainty to which some of the model paramefrare subjected t@, is the target safety
index. To solve Eg. (18), the open source software FERUNB4]lhas been implemented and
linked to FE code which evaluates the LSF.

In our model,@ could be defined as the matrix or fiber Young’s modulus, material density or
applied loads while the objective function corresponditbthe optinal fiber volume fraction.
Without loss in generalityhe maximum deflectiond,,,,,) of the component under the applied

load (obtained by FEM codé& compared with predetermined valug, () as design constraint.
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The limit state function is defined hy(x) = d,; — d.qr @nd the failure (x) < 0) occurs
whend,; < dn.- It is straightforward to extend design constraints to othertsialaesponse
like maximum stress, maximum stress mismatch or d@weethermal and electrical fields
However, as the aim of this paper is introducing the sequeg@oach in optimizing FRC
structures, we neglect to discuss about them for sake pliciynand clarity.

4. Deterministic fiber distribution optimization usng NURBS functions (stage-2)

Currently, NURBS are incorporated into most of the gedmetodeling systems. NURBS
functions are used within this work to calculate an approximaif a given set of points through
a smooth function. There are two notions of meshescanérol mesh and the physical mesh.
The former is defined by control points and is like afetéfthat controls the geometry, while
the latter defines the actual geometry. There are alsménons of elements used in the physical
mesh that must be taken into account: the patch ankintftespan. The patch is a sub-domain
and is represented in either parent domain or physicaé splite knot spans (bonded by knots)
define each patch. Based on the topology, knots cgoings, lines or surfaces. Since NURBS
curves and surfaces are exhaustively presented in numeferences, to prevent duplication,
interested readers are referred to [35] to find more alQRBS surface characteristics. Fig.4
schematically shows different NURBS spaces and approximafimodal values by a smooth

function.

\ e~ »}" = ’/
0 w w18 \/
L
a) Parent element b) Parameter space c) Physical space
Fig.4. Different NURBS domains (a), (b), (c) and approximatigrNURBS function (c)
It should be declared that NURBS basis functions have ahlications in the present work:
the model analysis and fiber distribution. The formepasformed by quadratic NURBS finite

elements through an isogeometric analysis (IGA) appr{zhwhile the latter is presented in

more detail in [9] and is briefly describédfollowing.
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In our methodology nodal fiber volume fractiogp; () on control points are defined as design
variables and fiber distributiomy) is approximated by using NURBS surface. Every point on
parametric mesh space of the design domsaimapped to geometrical space having two
attributes, geometrical coordinates and fiber volume itmactvalue. Due to intrinsic
characteristics of NURBS (higher order basis and congaaport, see [35]), even using coarse
meshes, fiber distribution function described through a BSRurface is smooth enough to
have a clear representation of optimization results no need for any further image processing
techniques.

Fiber distribution functiom, (x,y), which indicates the fiber amount at every design point and

is used for obtaining homogenized mass and stiffness td Bi@ments, is defined according to:

m

@y =Y ) RIE o (19)

i=1 j=1
whereRE}qare NURBS basis functions. Once the fiber volumetifsacat each point is available,
by substitution in Eq. (5), we can define the equivalenthaueical characteristics of the domain

through the equations below:

Coa(x,y) = (1—np)-cm+anf-f 0®Q dv 20)
Vv

In deterministic fiber distribution optimization probleminimization of strain energy is

considered as objective function. For the problem wmitlmad cases we have:
m
Uzz,wi A,>0 1)
i=1

where U and U! are the total strain energy and elastic strain energy & load case,
respectively.4; is the associated weight for strain energy which e lwonsidered equal to

unity unless otherwise specified. The tefiscan be also defined as:

nel

. 1 .
Ul = [sz &l C,y £,dV]! (22)
e=1 "V

in Eq. (22)¢, is the strain vector associated with eleme@indC,, is the homogenised elastic

tensor of the composite at each point evaluated acgpitdi Eq. (5).nel is the number of
elements in the FE model.

The optimization problem can be finally summarized as\est

12



Minimize: U

Subjected to: wr = [, mpprdV < wpg (23)
Ku=f (24)
@,j—1=<0 (25)
—;; <0 (26)

wherewy is the total fiber weight in every optimization iteratiand wy, is an arbitrary initial
fiber weight which must be set at the beginning of the opditioim processK, u and f in EQ.
(24) which represents the general system of equilibrium equatidimear elastic finite elements
method, represent the global stiffness matrix ofdygem, the displacement and force vector,
respectively.

By introducing a proper Lagrangian objective functidn,and by using the Lagrangian

multipliers method we have:

ncp ncp
L=U—(wp—wp ) — Z (e —1) — Z Vo (—¢i ;) (27)
=1 ij=1

where,,y, are upper and lower bounds values of the Lagrange mubkiptespectivelyncp
is the number of control points. By equating the firstivdgive of Eq. (27) to zero we will
obtain:
al ou  dwy
09 ; B 0, ; - 0 ;

In this work we have implemented optimality criteria (OC)sdzh optimization (Zhou &

— Y1+, =0 (28)

Rozvany, 1991, [36]) to numerically solve Eqg. (28). OC represansmple tool to be
implemented and allows a computationally efficient sotutiecause each design variable is
updated independently. A detailed description of the updatimgnse of OC is not reported in

the paper; however interested readers can refer to [36]doe details.

5. Double sequential stages optimization procedure
The sequential optimization algorithm is schematically titated in Fig. 5. In this approach
there are two successive optimization stages. Stage 1 isciudtochastic fiber content
optimization algorithm and stage 2 includadiber distribution optimizer. In the first stage,

based on the nature of the problem, the designer cadededich parameters would be

13



deterministic and which ones probabilistic. He can alsdrgeinitial values of the parameters,
variables and solution settings. Traditional RBBO@mplemented by use of a nested or double
loop approach. In this method, each step of the iteréiodesign optimization involves another
loop of iteration for reliability analysis (i.e. FORMN this stage, minimization of fiber content
is considered as optimization objective function and aievergence, the outpig used as the
input for the second stage. In the second stage, NURBS8 &l@ments which are implemented
and used for domain discretization, define continuous andtsmmesh independent fiber
distribution function by using the nodal volume frantoof fibers as the optimization design
variables. The second stage is initialized by using itter fvolume fraction value, coming as
stage 1. Afterwards Optimality Criteria (OC) updates designabkes. This computational
procedure is executed iteratively, till no sensible changas @t design variables [9].

In the presented model, two separate reliability indiggandp,) are introducedp, is the first
stage reliability index (which is used for obtaining ogtirfiber volume fraction through the
RBDO in stage 1) and the second reliability indx, is the target reliability index of the final
optimized structuref, represents the reliability index of the structure afieer distribution
optimization.B, is the model input (set by designer at the first run efalgorithm) whileg, is
the output of the model. Clearly;, < B, because it is supposed that fiber distribution
optimization increases the performance (such as fffieest) of the model and provides a more

reliable structure.

14
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Fig.5. Double sequential stages optimization algorithm

It is however possible to implement concurrent approacbdopling stage 1 and stage 2. In the
concurrent approach (Fig. 6) the fulfilment of the fibestdibution optimization before
evaluation of LSF is necessary in every realizatiostafje 1. Thus, this alternative method is
computationally expensivdo see more clearly the issue, we can assume thabtheutational
parameter of total elapsed timg ;) is proportional to the number of LSF cat, |, each call
run time ¢,sr) and the subtotal time required for fiber distributiotimjzation ¢,). Taking into
account the above, for the sequential model the total i proportional to the sum of the above
mentioned times, i.e:

Trotatge % (Mg X trgp + t3) (29a)

while for concurrent model we have:

Ttotatge * [ X (trsp + t2)] (29D)
asny > 1, thus Tiotar, is smaller tharlyy.,, ., We can write:
(Ttotalco - Ttotalse) = AT o [(ny — 1)t,] (30)
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We can use a quantitative example in order to clarify Howeissue. A simple case where
andn, are equal to 20 minutes and 10 calls respectively, the preseiat is 180 minutes faster
than the concurrent model. The computational advantagkisofnodel is more evident when

readers observe that andn, are considerably higher in real cases.

’ Start of fiber N Start
' distribution R ‘\
I optimization \
1
1 1
I I Define target R.I.
1 Create optimization model 1
1
1
! |
! | Define other RBDO parameters
: Create analysis model <+ 1
' |
: | Define deterministic & random
\ Model analysis : variables
1
] :
! 1 Set analysis options
: Sensitivity analysis 1
] |
Evaluat traints by FORM !
HRERSH I <::>_ (::> Objective function -
i Optimize parameters !
No
Converge? E—
Update optimization model Yes
Optimized fiber

volume fraction

Optimum? —p

Yes

< Optimum fiber
distribution

rad
=

S i | i

6. Verification of the model through numerical examples

The aims of this section are firstly to verify therreztness and secondly to demonstrate the
performance of the proposed model. Moreover the diemmsgelated to the two presented
examples will show how uncertainties influence the ogttion of structural performance and

how the presented algorithm can capture the effects afritertainties.
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6.1 Cantilever beam under static loading, verification of the model

The first example involves a RBDO benchmark problem ofnsileaer beam presented [B7]

and shown in Fig.7. The beam lengtl) {s assumed to be equal to 100 inches with constant
cross section area along its length.

The objective function corresponds to the minimizatiothefbeam weight or equivalently, the
cross section areav(t). The limit state deals with the displacement atfittée end of the beam,
where the displacement attains its maximum vaiy@ndF, are independent random loadsxin

andy directions.R is random yield strength ariflis Young’s modulus. To verify the stochastic
framework of the model, firstly we consider the analytloalt state function corresponding to
the maximum displacement at the free end of the bé&ther design parameters are assumed
exactly equal to those in the benchmark problem [37] anduamenarized in Table-1.

I
N

ey, t =

LAA,

Fig.7. Schematic of the cantilever beam

Table-1. Benchmarkproblem definitions for cantilever beam under static loading dondit

Parameter L R &, % E w t B

u=40000 p=40000 p=40000 u = 29e6 u=4 u=4
Value 100
o = 2000 o = 2000 0=2000 o0=145e6 o¢=0.001 o=0.001

Type D N N N N N N D

L:Length, R:yield strength, Fx,Fy:load, E:Young's Modulus, w,t:width, thickness

D:deterministic, N:normal distribution, u: mean value, o : standard deviation, B: Reliability Index

Table-2 compares the obtained results and the benchmarkaodeshows that there is an

agreement between them.
Table-2. RBDO results using analytical limit state

Method w t F=w.t

Benchmark [37] 2.700 3.410 9.206

Present Model 2.702 3.408 9.206

w, t: width, thickness  F:0bjective function
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In the next step we set the off-plane lo&d equal to zero in order to solve the problem iD 2-
space while keeping the beam depth equal to unity. Results wigicbbtained by using two
different limit state functions (i.e. analytical forfawand those calculated by finite elements) are
compared with each others in Table-3. Once again a goodroatyf was obtained.

Table-3. RBDO results using FEM limit state

Method for evaluation of L SF w t F=w.t

Analytical 1 4.0095 4.0095

FEM (NURBS) 1 4.0094 4.0094
w, t: width, thickness F:Objective function

6.2 Beam under three-point bending

In the present example the first objective functioroiéirid the optinal fiber volume while the
limit state is the deflection at mid of the beam mussitoaller than an admissible value. Fig.8
shows the schematic view of the problem and Table-4 inchindedesign parameters.

Table-4. Problem definitions of the beam under static loading

Parameter L, L, E. Ef v P LSF B1  Obj.Func.
=20 =200 ©=1000 Max. Deflection Fiber volume
Value 5 0. _3 3 .
o= o=750 o =250 4e fraction
Type D D N N D N D D D

Length: (M), E:(MPa), P:Appliedload (N), v:Poisson ratio, m: matrix, f: fiber

D:deterministic, N:normal distribution, u: mean value, o : standard deviation B,: Reliability Index

a) b)

Fig.8. Geometry (a) and FE mesh with control points indicateddiy (b) of a three-point bending beam

Fig.9 presents optiah values of fiber volume fraction for the beam withniegeneously

distributed fibers versus the different maximum allowable dedle at mid of the beam and for
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different reliability indices. A mesh with 91 control ipts has been used to reduce

computational cost. As expected, either demanding sma&len laleflection or greater reliability

index for the beam, yield to increase in fiber volunaetion of the FRC beam. The figure also

depicts that for large reliability indices (here 4 and %) when there is a small allowable beam

deflection (here 5 mm), the obtained fiber contentappFoximately the same

070 -

0.60

Optimum Fiber Vol. Frac.

0.10

0.00

0.50

0.40

0.30

0.20

= =#=- Reliability Index =5
[ «««#++« Reliability Index =4

. « - Reliability Index=3

31 4.1 5.1 6.1 7.1 8.1 9.1

Max. Admissable Deflection (mm)

Fig.9. Fiber volume fraction versus change in maximum admissible tiefidor different R.1.

Results of RBDO by using 1225 control points, which represéntg 20 mesh sizes, are

plotted in Fig.10. For this (or higher) number of conpoints, the numerical solutions of the

LSF have been verified to converge to the exact solution.

Reliability Index

3.2
1
3151 08
.g 1
8 osft
8 |
3.1 04
Seeereet
0.2
305k 0 5 10
’ Iterations
3t
2.95
0 5 10

Iterations

Fig.10. RBDO results of a three-point bending beam using 1225 controkpoint
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Fig.11 compares the obtained values related to the assumettivebjfunction for different
numbers of control points (mesh sizes). As can beroed, the deviation between the obtained
optimal fiber volume fractions by using 1225 or 325 control poineggal to 0.03 (i.e. 3%) but
the computational time reduced to be approximately less than one tenth. This fderlines
NURBS smooth and quick convergence characteristics whedtl o noticeable saving in the
time of the computation. In RBDO probletSF which depends on FE model results, should be
evaluated many times. So, any reduction in its calculaim@ will significantly reduce the total
elapsed time. Admittedly, this time savirsgustified only in the case that accuracy of the results
is also maintained. This takes place in the presentedinde using coarse NURBS mesh for
the evaluation of LSF, slightly changes in the accurdcaye results and leado a significant
decreasén RBDO computational time.

0.35 -

a 025 4 x5 254Y"
B £ 0237
202 %0207
a
=
@ 0.15 -
£
=
E 01 -
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<}

0.05

0 . . , . . | |
0 200 400 600 800 1000 1200 1400

No.s. of Control Points

Fig.11. RBDO results versus number of control points (mesh size)

Once the optimal fiber content (by assumifig= 3 ) is obtained (Fig.12 (a)), the second
module optimizes the fiber distribution through the struct{kig.12 (b)), with the aim to
minimize the structural compliance. 703 control points aegl fier obtaining shown results. The
obtained target reliability index at the end of stage R,iss 7.66. This increase in reliability
index is due to the effect of fiber distribution optimization increasing the structural stifse
which consequently decreases the deflection of the steudtuis also noteworthy to mention

that in this case the standard deviations of randomblasiare according to Table-4.they are
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decreased to 70% and 4Q%6the current values without any change in other desigmedess,
since required fiber volume fractions decrease, thettaegiability indices are also decreased to
B, = 6.65 and B, = 4.81, respectively. Thus, we can conclude that fiber distolouti
optimization is more influentialroincreasing the reliability of the structure with higher leokl

uncertainties.

05 0.5
0 _ OE i
0.5 -05
0 05 1 15 2 25 3 35 4 45 5 i 05 1 1.5 2 25 3 35 4 45 5

(a) (b)

coooo
NN —

Fig.12. Three point bending wall beam problem using 703 control poinks(ajthomogenized fiber
distribution and3; = 3, (b) optimized fiber distribution ang, = 7.66

6.3 Square plate with a central circular hole under tension
The classical problem of a square plate with a centtalunader constant distributed edge load
is assumed as the second example. Considering the dyufmeetry of the problem, just one
guarter of the plate is modeled. Fig.13 (a) and (b) shevatfalysis model and the FE domain
discretization Table-5 shows the design parameters. The problem of olgaaptinal fiber
volume fraction and distribution in order to have aatdé structure with limited deflection, is
solved by using quadratic NURBS meshes.

’

UNIFORM LOAD i

TN
addbadis Sl

EYMMETRY
L]
h

LINIFORM LOAD

SYMMETRY

I

a) b)

Fig.13. Square plate with central hole (a) schematic view, (bhmath control points
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Table-5. Problem definitions, Square plate with central hole

Parameter L R E. E¢ v P LSF B1 Obj.Func.
u=20 pu=200 u=>510 Max. Deflect Fiber
Value 4 0.1 3
c=2 0=20 o =20,30,40,50 (6e7%) volume
Type D D N N D N D D D

Length: (M), E:(GPa), P:Appliedload (N/m), v:Poisson ratio, m: matrix, f:fiber

D: deterministic, N: normal distribution, u: mean value, o : standard deviation, §;: Reliability Index

Firstly, all the design parameters are considered asnlsistic values, except the applied load
which is considered as a random variable with different standarttens. Obtained optiai
fiber contents (by using 612 control points) are plotted versusalues of standard deviation of
the applied load in Fig.14

035 - 3-Random fields - -B--2-Random ficlds

---#-- 1-Random field
03

025 -
02 | -
015 - it

,

01 - o

Optimum FiberVol. Frac.

Std. Deviation of Applied Load

Fig.14. Optimal fiber volume fraction versus standard deviation of applied émmsidering3; = 3 for
1- Random field (load), 2-Random fields (lo&dtand 3-Random fields (load#+ E.)

As can be seen, an increase in the standard deviation @piied load (which means an
increasen the uncertainty of the system) needs more fiber cantém system uncertainty will
increase more when we consider the Young’s modulus of fiber as another random field (i.e. 2-
Random fields) and even more when the Young’s modulus of the matrix material is also
considered as a random variable (i.e. 3-Random fieldshelrase where only the applied load

is assumed aa random variable (with mean value equal5tb0 N/m and standard deviation
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equal to 50), the optiat fiber volume fraction is equal to 0.183. WhEnis also considered as a
random variable, the optahfiber volume is equal to 0.21. Whdf), is not deterministic any
more, the optiral fiber volume becomes 0.294. As can be seen, by increasnguthber of
random variables while keeping constant the reliability index g, = 3), the required fiber
volume fraction increas Alternatively, for a constant fiber volume fractiaghthe number of
uncertain variables of the problem increases, the reliabilithe system decreases.

Using 612 control points, optmh fiber distribution leading to the minimum structural
compliance is plotted in Fig.1&onsidering3; = 3, the target reliability index for this pattern of
fiber distribution gives the valuef 5, = 4.1. Changes irg; will result in different values op,,
for example fors; = 2.5 andp; = 3.5 the target reliability indices correspondgp= 3.78 and
B, = 4.36, respectively.

Fig.15. Optimal distribution of fibers with volume fraction 0.294 of plate wiéntral hole subjected to
constant loading, target reliability ind@x = 4.1 (result for 612 control points)

7. Conclusions

An efficient sequential algorithm for finding the op#imfiber volume fraction and its
distribution in structures made of FRC materislgpresentedTo overcome the cumbersome
computational burden in stochastic optimization problenmglifg the optinal fiber volume
fraction and fiber distribution are performed sequentialbt, concurrently. This technique along

with using NURBS finite elements, allows us to gebéaeable reduction in the computational
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cost, without a noticeable loss in accuracy of the resAksuming a random orientation of
fibers in the matrix, in the first optimization modulee. finding the optimal fiber volume
fraction) uncertaintiesn the parameters (such as constituent’s materials and loading) are fully
addressed and LSE evaluated by using FORM. In the second module (i.e. fibsrilolition
optimization) a NURBS surface which smoothly defithe fiber distribution patterims adopted.
The presented numerical examples show as an increas®del uncertainties gives rise to

unreliability of the systenMore specifically, either the rise in the number of utaiarfields in
the problem or the increase in the standard deviatiormmdam variables ne&more fiber

content. It can be also concluded that when therehglaer level of unagainties in design
parameters, the fiber distribution optimization is maorftuential on increasing the reliability of
the structure. Developing the present methodology fromentserviceability to collapse limit
states, where the FRC structure loses its integrityadsm multi component system instead of
single piece structure would be interesting issues thusimial applications and will provide the

scope of our future studies.
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