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Abstract  
 

A double stage sequential optimization algorithm for finding the optimal fiber content and its 

distribution in solid composites, considering uncertain design parameters, is presented. In the 

first stage, the optimal amount of fiber in a Fiber Reinforced Composite (FRC) structure with 

uniformly distributed fibers is conducted in the framework of a Reliability Based Design 

Optimization (RBDO) problem. In the second stage, the fiber distribution optimization having 

the aim to more increase in structural reliability is performed by defining a fiber distribution 

function through a Non-Uniform Rational B-Spline (NURBS) surface. The output of stage 

1(optimal fiber content for homogeneously distributed fibers) is considered as the input of stage 

2. The output of stage 2 is Reliability Index (RI) of the structure with optimal fiber content and 

optimal fiber distribution. First order reliability method in order to approximate the limit state 

function and a homogenization approach, based on the assumption of random orientation of 

fibers in the matrix, are implemented. The proposed combined model is able to capture the role 

of available uncertainties in FRC structures through a computationally efficient algorithm using 

all sequential, NURBS and sensitivity based techniques. Performed case studies show as an 

increase in model uncertainties yields to structural unreliability. Moreover, when system 

unreliability increases fiber distribution optimization becomes more influential.  

 
Keywords: Reliability Based Design Optimization (RBDO), Reliability Analysis, Fiber 
Reinforced Composite (FRC), Fiber Distribution Optimization, NURBS  
 

1. Introduction 

Uniform mechanical properties of FRCs depend on uniform dispersion of fibers in the matrix. 
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Nomenclature of homogenization technique: 
             Elastic tensor of the fiber and of the matrix material, respectively      Homogenized elastic tensor of the composite       Young’s modulus of the fiber phase and of the matrix, respectively   Unit vector parallel to the generic fiber axis         Second-order tensor related to the fiber lying along the   direction         Volume of the composite, volume of the matrix phase and volume 

of the fiber fraction present in the RVE, respectively    Composite work rate   Generic position vector       Strain and virtual strain rate tensors, respectively             Fiber strain, virtual strain and virtual strain rate, respectively      Point function denoting the presence of the matrix at the location x      Point function denoting the presence of the fiber at the location x       
RVE matrix volume fraction 

       
RVE fiber volume fraction           Stress in composite, axial stress in a fiber and in the equivalent 
material 

 

Many efforts have been made to quantify, improve and inspect uniform dispersion of reinforcing 

elements in the matrix phase [1-6]. In contrary, few researches have been done to obtain non-

uniform distribution of fibers in order to obtain optimal structural response. Huang and Haftka 

[7] tried to optimize fiber orientation (not distribution) near a hole in a single layer of multilayer 

composite laminates in order to increase the load caring capacity by using Genetic Algorithm 

(GA). Optimal distribution of the fibers in a FRC structure has been presented in [8] and [9] by 

using GA and sensitivity based approaches, respectively. The optimal fiber content and also 

available uncertainties are addressed neither in [8] nor [9]. 

Actual characteristics of a FRC material are influenced by many of uncertainties which come 

from variety of sources such as constituent material properties, manufacturing and process 

imperfections, loading / boundary conditions or even structural geometry. Neglecting the role of 

these uncertainties may affect the reliability of the structure. Structural reliability can be defined 

as the ability of a structure to fulfill some sought design purposes. In order to quantify these 

design purposes, limit state concept has been introduced to obtain a quantitative measure for 
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structural safety. Deterministic limit states without considering uncertainties can be unreliable 

and might bring to overestimate the bearing capacity of the structure, with the risk of its 

catastrophic failure. However, the traditional approach which is based on safety factor is not 

always efficient and could result in a costly and unnecessary conservatism [10].   

There are some methods for considering the role of uncertainties in design performance. One of 

these methods is the so-called RBDO which tries to find optimal performance considering some 

probabilistic design constraints. Motivated by capabilities of RBDO in uncertainty 

quantification, some researchers have implemented it in the design of composite structures. 

Though there are some exceptions, most of these researches are related to composite laminates. 

However, to the knowledge of the authors, the solid FRC structures are not thoroughly explored. 

Thanedar and Chamis [11] developed a procedure for the tailoring of layered composite 

laminates subjected to probabilistic constraints and loads. The work of Jiang et al. [12] suggested 

a methodology to optimize the plies orientations of a composite laminated plate having uncertain 

material properties. Gomes and his coworkers [13] addressed the problem of composite laminate 

optimization by using GA and Artificial Neural Networks (ANN); while Antonio’s work [14] 

presented reliability based robust design optimization methodology. Noh et al. [15] have 

implemented RBDO methodology for purpose of optimizing volume fraction in a Functionally 

Graded Material (FGM) laminate composite. 

Generally, increasing the fiber volume fraction in a FRC composite will increase its structural 

strength and stiffness. However the existence of a practical upper limit should be considered. 

Normally, composite structural elements under mechanical actions have some regions which are 

on the edge of design constraints (e.g. the maximum allowable stress is exceeded) and can be 

identified as failure zones. Usually these failure zones dictate the required content of the 

reinforcing element in order to get a properly strengthened overall structure, fulfilling 

everywhere the design constraints. Considering uniform distribution of fibers through the 

structure, initially safe regions that already fulfill the design constraints will inevitably increase 

their fiber content. Thus, an efficient optimization approach which seeks towards optimal fiber 

content should also pay attention to optimal distribution of fibers in order to strengthen only 

those portions of the structure (failure zones) for which it is necessary to improve their bearing 

capacity. From the above discussions it appears that the joint manipulation of these two 

parameters (i.e. fiber content and its distribution) while available uncertainties are also 
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addressed, will be a necessary approach towards more efficient and reliable structural 

optimization. Such an approach could obviously have promising industrial application such as 

patch repair optimization in cracked plates [16-18] and minimizing stress concentration in 

sandwich beams [15]. It can also be extended to cement composites [19-20].     

The outline of the present paper is as follows: Section 2 presents an overview of 

homogenization technique for obtaining equivalent material property while a description of 

reliability analysis and RBDO is presented in Section 3. Section 4 briefly describes fiber 

distribution optimization procedure followed by the presentation of sequential optimization 

methodology which is discussed in more details in Section 5. Section 6 contains some numerical 

examples. The concluding remarks are presented in Section 7. 

 

2. FRC homogenization methodology 

Basically, the aim of homogenization techniques is to find equivalent material characteristics in 

a Representative Volume Element (RVE) of composite material. There are some classical 

approaches in order to model the material properties of a composite material among which are 

the Rule of Mixture, Hashin-Shtrikman type bounds [21, 22], Variational Bounding Techniques 

[23], Self Consistency Method [24] and Mori-Tanaka Method [25]. The homogenization 

approach used in this research work is a simplified version of a recently developed mechanical 

model to get the FRC constitutive behavior based on energetic equivalence between the real FRC 

material and the macroscopically homogeneous one. This is evaluated through the evolution of 

the shear stress distribution along the fiber-matrix interface during the loading process. The 

adopted model for fiber homogenization can be considered to be mechanically-based, since the 

fiber contribution to the FRC mechanical properties are determined from the effective stress 

transfer between matrix and fibers.  The possibility of fiber-matrix debonding can be easily taken 

into account [8, 26]. Since the goal of this paper is to focus on fiber content and distribution 

through the structure rather than developing micromechanical model, for the sake of simplicity, 

we neglect this issue in the present work. It can be stated that for not too high stressed composite 

elements (as followed in our numerical examples) leading to shear fiber-matrix interface stresses 

well below the allowable limit shear bimaterial stress, the debonding phenomenon can 

reasonably assumed not to occur. Fiber failure is also neglected. This approach is briefly 

summarized below; however interested reader can refer to [27-29] for more details.  
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The equivalent elastic properties of a fiber reinforced composite material – for which the 

hypotheses of short, homogeneously and randomly dispersed fibers are made – can be obtained 

by equating the virtual work rate of constituents for a RVE of the composite material (Fig.1) 

with equivalent homogenized one as shown by: 

                                                                                                                                                          
where           are the virtual strain rate and the stress in a fiber, respectively, while the scalar 

functions      and      assume the following meanings:                                           and                                                                                              
and allow us to identify the location of the material point   either in the matrix or in the 

reinforcing phase. 

The constitutive relationships of the fibers and of the bulk material can be simply expressed 

through the following linear relations:                                 and                                                             
in which     is the fibers’ Young’s modulus,    is the fiber strain,      is the composite 

equivalent elastic tensor while   is the actual matrix strain tensor. Eq. (3) has been written by 

taking into account that the matrix strain measured in the fiber direction is given by             where                               is the unit vector identifying the generic 

fiber direction, (Fig.1); and analogously for the virtual      and the virtual strain rate,                                                         and                                                                                        
by substituting the above expressions in the virtual work rate equality (Eq. (1)) we can finally 

identify the composite equivalent elastic tensor:                                       
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Fig.1. Fiber reinforced composite material: definition of the RVE (with a characteristic length d, while 

the composite has a characteristic length D>>d) and of the fiber orientation angles , , ref. [26]. 

 

where the second-order tensor          has been introduced and the matrix and fiber volume 

fractions                   and                    have been used.  

It can be easily deduced as the equivalent material is macroscopically homogeneous at least at 

the scale of the RVE with the volume  . So, the equivalent elastic tensor        does not 

depend on the position vector, i.e.            . 

The calculation of the equivalent elastic tensor     through Eq. (5), needs to evaluate the below 

integral over a sufficiently large volume, representative of the macroscopic characteristics of the 

composite. The above integral can be suitably assessed on a hemisphere volume which allows 

considering all possible fiber orientations in the composite:                                  
 

  
 

 
                                    

                           
 

  
                                                       

                     
 

  
                                                      

 

3. Reliability assessment and optimization formulations (stage-1) 

The fundamentals of structural reliability are briefly presented below however, interested 

readers can refer to [30] and references therein for more details. The structural reliability concept 
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can be simply described by the example of a steel rod with constant cross sectional area under 

uniaxial tension (see Fig. 2). In the deterministic case, if the applied load ( ) is less than rod 

strength ( ), failure will not occur and the rod will be safe and the conventional safety factor 

index (      ) is used to quantify the system level of confidence.  In probabilistic case,   and   

are not fixed values but instead they are random variables containing uncertainties. In this case    and    are nonnegative independent random variables with Probability Density Functions 

(PDF)        and       , respectively. In essence, for a vector of random variables               , the PDF can be calculated by               , where       is the so called 

Cumulative Distribution Function (CDF) and relates the probability of a random event to a 

prescribed deterministic value  , (i.e.                ). 
In considering the rod example, the boundary between safe (i.e.       ) and failure (i.e.      ) regions can be defined by            which is called Limit State Function (LSF). 

Thus,        denotes a subset of the space, where failure occurs.  

The concept of Reliability Index ( ) which has been proposed by Hasofer and Lind [31] in 1974 

requires standard normal non-correlated variables; so the transformations from correlated non-

Gaussian variables   to uncorrelated Gaussian variables   (with zero means and unit standard 

deviations) is needed. According to this definition of  , the design point is chosen such as to 

maximize the PDF within the failure domain. Geometrically, it corresponds to the point in failure 

domain having the shortest distance from the origin of reduced variables to the limit state surface 

(i.e.       , as shown in Fig.2). Mathematically, it is a minimization problem with an 

equality constraint: 

                                                                                                    
which leads to the Lagrange-function:                                                                              
The solution of Eq. (8) is called the Most Probable Point (    ) or briefly MPP and can be 

obtained by a standard optimization solver.  
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Fig.2. Structural reliability concept  

 

The failure probability,   , can be measured by the probability integral as:                                                                                                
The evaluation of the integral in Eq. (9) (the fundamental equation of reliability analysis) in most 

cases is not an easy task and needs specific solution techniques. One approach is to analytically 

approximate this integral, in order to get simpler functions for   . Such techniques can be 

categorized into two major groups: First and Second Order Reliability Method (FORM & 

SORM) which respectively approximate LSF with the first order and the second order of Taylor 

expansion at the MPP (Fig. 3).  

There are also alternative methods for calculating the probability integral: among them Monte- 

Carlo Method (MCM) may be the most important one since it is usually used as the reference 

method due to its precision to calculate failure probability. Each of the above cited methods has 

advantages and disadvantages which should be considered precisely before implementation. For 

instance even though MCM is a precise method, it shows a serious drawback in the case of small 

values of the failure probability [32]. Computational cost is another dominant parameter for 

selecting the appropriate solution method. Methods based on the SORM and MCM approaches 

are usually numerically more expensive in comparison with FORM. In practical problems an 

appropriate balance must be necessarily considered between accuracy and cost of the analysis. In 

the present work FORM has been implemented since it is suitable for cases with a small number 
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of random variables. Such an approach is usually sufficiently accurate to be used for real 

applications of structural design [33]. In the following, the implementation of the FORM is 

briefly described, however more details about available methods for structural reliability analysis 

can be found in [32].   

 

 
 

Fig.3. Graphical representation of the FORM approximation  

 

3.1. First order reliability method (FORM) 

The FORM approximation can be traced back to First Order Second Moment (FOSM) method 

which is based on first order Taylor series approximation of the LSF, linearized at the mean 

values of random variables, while a Second-Moment statistics (means and covariances) is used. 

In this context the limit state function can be approximated as below:                  
 

                              
 

   
 

                            

      
Terminating the series after the linear terms yields:                          

 
                                                        

where   stands for expected value (or ensemble average) of a random quantity      and can be 

defined in terms of the probability density function of   as:                                                                             
If the mean value vector    is chosen as the starting expansion point    for the Taylor series, then            and the variance becomes: 
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finally the distribution function       is approximated by a normal distribution:                                                                               
then we obtain the approximate result:                                                                              
the reliability   can finally be expressed as:                                                                                             
where        and the probability of failure consequently becomes expressed as:                                                                                
 

3.2. RBDO 

In its basic form the problem of RBDO can be expressed as below:                                                                                        
where   is the vector of the design variables,      is the cost or objective function,                 is a vector of   to       deterministic constraints over the design variables  ,         is the reliability constraint enforcing the respect of LSF and considering the 

uncertainty to which some of the model parameters   are subjected to.    is the target safety 

index. To solve Eq. (18), the open source software FERUM 4.1 [34] has been implemented and 

linked to FE code which evaluates the LSF. 

In our model,   could be defined as the matrix or fiber Young’s modulus, material density or 

applied loads while the objective function corresponds to find the optimal fiber volume fraction. 

Without loss in generality, the maximum deflection (    ) of the component under the applied 

load (obtained by FEM code) is compared with predetermined value (    ) as design constraint. 
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The limit state function is defined by                and the failure (      ) occurs 

when          . It is straightforward to extend design constraints to other structural response 

like maximum stress, maximum stress mismatch or even to thermal and electrical fields. 

However, as the aim of this paper is introducing the sequential approach in optimizing FRC 

structures, we neglect to discuss about them for sake of simplicity and clarity.   

 

4. Deterministic fiber distribution optimization using NURBS functions (stage-2) 

Currently, NURBS are incorporated into most of the geometric modeling systems. NURBS 

functions are used within this work to calculate an approximation of a given set of points through 

a smooth function. There are two notions of meshes: the control mesh and the physical mesh. 

The former is defined by control points and is like a scaffold that controls the geometry, while 

the latter defines the actual geometry. There are also two notions of elements used in the physical 

mesh that must be taken into account: the patch and the knot span. The patch is a sub-domain 

and is represented in either parent domain or physical space while knot spans (bonded by knots) 

define each patch. Based on the topology, knots can be points, lines or surfaces. Since NURBS 

curves and surfaces are exhaustively presented in numerous references, to prevent duplication, 

interested readers are referred to [35] to find more about NURBS surface characteristics. Fig.4 

schematically shows different NURBS spaces and approximation of nodal values by a smooth 

function.  

 

Fig.4. Different NURBS domains (a), (b), (c) and approximation by NURBS function (c)    

 

It should be declared that NURBS basis functions have dual applications in the present work: 

the model analysis and fiber distribution. The former is performed by quadratic NURBS finite 

elements through an isogeometric analysis (IGA) approach [35] while the latter is presented in 

more detail in [9] and is briefly described in following.  
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In our methodology nodal fiber volume fraction (    ) on control points are defined as design 

variables and fiber distribution (  ) is approximated by using NURBS surface. Every point on 

parametric mesh space of the design domain is mapped to geometrical space having two 

attributes, geometrical coordinates and fiber volume fraction value. Due to intrinsic 

characteristics of NURBS (higher order basis and compact support, see [35]), even using coarse 

meshes, fiber distribution function described through a NURBS surface is smooth enough to 

have a clear representation of optimization results with no need for any further image processing 

techniques. 

Fiber distribution function        , which indicates the fiber amount at every design point and 

is used for obtaining homogenized mass and stiffness of finite elements, is defined according to: 

                       
                                                       

    

where        are NURBS basis functions. Once the fiber volume fraction at each point is available, 

by substitution in Eq. (5), we can define the equivalent mechanical characteristics of the domain 

through the equations below:                                                                   

In deterministic fiber distribution optimization problem, minimization of strain energy is 

considered as objective function. For the problem with   load cases we have:  

        
                                                                      

where   and     are the total strain energy and elastic strain energy for       load case, 

respectively.    is the associated weight for strain energy which has been considered equal to 

unity unless otherwise specified. The terms     can be also defined as: 

          
                                                                     

in Eq. (22)    is the strain vector associated with element   and     is the homogenised elastic 

tensor of the composite at each point evaluated according to Eq. (5).     is the number of 

elements in the FE model. 

The optimization problem can be finally summarized as follows:  
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Minimize:                                                       

Subjected to:                                                                                                                                                                                                                                                                                                                                                      
where    is the total fiber weight in every optimization iteration and      is an arbitrary initial 

fiber weight which must be set at the beginning of the optimization process.  ,   and   in Eq. 

(24) which represents the general system of equilibrium equations in linear elastic finite elements 

method, represent the global stiffness matrix of the system, the displacement and force vector, 

respectively. 

By introducing a proper Lagrangian objective function, l, and by using the Lagrangian 

multipliers method we have: 

                                                                   
     

   
      

where       are upper and lower bounds values of the Lagrange multipliers, respectively.     

is the number of control points. By equating the first derivative of Eq. (27) to zero we will 

obtain:                                                                              
In this work we have implemented optimality criteria (OC) based optimization (Zhou & 

Rozvany, 1991, [36]) to numerically solve Eq. (28). OC represents a simple tool to be 

implemented and allows a computationally efficient solution because each design variable is 

updated independently. A detailed description of the updating scheme of OC is not reported in 

the paper; however interested readers can refer to [36] for more details. 

 

     5. Double sequential stages optimization procedure 

The sequential optimization algorithm is schematically illustrated in Fig. 5. In this approach 

there are two successive optimization stages. Stage 1 includes a stochastic fiber content 

optimization algorithm and stage 2 includes a fiber distribution optimizer. In the first stage, 

based on the nature of the problem, the designer can decide which parameters would be 
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deterministic and which ones probabilistic. He can also set the initial values of the parameters, 

variables and solution settings. Traditional RBDO is implemented by use of a nested or double 

loop approach. In this method, each step of the iteration for design optimization involves another 

loop of iteration for reliability analysis (i.e. FORM). In this stage, minimization of fiber content 

is considered as optimization objective function and after convergence, the output is used as the 

input for the second stage. In the second stage, NURBS finite elements which are implemented 

and used for domain discretization, define continuous and smooth mesh independent fiber 

distribution function by using the nodal volume fractions of fibers as the optimization design 

variables. The second stage is initialized by using the fiber volume fraction value, coming as 

stage 1. Afterwards Optimality Criteria (OC) updates design variables. This computational 

procedure is executed iteratively, till no sensible changes occur in design variables [9].  

In the presented model, two separate reliability indices (  and   ) are introduced:    is the first 

stage reliability index (which is used for obtaining optimal fiber volume fraction through the 

RBDO in stage 1) and the second reliability index,   , is the target reliability index of the final 

optimized structure.    represents the reliability index of the structure after fiber distribution 

optimization.    is the model input (set by designer at the first run of the algorithm) while    is 

the output of the model. Clearly,       because it is supposed that fiber distribution 

optimization increases the performance (such as the stiffness) of the model and provides a more 

reliable structure.  
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Fig.5. Double sequential stages optimization algorithm  

 

It is however possible to implement concurrent approach for coupling stage 1 and stage 2. In the 

concurrent approach (Fig. 6) the fulfillment of the fiber distribution optimization before 

evaluation of LSF is necessary in every realization of stage 1. Thus, this alternative method is 

computationally expensive. To see more clearly the issue, we can assume that the computational 

parameter of total elapsed time (      ) is proportional to the number of LSF call (  ), each call 

run time (    ) and the subtotal time required for fiber distribution optimization (  ). Taking into 

account the above, for the sequential model the total time is proportional to the sum of the above 

mentioned times, i.e:                                                                                  
while for concurrent model we have:                                                                                    
as     , thus ,          is smaller than         . We can write: 
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We can use a quantitative example in order to clarify the above issue. A simple case where    

and    are equal to 20 minutes and 10 calls respectively, the present model is 180 minutes faster 

than the concurrent model. The computational advantage of this model is more evident when 

readers observe that    and    are considerably higher in real cases. 

 

 
 Fig.6. Concurrent optimization algorithm  

 

6. Verification of the model through numerical examples 

The aims of this section are firstly to verify the correctness and secondly to demonstrate the 

performance of the proposed model. Moreover the discussions related to the two presented 

examples will show how uncertainties influence the optimization of structural performance and 

how the presented algorithm can capture the effects of the uncertainties.   
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6.1 Cantilever beam under static loading, verification of the model 

The first example involves a RBDO benchmark problem of a cantilever beam presented in [37] 

and shown in Fig.7. The beam length (L) is assumed to be equal to 100 inches with constant 

cross section area along its length.  

The objective function corresponds to the minimization of the beam weight or equivalently, the 

cross section area (   ). The limit state deals with the displacement at the free end of the beam, 

where the displacement attains its maximum value.    and    are independent random loads in   

and   directions.   is random yield strength and   is Young’s modulus. To verify the stochastic 

framework of the model, firstly we consider the analytical limit state function corresponding to 

the maximum displacement at the free end of the beam. Other design parameters are assumed 

exactly equal to those in the benchmark problem [37] and are summarized in Table-1.  

 
Fig.7. Schematic of the cantilever beam  

 
Table-1. Benchmark problem definitions for cantilever beam under static loading condition 

Parameter                      

Value 100 
               

               

               

                

            

            
3 

Type D N N N N N N D                                                                                                                                                                                       

 

Table-2 compares the obtained results and the benchmark ones and shows that there is an 

agreement between them. 

Table-2. RBDO results using analytical limit state 

Method           

Benchmark [37] 2.700 3.410 9.206 

Present Model 2.702 3.408 9.206                                                
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In the next step we set the off-plane load (  ) equal to zero in order to solve the problem in 2-D 

space while keeping the beam depth equal to unity. Results which are obtained by using two 

different limit state functions (i.e. analytical formula and those calculated by finite elements) are 

compared with each others in Table-3. Once again a good conformity was obtained.  

 

Table-3. RBDO results using FEM limit state 

Method for evaluation of LSF            

Analytical  1 4.0095 4.0095 

FEM (NURBS) 1 4.0094 4.0094                                                        

 
6.2 Beam under three-point bending 

In the present example the first objective function is to find the optimal fiber volume while the 

limit state is the deflection at mid of the beam must be smaller than an admissible value. Fig.8 

shows the schematic view of the problem and Table-4 includes the design parameters. 

 

Table-4. Problem definitions of the beam under static loading 

Parameter                                  
Value     

         

           
    

             

Max. Deflection 

      
  

Fiber volume 

fraction 

Type D D N N D N D D D                                                                                                                                                                                        
 

 
Fig.8. Geometry (a) and FE mesh with control points indicated by dots (b) of a three-point bending beam 

 
 Fig.9 presents optimal values of fiber volume fraction for the beam with homogeneously 

distributed fibers versus the different maximum allowable deflection at mid of the beam and for 
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different reliability indices. A mesh with 91 control points has been used to reduce 

computational cost. As expected, either demanding smaller beam deflection or greater reliability 

index for the beam, yield to increase in fiber volume fraction of the FRC beam. The figure also 

depicts that for large reliability indices (here 4 and 5) and when there is a small allowable beam 

deflection (here 5 mm), the obtained fiber contents are approximately the same.  

 

Fig.9. Fiber volume fraction versus change in maximum admissible deflection for different R.I.  

 

Results of RBDO by using 1225 control points, which represents       mesh sizes, are 

plotted in Fig.10. For this (or higher) number of control points, the numerical solutions of the 

LSF have been verified to converge to the exact solution.  

 

Fig.10. RBDO results of a three-point bending beam using 1225 control points 
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Fig.11 compares the obtained values related to the assumed objective function for different 

numbers of control points (mesh sizes). As can be observed, the deviation between the obtained 

optimal fiber volume fractions by using 1225 or 325 control points is equal to 0.03 (i.e. 3%) but 

the computational time is reduced to be approximately less than one tenth. This fact underlines 

NURBS smooth and quick convergence characteristics which yield to noticeable saving in the 

time of the computation. In RBDO problem, LSF which depends on FE model results, should be 

evaluated many times. So, any reduction in its calculation time will significantly reduce the total 

elapsed time. Admittedly, this time saving is justified only in the case that accuracy of the results 

is also maintained. This takes place in the presented model while using coarse NURBS mesh for 

the evaluation of LSF, slightly changes in the accuracy of the results and leads to a significant 

decrease in RBDO computational time. 

 

 

Fig.11. RBDO results versus number of control points (mesh size) 

 

Once the optimal fiber content (by assuming      ) is obtained (Fig.12 (a)), the second 

module optimizes the fiber distribution through the structure (Fig.12 (b)), with the aim to 

minimize the structural compliance. 703 control points are used for obtaining shown results. The 

obtained target reliability index at the end of stage 2 is        . This increase in reliability 

index is due to the effect of fiber distribution optimization on increasing the structural stiffness 

which consequently decreases the deflection of the structure. It is also noteworthy to mention 

that in this case the standard deviations of random variables are according to Table-4. If they are 
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decreased to 70% and 40% of the current values without any change in other design parameters, 

since required fiber volume fractions decrease, the target reliability indices are also decreased to         and        , respectively. Thus, we can conclude that fiber distribution 

optimization is more influential on increasing the reliability of the structure with higher level of 

uncertainties.  

 

Fig.12. Three point bending wall beam problem using 703 control points with (a) homogenized fiber 

distribution and     , (b) optimized fiber distribution and          

 

6.3 Square plate with a central circular hole under tension 

The classical problem of a square plate with a central hole under constant distributed edge load 

is assumed as the second example. Considering the double symmetry of the problem, just one 

quarter of the plate is modeled. Fig.13 (a) and (b) show the analysis model and the FE domain 

discretization. Table-5 shows the design parameters. The problem of obtaining optimal fiber 

volume fraction and distribution in order to have a reliable structure with limited deflection, is 

solved by using quadratic NURBS meshes. 

 

Fig.13. Square plate with central hole (a) schematic view, (b) mesh with control points 
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Table-5. Problem definitions, Square plate with central hole 

Parameter                                
Value     

         

           
    

                    

Max. Deflect 

(    )   
Fiber 

volume 

Type D D N N D N D D D                                                                                                                                                                                         

 

Firstly, all the design parameters are considered as deterministic values, except the applied load 

which is considered as a random variable with different standard deviations. Obtained optimal 

fiber contents (by using 612 control points) are plotted versus the values of standard deviation of 

the applied load in Fig.14.  

 

 
 
 Fig.14. Optimal fiber volume fraction versus standard deviation of applied load considering      for 

1- Random field (load),  2-Random fields (load+  ) and 3-Random fields (load+     )  

 
As can be seen, an increase in the standard deviation of the applied load (which means an 

increase in the uncertainty of the system) needs more fiber content. The system uncertainty will 

increase more when we consider the Young’s modulus of fiber as another random field (i.e. 2-

Random fields) and even more when the Young’s modulus of the matrix material is also 

considered as a random variable (i.e. 3-Random fields). In the case where only the applied load 

is assumed as a random variable (with mean value equal to         and standard deviation 
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equal to 50), the optimal fiber volume fraction is equal to 0.183. When    is also considered as a 

random variable, the optimal fiber volume is equal to 0.21. When    is not deterministic any 

more, the optimal fiber volume becomes 0.294. As can be seen, by increasing the number of 

random variables while keeping constant the reliability index (i.e.      , the required fiber 

volume fraction increases. Alternatively, for a constant fiber volume fraction, if the number of 

uncertain variables of the problem increases, the reliability of the system decreases.  

Using 612 control points, optimal fiber distribution leading to the minimum structural 

compliance is plotted in Fig.15. Considering     , the target reliability index for this pattern of 

fiber distribution gives the value of       . Changes in   will result in different values of   , 

for example for        and        the target reliability indices correspond to         and        , respectively. 

 

 
 
 Fig.15. Optimal distribution of fibers with volume fraction 0.294 of plate with central hole subjected to 

constant loading, target reliability index        (result for 612 control points) 

 

7. Conclusions 

An efficient sequential algorithm for finding the optimal fiber volume fraction and its 

distribution in structures made of FRC materials is presented. To overcome the cumbersome 

computational burden in stochastic optimization problems, finding the optimal fiber volume 

fraction and fiber distribution are performed sequentially, not concurrently. This technique along 

with using NURBS finite elements, allows us to get a noticeable reduction in the computational 
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cost, without a noticeable loss in accuracy of the results. Assuming a random orientation of 

fibers in the matrix, in the first optimization module (i.e. finding the optimal fiber volume 

fraction) uncertainties in the parameters (such as constituent’s materials and loading) are fully 

addressed and LSF is evaluated by using FORM. In the second module (i.e. fiber distribution 

optimization) a NURBS surface which smoothly defines the fiber distribution pattern, is adopted. 

The presented numerical examples show as an increase in model uncertainties gives rise to 

unreliability of the system. More specifically, either the rise in the number of uncertain fields in 

the problem or the increase in the standard deviation of random variables needs more fiber 

content. It can be also concluded that when there is a higher level of uncertainties in design 

parameters, the fiber distribution optimization is more influential on increasing the reliability of 

the structure. Developing the present methodology from current serviceability to collapse limit 

states, where the FRC structure loses its integrity and also multi component system instead of 

single piece structure would be interesting issues for industrial applications and will provide the 

scope of our future studies. 
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