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Optimal filters for the construction of the ensemble pulsar time
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ABSTRACT
An algorithm of the ensemble pulsar time based on the optimal Wiener filtration method has
been constructed. This algorithm allows the separation of the contributions to the post-fit
pulsar timing residuals of the atomic clock and the pulsar itself. Filters were designed using
the cross- and auto-covariance functions of the timing residuals. The method has been applied
to the timing data of millisecond pulsars PSR B1855+09 and B1937+21 and allowed the
filtering out of the atomic-scale component from the pulsar data. Direct comparison of the
terrestrial time TT(BIPM06) and the ensemble pulsar time PTens revealed that the fractional
instability of TT(BIPM06)−PTens is equal to σz = (0.8 ± 1.9) × 10−15. Based on the σz

statistics of TT(BIPM06)−PTens, a new limit of the energy density of the gravitational wave
background was calculated to be equal to �gh2 ∼ 3 × 10−9.

Key words: methods: data analysis – pulsars: individual: PSR B1855+09 – pulsars:
individual: PSR B1937+21.

1 IN T RO D U C T I O N

Following the discovery of pulsars in 1967 (Hewish et al. 1968), it
became clear that their rotational stability allowed them to be used
as astronomical clocks. This became even more obvious after the
discovery of the millisecond pulsar PSR B1937+21 in 1982 (Backer
et al. 1982). The typical accuracy of measuring the time of arrivals
(TOA) of millisecond pulsar pulses is now a few microseconds, or
even hundreds of nanoseconds for some pulsars. For an observation
interval of the order of 108 s, this accuracy produces a fractional
instability of 10−15, which is comparable to the fractional instability
of atomic clocks. Such a high stability cannot but be used for time
metrology and time keeping.

There are several papers considering the applicability of the sta-
bility of pulsar rotation to time-scales. (Guinot 1988) presents the
principles of the establishment of TT (terrestrial time), with the
main conclusions that one cannot rely on the single atomic stan-
dard before authorized confirmation, and that, for pulsar timing,
one should use the most accurate realizations of terrestrial time,
e.g. TT(BIPMXX) (Bureau International des Poids et Mesures).
Ilyasov et al. (1989) describes the principles of a pulsar time-scale,
and the definition of a ‘pulsar second’ is presented. Guinot & Petit
(1991) show that, because of the unknown pulsar period and period
derivative, the rotation of millisecond pulsars is useful only for in-
vestigations of time-scale stability a posteriori and with long data
spans. The papers by Ilyasov et al. (1996), Kopeikin (1997), Rodin,
Kopeikin & Ilyasov (1997), and Ilyasov, Kopeikin & Rodin (1998)

�E-mail: rodin@prao.ru

suggest a binary pulsar time-scale (BPT) based on the motion of a
pulsar in a binary system, with theoretical expressions for variations
in rotational and binary parameters depending on the observational
interval. The main conclusion is that the BPT at short intervals
is less stable than the conventional pulsar time-scale (PT), but, at
longer periods of observation (102– 103 years), the fractional insta-
bility of BPT may be as accurate as 10−14. Petit & Tavella (1996)
present an algorithm of a group pulsar time-scale and some ideas
concerning the stability of BPT. Finally, Foster & Backer (1990)
present a polynomial approach for describing clock and ephemeris
errors and the influence of gravitational waves passing through the
Solar system.

In this paper, a method is presented to obtain corrections of the
atomic time-scale relative to the PT from pulsar timing observations.
The basic idea of the method can be found in Rodin (2006).

In Section 2, the main formulae of pulsar timing are described.
Section 4 contains a theoretical algorithm for Wiener filtering. Sec-
tion 5 presents the results of a numerical simulation, i.e. the recovery
of the harmonic signal from noisy data by the Wiener optimal filter
and the weighted average algorithms. The latter algorithm is used
similarly to in Petit & Tavella (1996). Section 6 describes an ap-
plication of the algorithm to the real timing data of pulsars PSR
B1855+09 and B1937+21 (Kaspi, Taylor & Ryba 1994).

2 PULSAR TIMING

The algorithm for the pulsar timing is widely described in the lit-
erature (Backer & Hellings 1986; Doroshenko & Kopeikin 1990;
Edwards et al. 2006). Two basic equations are presented below. The
expression for the pulsar rotational phase φ(t) can be written in the
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following form:

φ(t) = φ0 + νt + 1

2
ν̇t2 + ε(t), (1)

where t is the barycentric time, φ0 is the initial phase at epoch
t = 0, ν and ν̇ are the pulsar spin frequency and its derivative,
respectively, at epoch t = 0, and ε(t) is the phase variation (timing
noise). Based on equation (1), the pulsar rotational parameters ν

and ν̇ can be determined.
The relationship between the time of arrival of a given pulse to the

Solar system barycentre, t, and to the observer, t̂ , can be described
by the following equation (Murray 1986):

c(t̂ − t) = −(k · b) + 1

2R
[k × b]2 + �trel + �tDM, (2)

where k is the barycentric unit vector directed to the pulsar, b is
the radius vector of the radio telescope, R is the distance to the
pulsar, �trel is the gravitational delay caused by the space–time
curvature, and �tDM is the plasma delay. The pulsar coordinates,
proper motion and distance are obtained from equation (2) by a
fitting procedure that includes adjustment of the above-mentioned
parameters to minimize the weighted sum of squared differences
between φ(t) and the nearest integer.

3 FILTERING TECHNIQUE

Let us consider n uniform measurements of a random value (post-fit
timing residuals) r = (r1, r2, . . . , rn). r is the sum of two uncorrelated
values; that is, r = s + ε, where s is a random signal to be estimated
and associated with the clock contribution, and ε is a random error
associated with fluctuations in the pulsar rotation. The values s and
ε should both be related to the ideal time-scale, as pulsars in the
sky ‘do not know’ about the time-scales used for their timing. The
problem of Wiener filtration lies in the estimation of the signal
s if measurements r and covariances (3) are given (Wiener 1949;
Gubanov 1997). For r , s and ε, the covariance functions can be
written as follows:

cov(r, r) = 〈ri , rj 〉 = 〈si , sj 〉 + 〈εi, εj 〉,
cov(s, s) = 〈si , sj 〉,
cov(s, r) = 〈si , rj 〉 = 〈ri , sj 〉 = 〈si , sj 〉,
cov(ε, ε) = 〈εi, εj 〉,

(i, j = 1, 2, . . . , n) (3)

where 〈〉 denotes the ensemble average.
The optimal Wiener estimation of the signal s and a posteri-

ori estimation of its covariance function Dss are expressed by the
formulae (Wiener 1949; Gubanov 1997)

ŝ = QsrQ
−1
rr r = QssQ

−1
rr r = Qss(Qss + Qεε)−1r (4)

and

Dss = Qss − QsrQ
−1
rr Qrs , (5)

where the covariance matrices Qrr , Qsr , Qrs , Qss are constructed as
Toeplitz matrices from the corresponding covariances. In this paper
we assume that processes s and ε are stationary in a weak sense
(stationary in the first and second moments). As a quadratic fit
eliminates the non-stationary part of a random process (Kopeikin
1999), their covariance functions depend on the difference of the
time moments ti − tj .

As it is impossible to perform pulsar timing observations with-
out a reference clock, in order to separate the covariances, 〈si ,
sj 〉 and 〈εi , εj 〉, it is necessary to observe at least two pulsars

relative to the same time-scale. In this case, combining the pul-
sar TOA residuals and assuming that cross-covariances 〈2εi ,1εj 〉 =
〈1εi ,2εj 〉 = 0 produces (hereafter, upper-left indices run over the
pulsars under consideration)

〈si , sj 〉 =
(〈

1ri + 2ri ,
1rj + 2rj

〉
−

〈
1ri − 2ri ,

1rj − 2rj

〉) /
4, or

〈si , sj 〉 =
〈

1ri ,
2rj

〉
.

(6)

If M pulsars are used for the construction of the pulsar time-
scale, there are M(M − 1)/2 signal covariance estimates 〈si , sj 〉 =
〈kri ,lrj 〉, (k, l = 1, 2, . . . , M).

In equation (4), the matrix Q−1
rr serves as the whitening filter. The

matrix Qss forms the signal from the whitened data.
The ensemble signal (pulsar time-scale) is expressed as follows:

ŝens = 2

M(M − 1)

M(M−1)
2∑

m=1

mQss ·
M∑
i=1

iw iQ−1
rr · i r, (7)

where iw is the relative weight of the ith pulsar, iw = κ/σ 2
i , σi

is the root-mean-square of the whitened data i Q−1
rr ·i r , and κ is

the constant serving to satisfy
∑

i
iw = 1. The first multiplier

in equation (7) is the average cross-covariance function, and the
second multiplier is the weighted sum of the whitened data.

For calculation of the auto- and cross-covariances, the follow-
ing algorithm was used. The initial time-series krt were Fourier-
transformed:

kx(ω) = 1√
n

n∑
t=1

krthte
iωt , (k = 1, 2, . . . , M), (8)

where the weights ht are the zeroth-order discrete prolate spheroidal
sequences (Percival 1991), which are used for optimization of
broad-band bias control. They can be calculated to a very good
approximation using the following formula (Percival 1991):

ht = C ′
0

I0

(
πW (n − 1)

√[
1 −

(
2t−1

n
− 1

)2])

I0(πW (n − 1))
, (9)

where C′
0 is the scaling constant used to force the convention∑

h2
t = 1, I0 is the modified Bessel function of the first kind

and zeroth order, and the parameter w affects the magnitude of the
side-lobes in the spectral estimates (usually W = 1–4). In this paper,
W = 1 is used.

The power spectrum (k = l) and cross-spectrum (k �= l) were
calculated from the formula

klX(ω) = 1

2π
|kx(ω)lx∗(ω)|, (10)

where (·)∗ denotes complex conjugation.
Finally, the auto-covariance (k = l) and cross-covariance (k �= l)

were calculated using the following formula:

cov(kr, lr) =
n∑

ω=1

klX(ω)e−iωt , (k, l = 1, 2, . . . , M). (11)

4 C OMPUTER SI MULATI ON

To evaluate the performance of the Wiener filtering method as com-
pared with the weighted average method, we applied it to simulated
time sequences corresponding to a harmonic signal with additive
white and red (correlated) noise. Simulated time-series were gener-
ated with the help of a random generator built with the MATHEMATICA

software with the preset (normal) distribution for various numbers
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of pulsars. A maximum of 50 pulsars were used (limited by accept-
able computing time). The harmonic signal to be estimated was as
follows: A sin(t/P), A = 1, P = 10, t = 1, 2, . . . , 256. The additive
Gaussian white noise had zero mean and various values of the vari-
ance. For example, in the simulation for 50 pulsars, the variance
was in the range σ 2 = 1, 2, . . . , 50. The correlated noise n2, n4

with the power spectra 1/f 2 and 1/f 4 was generated as a single or
twice-repeated cumulative sum of the white noise n0:

n2j =
j∑

i=1

n0i , n4j =
j∑

i=1

n2i , (j = 1, 2, . . . , n). (12)

The second-order polynomial trend was subtracted from the gener-
ated time-series n2 and n4. The weights of the individual time-series
were taken to be inversely proportional to σ 2

z , where σz is the frac-
tional instability (Taylor 1991). The quality of the two methods was
compared by calculating the root-mean-square of the difference
between the original and recovered signals.

Fig. 1 shows the results of the computer simulation described
above. The quality of these two methods of signal estimation is
clearly visible. It is important to note that the signal estimation ac-
curacy in the case of the Wiener filter (solid line) is better in all
cases. The most significant advantage of the Wiener filter over the
weighted average method is seen in the case of the white noise
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Figure 1. The accuracy of signal estimation based on the methods of weighted averages (dashed lines) and Wiener filtering (solid lines) as dependent on the
number of pulsars (left panels) and length of the data (right panels). For the calculations shown in the left panels, 256 data points were taken; for the calculations
shown in the right panels, five pulsars were used. Various types of noise were generated: (a), (b) white phase noise; (c), (d) white noise in frequency; (e), (f)
random-walk noise in frequency. Data in the panels (d) and (f) were scaled for easy comparison with the data in the other panels.

(Figs 1a, b). For the correlated noise with the power spectrum 1/f 2

(Figs 1c, d), the advantage is still clear. For the red noise with the
power spectrum 1/f 4 both methods show similar results (Figs 1e, f).
Noteworthy is the dependence of the estimation quality on the obser-
vation interval for the correlated noise (Figs 1d, f): as the observation
interval increases, the estimation accuracy grows. Physically, such
a behaviour corresponds to the appearance of stronger and stronger
variations of the correlated noise with time, which causes a deteri-
oration in the signal estimation quality. The influences of the form
of the correlated noise and length of the observation interval on the
variances of the pulsar timing parameters are described in detail in
Kopeikin (1997).

5 R ESULTS

To evaluate the performance of the proposed Wiener filter method,
timing data of pulsars PSR B1855+09 and B1937+21 (Kaspi et al.
1994) were used. For the sake of simplicity in the subsequent ma-
trix computations, unevenly spaced data were transformed into uni-
formly spaced data with a sampling interval of 10 d by means of
linear interpolation. Such a procedure perturbs the high-frequency
component of the data while leaving the low-frequency component,
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Figure 2. The barycentric timing residuals of pulsars PSR B1855+09 (thin line) and B1937+21 (thick line) (a) before and (b) after uniform sampling.

of most interest to us, unchanged. The sampling interval of 10 d
was chosen to preserve approximately the same volume of data.

The common part of the residuals for both pulsars (251 TOAs) has
been taken within the interval MJD = 46450–48950. As choosing
the common time interval of the time-series changes the mean and
slope, the residuals were quadratically refitted for consistency with
the classical timing fit. The pulsar post-fit timing residuals before
and after the processing described above are shown in Fig. 2.

According to Kaspi et al. (1994), the timing data of PSR
B1855+09 and B1937+21 are in the UTC (Universal Coordinated
Time) time-scale. UTC is the international atomic time-scale that
serves as the basis for timekeeping for most of the world. UTC
runs at the same frequency as TAI (International Atomic Time).
It differs from TAI by an integral number of seconds. This differ-
ence increases when so-called leap seconds occur. The purpose of
adding leap seconds is to keep atomic time (UTC) within ±0.9 s of
a time-scale called UT1, which is based on the rotational rate of the
Earth. Local realizations of UTC exist at national time laboratories.
These laboratories participate in the calculation of the international
time-scales by sending their clock data to the BIPM. The differ-
ence between the UTC (computed by BIPM) and any other timing
centre’s UTC only becomes known after computation and dissemi-
nation of UTC, which occurs about two weeks later. This difference
is presently limited mainly by the long-term frequency instability
of UTC (Audoin & Guinot 2001).

The signal we need to estimate is the difference UTC−PT. Fig. 3
shows the signal estimates (thin line) based on the timing residuals
of pulsars PSR B1855+09 and B1937+21 and calculated using
equation (4). The combined signal (ensemble pulsar time-scale,
equation 7) is shown in Fig. 4, and displays a behaviour similar to
the difference UTC−TT(BIPM06) (correlation ρ = 0.75).

All three signals UTC−PT1855, UTC−PT1937 and UTC−PTens

were smoothed using the following method: to decrease the Gibbs
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Figure 3. Differences (a) UTC−PT1855 and (b) UTC−PT1937 (thin lines) for the interval MJD = 46450–48950 estimated using the optimal filtering method
of equation (4). The smoothing with the Kaiser filter is shown by the thick line. The dashed line shows the difference UTC−TT(BIPM06).

1986 1987 1988 1989 1990 1991 1992 1993
year

1

0.5

0

0.5

1

ms

0.17 ms

Figure 4. Combined clock variations of UTC−PTens for the interval MJD =
46450–48950 estimated using the optimal filtering method from the timing
residuals of pulsars PSR B1855+09 and B1937+21 (thick line) and the
difference UTC−TT(BIPM06) (dashed line). The thin line indicates the
difference TT−PTens.

phenomenon (signal oscillations) near the ends of the smoothing
interval, the series under consideration were backward and forward
forecasted by p = IntegerPart [n/2] lags (n = 251 is the length of the
time-series) using Burg’s (also referred to as the maximum entropy
method) autoregression algorithm of order p (Burg 1975; Terebizh
1992). New time-series of double length were smoothed by use
of the low-pass Kaiser filter (Gold & Rader 1973; Kaiser 1974)
with a bandwidth of f max/32, where f max = 2/�t, and �t = 10 d
is the sampling interval. The choice of the bandwidth was defined
by visual comparison with the UTC−TT(BIPM06) line. The final
time-series were obtained by dropping the forward and backward
forecasted sections of the smoothed series.

The accuracy of the obtained realizations of the pulsar time-
scales UTC−PT1855 and UTC−PT1937 was derived from the diago-
nal elements of the covariance matrix defined by equation (5). The
root-mean-square values of UTC−PT1855 and UTC−PT1937 are
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0.44 µs and 0.67 µs, respectively. The accuracy of the smoothed
signals was estimated as 0.44/

√
16 = 0.11 µs and 0.67/

√
16 =

0.17 µs. Finally, for the overall accuracy a conservative estimate of
0.17 µs was derived.

6 D ISCUSSION

The stability of a time-scale is characterized by the so-called Allan
variance, numerically expressed as a second-order difference of the
clock phase variations. As timing analysis usually includes determi-
nation of the pulsar spin parameters up to at least the first derivative
of the rotational frequency, it is equivalent to excluding the second-
order derivative from pulsar TOA residuals, and therefore there is
no sense in the Allan variance. For this reason, for calculation of
the fractional instability of a pulsar as a clock, another statistic, σz,
has been proposed (Taylor 1991). A detailed numerical algorithm
for the calculation of σz is described in Matsakis, Taylor & Eubanks
(1997).

In this work, it has been proved that different realizations of pul-
sar time-scales must have comparable stabilities (Lyne & Graham-
Smith 1998) and should not be worse than available terrestrial time-
scales over the same interval. For this purpose, the statistic σz of two
realizations of PT, UTC−PT1855 and UTC−PT1937, were compared.

Fig. 5 presents the fractional instability of the differences
PT1937 −PT1855 (dashed line) and TT−PTens (solid line). For a 7-yr
time interval, σz = (0.8 ± 1.9) × 10−15 and σz = (1.6 ± 2.9) ×
10−15 for TT−PTens and PT1937 − PT1855, respectively. It can be
seen that the instability of the two differences lies within error bar
intervals. The fractional instability of TT relative to PTens and of
PT1937 relative to PT1855 is almost one order of magnitude better than
the individual fractional instabilities of the pulsars PSR B1855+09
and B1937+21.
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g h2 10 9
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Figure 5. The fractional instability σz based on the difference PT1937 −PT1855 (dashed line) and σz of the difference TT−PTens (solid line). Theoretical values
of σz in the cases �gh2 = 10−9 and 10−10 are shown in the lower right-hand corner of the plot.

As an example of an astrophysical application of the fractional
instability values obtained in this work, one could consider the es-
timation of the upper limit of the energy density of the stochastic
gravitational wave background (Kaspi et al. 1994). For this pur-
pose, theoretical lines of σz in the case when the gravitational wave
background with the fractional energy density �gh2 = 10−9 and
10−10 begins to dominate are plotted in the lower right-hand cor-
ner of Fig. 5. It can be seen that σz of TT−PTens crosses the line
�g h2 = 10−9 and approaches �gh2 = 10−10. The upper limit of
�gh2 based on the two-sigma uncertainty (95 per cent confidence
level) of the ensemble σz is equal to ∼3 × 10−9.

It is noteworthy that, as PSR 1855+09 and 1937+21 are relatively
close to each other on the sky (angular separation of 15.◦5), and
hence their variations of the rotational phase contain a correlated
contribution caused by the stochastic gravitational wave background
(Hellings & Downs 1983), they form a good pair for estimation of
the upper limit of �gh2.

Currently, the accuracy of the filtering method without the con-
tribution of the uncertainty of the TT algorithm is estimated at a
level of 0.17 µs. So, the uncertainty in PTens could, in principle,
reach the level of a few tens of nanoseconds if it were to be used for
all high-stable millisecond pulsars. As computer simulations show,
for the highest advantage while applying the Wiener optimal filters
one should use pulsars that show no correlated noise in their post-fit
timing residuals.

7 C O N C L U S I O N S

An algorithm to form an ensemble pulsar time-scale based on the
method of optimal Wiener filtering is presented. The basic idea of
the algorithm is to use an optimal filter to remove additive noise
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from the timing data before the construction of the weighted average
ensemble time-scale.

Such a filtering approach offers an advantage over the weighted
average algorithm as it utilizes additional statistical information
about the common signal in the form of its covariance function
or power spectrum. Because timing data are always available rela-
tive to a definite time-scale, in order to separate the pulsar and clock
contributions one needs to use observations from a few pulsars (min-
imum two) relative to the same time-scale. Such an approach allows
estimation of the signal covariance function (power spectrum) by
averaging all cross-covariance functions or power cross-spectra of
the original data.

The availability of two scale differences UTC−TT and UTC−PT
has resulted in the long-awaited possibility of comparing the ul-
timate terrestrial time-scale TT and the extraterrestrial ensemble
pulsar time-scale PT, of comparable accuracy. The fractional insta-
bility of TT relative to PT and their high correlation demonstrate
that the PT scale can be successfully used to monitor the long-term
variations of TT.
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