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ABSTRACT 
 Due to their potential for reducing the weapon 
size and efficiency, design methods for realizing hit-
to-kill capabilities in missile systems are of 
significant research interest in the missile flight 
control community. As defined in this paper, hit-to-
kill capability requires the missile to consistently 
achieve point-mass miss distances less than half the 
minimum dimension of the target. It has been noted 
in the literature that the chief contributors to the miss 
distance in homing missiles are the seeker errors, 
autopilot lag, target maneuvers, and target state 
estimation lag. Guidance laws for ameliorating the 
effects of each of these miss distance components 
have been discussed in several recent publications.  
 The present research addresses the hit-to-kill 
missile flight control problem by casting it as an 
integrated guidance-control problem. By including 
the complete dynamics of the missile, the integrated 
guidance-control formulation automatically 
compensates for the impact of the autopilot lag on the 
miss distance. The resulting finite-interval control 
problem is then solved using a transformation 
approach.  Interception by a kinetic warhead is used 
as an example to illustrate the performance of the 
integrated guidance-control law. 

 
1. INTRODUCTION 

 There has been an increasing interest in methods 
for integrated synthesis of missile guidance and 
control systems in recent literature1-9. These 
techniques have the potential to enhance missile 
performance by exploiting the synergism between 
guidance and control (autopilot) subsystems. 
Additional feedback paths established by integrated 
design methods in the flight control system allow the 
designer to realize beneficial interactions between 
these subsystems. Resulting improvements in target 
interception accuracy will allow the use of smaller 
warheads, leading to a more efficient weapon system.  
 The focus of the research presented in this paper 
is on the development of design methods for 
integrated guidance-autopilot systems for homing 
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missiles. Infinite-time nonlinear regulator 
formulations of these problems have been previously 
presented1-5. The present paper will discuss finite-
duration nonlinear optimal control formulations of 
the integrated guidance-control problem. Although 
linear, gain-scheduled approaches to the integrated 
guidance-control problem are feasible6, present 
research will focus on nonlinear techniques for 
integrated system design.  The benefits of nonlinear 
design methods are that they can use all the available 
information about the missile dynamics to provide 
better performance, and avoid the onerous gain 
scheduling process. Computational complexity 
introduced by the nonlinear approach can easily be 
handled using state-of-the-art, onboard processors. 
 The traditional approach to missile guidance and 
control system design has been to neglect interactions 
between these systems, and to treat individual missile 
subsystems separately. Missile dynamics are split 
into relative position dynamics and missile short- 
period dynamic components. Relative position 
dynamics are used to synthesize the guidance law, 
while the short period dynamics is employed to 
design an autopilot to stabilize the missile and to 
track guidance commands.  Designs are generated for 
each subsystem and these designs are then 
assembled. If the overall system performance is 
unsatisfactory, individual subsystems are re-designed 
to improve the system performance. Due to its 
iterative nature, this latter part of the design process 
can be highly time-consuming and expensive. 
 Figure 1 illustrates the differences between 
traditional and integrated guidance-control systems. 
In the conventional approach, the guidance law does 
not employ the missile body rates or sensed 
acceleration components to generate autopilot 
commands. As a result, in engagement scenarios 
requiring agile maneuvers, the guidance commands 
can sometimes exceed the autopilot performance 
limits. If the autopilot employs high DC gain 
dynamic compensators for improved command 
tracking and disturbance rejection, these guidance 
commands can drive the flight control system 
unstable. Additionally, since the autopilot does not 
use target relative missile position and velocity 
components for feedback, it cannot adjust its 
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response to accommodate for agile target maneuvers 
that may occur towards the end of the engagement.  
 Consequently, the traditional design approach 
requires the autopilot to have a small time constant 
when compared with the guidance system to assure 
the stability and performance of the overall flight 
control system. In fact, the autopilot time constant 
often dictates the achievable interception accuracy of 
missiles equipped with conventional flight control 
systems7, 8. While the autopilot time constant 
requirement can be easily met when the missile is far 
away from the target, it becomes increasingly 
difficult as it gets closer to the target. This is due to 
the fact that most guidance laws are functions of 
time-to-go, which make their responses faster as the 
missile gets close to the target. In fact, it has been 
shown that conventional flight control systems can 
sometimes become unstable as the missile 
approaches the target9. 
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(b) Integrated Guidance and Control System 
 
Figure 1. Conventional and Integrated Guidance-

Control Systems. 
 On the other hand, in the integrated design 
approach, the guidance and control functions are 
realized using all the available measurements. This 
fact makes the system less likely to encounter 
saturation and stability problems. Moreover, the 
integrated design approach eliminates the iterative 
steps required to ensure the compatibility between the 
guidance and autopilot systems. 

 While there are definite operational advantages 
in employing integrated guidance-control systems, 
their design is complicated. This is due to the fact 
that the increased dimension of the nonlinear control 
problem makes it awkward to apply a conventional 
gain-scheduling10 design methodology. These high-
order designs will require gain scheduling not only 
with respect to the airframe performance variables, 
but also with respect to the engagement geometry. 
Although nonlinear control system design 
techniques11 - 13 can make these problems more 
tractable, symbolic manipulations required for their 
development can be formidable. Recent 
advancements in computer-aided nonlinear control 
system design technology14 offer more direct 
approaches for integrated system design, and avoid 
the need for any symbolic manipulations.  
 Another difficulty in integrated guidance-control 
system design arises from the fact the problem has to 
be posed as a finite-interval control problem. While it 
is awkward to adapt linear finite-time control system 
results15 to formulate and solve the nonlinear 
integrated guidance-control problem, numerical 
nonlinear control techniques14 can be readily 
employed for this purpose. 
 With the foregoing as the background, this paper 
will discuss two different formulations of the finite-
interval integrated guidance and control system 
designs for a homing missile. Using the feedback 
linearization approach, the integrated guidance-
control design problems will be formulated as finite-
interval optimal control problems. The solutions will 
then be obtained as online solvable two-point 
boundary-value problems, specified in terms of time-
to-go or range-to-go.  
 In each case, integrated guidance-control 
systems will be designed using a six degree-of-
freedom nonlinear simulation model of an air-to-air 
missile in conjunction with computer-aided, 
nonlinear control system design software14.  Sample 
engagement scenarios with no maneuvering and 
maneuvering targets will be given to illustrate 
integrated guidance-control system performance. 
 

2. INTEGRATED GUIDANCE-CONTROL SYSTEM 
 Integrated guidance-control designs discussed in 
previous research efforts1, 3 - 5 were formulated as 
infinite-duration control problems. Although time-to-
go appears implicitly in the proportional navigation 
and the zero-effort miss formulations, the finite 
interval nature of the control problem is not explicitly 
recognized in the design process. This section will 
present two different formulations of the finite-
interval integrated guidance-control problem.  
 The integrated guidance-control problem will be 
cast as a finite-interval optimal control problem that 
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drives the miss distance to zero while achieving a 
specified terminal aspect angle.  Desired terminal 
aspect angle is achieved by enforcing transversality 
conditions on target-relative flight path angle and the 
heading angle at the final time or range.  
 An additional coordinate frame is introduced in 
the system dynamics to simplify the problem 
formulation. This is a target-centered system, with 
the Xc-axis oriented in the direction of the desired 
intercept angle.  The Zc-axis direction points into the 
plane of the paper. Figure 2 illustrates the coordinate 
frame.  In most cases, the Xc-axis would be parallel to 
the target’s heading; i.e. the desired terminal aspect 
angle would then be either zero or 180 degrees (∆χ = 
0, 180). 
 

 
 Figure 2. Guidance Frame Definition 

The objective of the guidance-control problem is to 
drive the target relative missile position coordinates 
yc and zc to zero, while achieving the desired aspect 
angle at the final time.   
 The finite-interval integrated guidance-control 
problem is a trajectory optimization proble, which 
can be solved using iterative numerical algorithms15. 
However, since iterative algorithms are not desirable 
for onboard implementation due to the uncertainties 
in their convergence, a semi-numerical approach will 
be developed in this paper. 
 As in the formulations of the integrated 
guidance-control problems discussed in References   
3 and 4, the system dynamics will be first 
transformed into linear, time-invariant form using the 
feedback linearization11 - 13 methodology.  The 
trajectory optimization problem is then formulated in 
terms of the feedback linearized dynamic system.  
The resulting control law is transformed back into the 
original space to obtain a nonlinear, finite-interval 
integrated guidance-control law.  Note that this 
represents a new approach to on-line nonlinear 
trajectory optimization of flight vehicles using six 
degrees-of-freedom models.  

 Since the missile model is of high order and 
contains numerical tables, it is not practical to derive 
feedback-linearized models using algebraic 
manipulations. However, a recently developed 
software package14 can be used to derive feedback-
linearized models directly from computer 
simulations.   
 The first step in the numerical feedback 
linearization approach is that of defining the flow of 
the control variables through the system states. These 
dependencies can be symbolically represented using 
the following expressions: 
 φδ →→ pP  (1) 
 cq zq →→→ αδ  (2) 

 cr yr →→→ βδ   (3) 
Expressions (1) – (3) state that the roll, pitch, yaw fin 
deflections influence the body rates, which in turn 
influence roll attitude, angle of attack and angle of 
sideslip. The angle of attack and angle of sideslip 
then influence the target relative missile altitude and 
cross range. The nonlinear control system design 
software14 uses the control flow definitions given in 
Equations (1) through (3) to develop the numerically 
feedback linearized model.  The feedback-linearized 
model is then used to derive finite-interval integrated 
guidance-control laws. 
 The state variables in the feedback-linearized 
form of the missile dynamics are altitude, cross 
range, roll attitude and their derivatives. In the case 
of maneuvering targets, it is assumed that the target 
velocity and acceleration components will be 
available from an estimator. The feedback 
linearization process transforms the fin deflections 
into new pseudo-control variables. The system 
dynamics are in a linear, time-invariant form with 
respect to the pseudo-control variables. If the 
instantaneous values of the state variables are known, 
fin deflections can be extracted using a nonlinear, 
state-dependent  transformation. 
 The finite-interval optimal control problem can 
be formulated in terms of the transformed state and 
control variables. If the performance index is 
specified as a quadratic function of transformed state 
and control variables, closed-form solutions can be 
obtained using linear-quadratic optimal control 
theory15.  Boundary conditions can be imposed in this 
formulation to meet the terminal aspect angle 
constraints. This process will be illustrated in the 
following sections. 
 
2.1. Finite-Time Integrated Guidance-Control 
 The feedback-linearized missile dynamics are in 
the form of a linear, time-invariant dynamic system: 
 ( ) ( ) ( )tuBtxAtx +=&  (4) 
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The state vector x is of dimension 8 and the pseudo-
control vector u has a dimension of  3. The states in 
the feedback-linearized missile dynamics are the 
target relative position of the missile zc, yc and their 
first and second derivatives. The roll channel states 
are the roll attitude and its first derivative.  Control 
variables are complex functions of the transformed 
state variables and the fin deflections.  
 A quadratic performance index is next defined 
as: 
 ( ) τdRuuQxxxSxJ tf

to
TT

2
1

ff
T
f2

1 ∫ ++=  (5) 

where xf = x(tf) is the state vector at the final time tf, 
and the lower limit of integration to represents the 
current time t. Time-to-go is defined as: tf - to.  Sf is a 
positive semi-definite terminal state-weighting 
matrix.  Q is a positive semi-definite state-weighting 
matrix and R is a positive definite pseudo-control 
weighting matrix. 
  Using Optimal Control Theory15, it can be shown 
that the optimal control at a time instant t is: 
 ( ) ( )txtSBR)t(u o

T1−−=  (6) 
where the positive definite matrix S(to) is found by 
integrating the Matrix Riccati equation: 

( ) ff
T1T StS,SBSBRQSASAS =+−−−= −&  (7) 

backward from the final time to the current time.  In 
this formulation, desired components of the state 
vector at the final time can be driven to zero by 
introducing weighting terms in the terminal state 
weighting matrix Sf .  Larger values of the weights 
will enable a tighter control over the terminal state 
variables.  
 A more direct approach for satisfying the 
terminal boundary conditions is to introduce them 
into the optimal control problem through 
transversality conditions15.  This approach leads to a 
slightly different form of the solution. Following 
Reference 15, let ψ be a q-dimensional vector of the 
desired final values of the states, where 1 ≤ q ≤ n.  It 
will be assumed that the states are ordered so that the 
ones with terminal constraints are the initial entries in 
the state vector.  In order to be consistent, it is 
important that no quadratic terminal state weightings 
be placed on those states that have to meet terminal 
transversality conditions.   
 The optimal control at time t for the linear-
quadratic optimization problem with terminal 
boundary conditions can be shown to be15: 

( ) ( ) ( ) ( ) ( )( ) ( )[
( ) ( ) ]ψo

1
o

o
T

o
1

oo
T1

tVtT

txtTtVtTtSBRtu
−

−−

+

−−=
 

  (8) 

where S(to) is found using the Riccati equation (7). 
The matrices T(to) and V(to) are found by integrating 
the differential equations: 

 ( ) ( ) [ ] 










=−=

×−

−

q)qn(

q
f

TT1
0

I
tT,TABSBRT& (9) 

 ( ) [ ] qqf
T1T 0tV,TBBRTV ×

− ==&  (10) 
backward from the final time, with the specified 
boundary conditions. When compared with the case 
without the terminal boundary conditions, it can be 
seen that the expression for optimal control contains 
additional terms. These terms provide a balance 
between minimizing the performance index and 
satisfying the specified terminal values.  It is 
important to note that the solutions of T and V in (9) 
and (10) are not guaranteed for all t, nor is the 
existence of the inverse of V.  Even when the inverse 
exists for all t < tf , the control will become 
unbounded as t → tf , since V → 0. This fact has 
important implications on the robustness of the 
system in the presence of modeling uncertainties and 
noise, as noted in Reference 15. The optimal control 
can be defined in terms of time-to-go by letting 

ttt fgo −=  in the equations (6), (9) and (10). 
 The optimal pseudo-control vector u can be 
inverse transformed using the nonlinear control 
system design software14 to obtain the fin deflections. 
Although the finite-duration formulation can be 
applied to all the three channels, in the present 
research, the finite-duration integrated guidance-
control problem was solved for the pitch and yaw 
channels, and an infinite-time LQR controller was 
designed for the roll channel.  The state and control 
weights used for the pitch and yaw channels are: 

 [ ] 44f 0S,01.0R,

1000
0000
0000
0000

Q ×==



















=   (11) 

The state and control weights in the roll channel are: 

 0S,01.0R,
100
01

Q f ==







=  (12) 

 Terminal constraints are placed on zc and its first 
derivative, which is related to flight path angle, and 
on yc and its first derivative, which is related to the 
heading angle.  
 The guidance-control system is required to drive 
the target relative missile altitude and target 
referenced cross range to zero, and altitude rate and 
cross range rate to zero at the final time. The two 
latter constraints will indirectly constrain the flight 
path angle and heading angle.  The constraint values 
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on the derivatives could be set to non-zero values if it 
were desired to have non-parallel trajectories at 
interception.  Limits of 30 degrees were placed on the 
fin deflections, but no limits were imposed on the 
normal or lateral accelerations. 
 The performance of this finite-time integrated 
guidance-control law will be illustrated in two 
engagement scenarios in this section. In the first 
engagement, the missile and target are both at an 
altitude of 10,000 ft.   The target is flying a heading 
of 90 degrees, at a constant velocity of 1,100 ft/s.  
The missile is initially at 10,000 ft west and 20,000 ft 
south of the target and has a heading of 0 degrees.  
The initial velocity of the missile is Mach 4.5.  The 
time step for both forward and backward integration 
is chosen to be 0.002 seconds.  The results are shown 
in Figures 3 through 7.   

 
Figure 3. Horizontal Plane Trajectories of the 

Missile and the Target, 
Solid Line: Missile, Dashed Line: Target 

 

 
Figure 4. Missile and Target Altitude Time 

Histories, 
Solid Line: Missile, Dashed Line: Target 

 
 The minimum distance to the target is 0.00034 ft, 
the final difference in the headings is 0.25 degrees, 

and the final value of the flight path angle is 0.07 

degrees.   

 
Figure 5. Angles of Attack and Sideslip vs. Time 

Figure 6. Missile Body Angular Rate Time 
Histories 

 
Figure 7. Time History of Fin Deflections 

 As expected, the missile angle of attack, angle of 
sideslip and the body rates exhibit large amplitude 
motions at the end of the engagement to satisfy the 
specified boundary conditions. The fin deflection 
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requirements in the finite-interval integrated 
guidance-control law remain modest until the very 
end of the maneuver.  They then approach and 
remain at specified fin deflection limits. 
 The second engagement scenario is similar to the 
one presented in Reference 16, but in this case the 
missile velocity is not constant.   The initial heading 
of the missile is 10 degrees and the initial heading of 
the target is 198.4 degrees, and the engagement 
begins with missile at 16,400 ft south of the target.  
The target flies at 10,000 ft. altitude, and the initial 
altitude of the missile is 1,640 ft  higher than the 
target.  The target’s velocity is 1,037 ft/s and the 
missile’s initial velocity is Mach 3.5.  The target is 
turning with an acceleration of 3g’s.  The step size 
for both forward and backward integration was 0.001 
seconds.  The results for the engagement are shown 
in Figures 8 through 12.  

 
Figure 8. Horizontal Plane Trajectories of the 

Missile and the Target, 
Solid Line: Missile, Dashed Line: Target 

 

 
Figure 9.  Missile and Target Altitude Time 

Histories 
Solid Line: Missile, Dashed Line: Target 

 
Figure 10.  Missile Angles of Attack and Sideslip 

Time Histories 

 

 
Figure 11. Missile Body Angular Rates vs. Time 

 
Figure 12. Time Histories of Fin Deflections 

 The minimum distance between the missile and 
the target is 0.035 ft., the final difference in headings 
is 179.47 degrees, and the final flight path angle is 
-0.63 degrees. 
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2.2. Finite-Range Integrated Guidance-Control 
 The finite-time formulation of the integrated 
guidance-control problem discussed in the previous 
section requires the knowledge of time-to-go. Since 
this quantity cannot be measured, it is normally 
estimated as the negative of the ratio of the range and 
range rate.  
 The formulation presented in this section avoids 
the need for a time-to-go estimate by recasting the 
integrated guidance-control problem with range as 
the independent variable. Resulting integrated 
guidance-control law computations are based on 
range-to-go, which may be a directly measurable 
quantity. 
 The independent variable in the missile 
dynamics can be changed from time to range using 
the identity: 

dt
dR/

dt
(.)d

dR
(.)d

= ,   

with   
( ) ( ) ( )

( ) ( ) ( )2
TM

2
TM

2
TM

TMTMTM

hhyyxx

hhyyxx
dt
dR

−+−+−

−+−+−
=

&&&&&&
 

  (13) 
Here, xM, yM, hM, xT, yT, hT define the position of the 
missile and the target in an inertial frame. Dots over 
the variables denote velocity components.  
 Missile dynamics with range as the independent 
variable are next feedback-linearized using the 
nonlinear control system design software14 package. 
Since the change of the independent variable does not 
alter the manner in which the system dynamics are 
affected by the fin deflections, the symbolic 
expressions (1) through (3) can be used to set up the 
feedback linearization process. Feedback linearized 
missile dynamics will be of the form: 
 1v=′′φ , 2vh =′′′ , 3c vy =′′′  (14) 
A prime denotes differentiation with respect to range, 
and the variables v1, v2, v3 are the transformed 
pseudo-control variables.  Since the range rate can be 
numerically large, changing the independent variable 
will produce a dynamic system with small right-
hand-sides. In order to improve the conditioning of 
the problem, the system dynamics are scaled by a 
factor of 1000.  In this model, time is given by the 
solution to the differential equation: 

 
( ) ( ) ( )

( ) ( ) ( )TMTMTM

2
TM

2
TM

2
TM

hhyyxx

hhyyxx
dR
dt

&&&&&& −+−+−

−+−+−
=  

  (15) 
with 

0RRat0t ==  
 The linear-quadratic optimization problem 
formulation in terms of the transformed system 

dynamics remains the same as in Section 2.1, with 
the only change being the limits of integration and 
the integration time step.  In both examples, the step 
size for forward and backward integration is 5 ft, 
although a larger step size could have been used 
without a significant increase in terminal error.  The 
range-to-go integrated guidance-control system is 
next evaluated in the two scenarios described in 
Section 2.1. 
 The results for the first engagement are shown in 
Figure 13 through 17.   

 
Figure 13. Horizontal Plane Trajectories of the 

Missile and the Target,  
Solid Line: Missile, Dashed Line: Target 

 

 
Figure 14. Missile and Target Altitudes vs. Time 

Solid Line: Missile, Dashed Line: Target 

The minimum distance between the missile and the 
target at interception is 0.00038 ft. The difference in 
headings is -0.38 degrees, and the final flight path 
angle is -0.019 degrees.  As expected, the results are 
nearly identical to those given in Section 2.1. 
Variations arise due to the differences in numerical 
conditioning between the two formulations. 
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Figure 15. Missile Angles of Attack and Sideslip 

Time Histories 

 

 
Figure 16. Missile Body Rates vs. Time 

 
Figure 17. Fin Deflection Time Histories 

 The results for the second scenario from 
Reference 22 are shown in Figures 18 and 19.  The 
minimum distance between the target and the missile 
is 0.0011 ft., with the final difference in headings 
being 179.59 degrees, and the final flight path angle 
being -0.85 degrees.  As in the previous engagement 
scenario, the results are nearly identical to the case 
where time was used as the independent variable. 

Since the angle of attack, angle of sideslip, body rates 
and fin deflection time histories are practically same 
as those in Figures 10 through 12, they are not given 
here. 
 

 
Figure 18.  Horizontal Plane Trajectories of the 

Missile and the Target, 
Solid Line: Missile, Dashed Line: Target 

 

 
Figure 19. Missile and Target Altitude Time 

Histories, 
Solid Line: Missile, Dashed Line: Target 

 

 The finite-interval integrated guidance-control 
laws developed in this section can deliver very small 
miss distances while satisfying terminal aspect angle 
requirements. However, these formulations require 
the online solution of a matrix Riccati equation and 
the two related linear differential equations. 
Consequently, implementation of finite-interval 
integrated guidance-control techniques will require 
the development of more sophisticated computational 
capability on board the missile.  Recent research on 
fast numerical methods for solving guidance-control 
problems17 can form the starting point for this 
research.  Additional research issues that need to be 
addressed in future work include the assessment of 
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the effects of target maneuvers and sensor errors on 
these guidance-control laws. 
 

3. CONCLUSIONS 
 This paper described two different formulations 
of finite-interval integrated guidance-control 
problem. The first formulation was in terms of time-
to-go, while the second formulation was in terms of 
range-to-go. The design methodology was based on 
numerically transforming the missile-target dynamics 
using nonlinear control system design software. 
Transformed dynamics were then used to formulate 
finite-interval linear-quadratic trajectory optimization 
problems with terminal boundary conditions.  
Terminal transversality conditions were used to 
satisfy aspect angle constraints at target interception. 
Solution of the trajectory optimization problem was 
then obtained by integrating three matrix equations 
with time-to-go or range-to-go as the independent 
variable. Fin deflection commands were then 
obtained from this solution using the inverse of the 
feedback-linearizing transformation.  Performance of 
the finite interval guidance-control laws was 
illustrated in two engagement scenarios. 
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