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Abstract

The ¯eet replacement problem of a pro®t-maximizing manager is examined using an optimal control
model that captures both utilization and replacement decisions. Conditions for optimal utilization of each
vessel in the ¯eet and optimal vessel acquisition and retirement strategies are discussed. The results indicate
that the optimal replacement schedule and ¯eet size are in¯uenced by utilization schedules, and vice versa.
Thus, replacement and utilization strategies should be determined jointly. We develop a numerical example
to illustrate the model's potential as a practical management decision tool and the procedures to solve
it. Ó 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Replacement theory deals with the optimal life of capital equipment. ``Optimal life'' can be
de®ned as the period between the time the equipment enters service and the time when it should be
replaced for economic reasons. Optimal life and replacement policy are important topics in the
management of capital equipment, and have been studied by many economists (Williamson, 1971;
Denslow and Schulze, 1974; Malcomson, 1975, 1979; Evans, 1988; van Hilten, 1991). Examples of
equipment to which replacement analysis applies include ships (Evans, 1989), trucks (Ahmed,
1973), farm tractors (Chisholm, 1974; Reid and Bradford, 1983), cars (Smith, 1974), bus engines
(Rust, 1987), and textile machines (Williamson, 1971).

Generally, the operating cost of a piece of capital equipment rises as its condition deteriorates
over time. When the cost reaches a certain level, the long-run cost associated with investing in a new
piece of equipment becomes less than that of keeping the old equipment. At that point, replacement
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is called for. Thus, a basic replacement analysis usually examines both the trend in operating cost
and the net cost of replacement, which is de®ned as the di�erence between the cost of the new
equipment and the salvage value of the old (Li et al., 1982; Rust, 1987; McClelland et al., 1989). In
some cases, replacement analysis also considers the resale value of equipment at various stages of
its service life (Ahmed, 1973; Chisholm, 1974; Kay and Rister, 1976; Reid and Bradford, 1983).

Several other factors a�ect the replacement decision. For example, new technology can lower
cost or improve e�ciency. Thus, to develop correct estimates of future capital and operating costs,
a manager should consider changes in equipment design, e�ciency, and capital and labor re-
quirements. Replacement policy under conditions of rapid technical change has been examined by
Williamson (1971) and Denslow and Schulze (1974). Some replacement problems are a�ected by
stochastic factors, such as equipment failure rate (Devanney, 1971; Hillier and Lieberman, 1974;
Rust, 1987) and the stream of revenues generated by a productive asset (Devanney, 1971; Smith
and Wetzstein, 1992).

While most previous studies in the economic literature have examined replacement policy for a
single piece of capital equipment (for example, see Ahmed, 1973; Chisholm, 1974; Evans, 1989), a
small number of papers has addressed the overall replacement strategy for a ®rm operating
multiple pieces of equipment. For example, in the vintage model of capital equipment developed
by Malcomson (1975) and extended by van Hilten (1991), all equipment purchased at a given time
is subject to the same utilization and retirement schedule.

The replacement decision is also a classical research topic in the industrial engineering and
operations research literature. Most studies utilize dynamic programming (DP) techniques to
consider a replacement problem in which there is one defender (one piece of equipment), multiple
challengers (replacement options), and several cash ¯ow components re¯ecting factors like
technology change and in¯ation. The planning horizon may be ®nite (Oakford et al., 1981, 1984)
or in®nite (Bean et al., 1985).

The classical type of analysis has been extended to include various factors such as salvage value
(Bean et al., 1991) and capital rationing (Karabakal et al., 1994). Another extension is the con-
sideration of uncertainty using stochastic DP. For example, Lohmann (1986) examined uncer-
tainty about the cash ¯ows of current and future challengers. Hopp and Nair (1991) developed a
decision model in which the time of appearance of future technologies is uncertain. The model was
further improved by including a forecast horizon for technology, revenue and cost (Nair and
Hopp, 1992).

There are several studies that examine replacement decisions for a group of equipment. Jones et
al. (1991) considered the optimal replacement schedule for clusters of like-aged machines, keeping
the total number of machines constant over time. Vander Veen and Jordan (1989) developed a
model to optimize the investment decision for a number of new machines depending on their
utilization (e.g., product types and output levels).

In this paper, we examine the replacement problem for a ¯eet of ships. (Our treatment can be
applied readily to vehicles used in land or air transportation as well.) Generalizing ``replacement''
as a combination of scrapping and newbuilding, we develop an optimal control model that pro-
vides guidance on (a) utilization of individual ships in a ¯eet, (b) ordering new ships, and (c)
scrapping old ships. By exploring several propositions about optimal replacement and utilization
schedules, we show that the determination of replacement schedules and of utilization rates are
related problems that should be solved jointly. Our model extends the existing literature by con-
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sidering a ¯eet with a variable number of vessels over time, and breaking the replacement decision
into two separate parts. The investment decision is only related to the newest vessel in the ¯eet and
its asset value, while the scrapping decision depends on the oldest vessel in the ¯eet and its asset
value. Thus, a new ship is not necessarily acquired to replace an old one. By contrast, in a case of a
single machine (or a ®xed number of machines), a new one is only purchased to replace the old.

The paper is organized as follows. The model is described in Section 2, along with a discussion
of general implications through four propositions. In Section 3, the model is further explored
using a numerical example, and Section 4 presents the conclusions.

2. The model

In this section, we describe a dynamic model that optimizes vessel utilization and replacement
schedules. The decision maker is the manager of a water carrier such as a shipping line. The
manager is to choose an optimal strategy of vessel utilization, newbuilding, and scrapping, so as to
maximize the discounted sum of net revenues over the planning period. For simplicity, we consider
only the deterministic case. To focus on replacement and utilization, we assume that the ¯eet is
homogeneous and all ships are identical in design and size. Also, our model does not consider the
e�ects of technical changes in ships, management alternatives, ship underutilization due to in-
su�cient demand, and network characteristics (length of voyage, number of ports of call, etc.). 1

The unit operating cost of capital equipment can be modeled in a number of ways. For ex-
ample, it can be speci®ed as a function of age (Malcomson, 1975), as a function of cumulative
usage such as milage (Rust, 1987), or as a function of age, cumulative usage and mechanical
condition (Ahmed, 1973). To capture the e�ects of technical change, operating cost may also be
speci®ed as a function of time (Williamson, 1971). 2 In our model, we consider a ¯eet of ships,
each identi®ed by index variable k with lower bound NL and upper bound NH (i.e., the ¯eet
consists of NH ÿ NL ships). The operating cost of vessel k is speci®ed as a function of its usage at
time t; q�k; t�, and its cumulative usage as of t;G�k; t�: c�q�k; t�;G�k; t�� with

oc
oq
> 0;

o2c
oq2

> 0;
oc
oG

> 0;
o2c

oqoG
> 0: �1�

The salvage value of the ¯eet of ships of the carrier (X) is assumed to be a function of the
number of ships sold for scrapping in time period t by the carrier, s�t�. Since more ships retiring
will depress the scrapping market, we assume

dX
ds

> 0;
dX 2

ds2
< 0: �2�

1 All these aspects may be modeled explicitly by including additional control (decision) variables, such as vessel size.

However, this could make the model very complex and impossible to solve analytically. In practice, when several

control variables are involved, researchers often use discrete models and DP techniques to simulate speci®c

management alternatives.
2 Frankel (1991) discussed the economics of technological change in shipping. For a discussion about long-term

technological change in transportation, see Nakicenovic (1988).
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Similarly, the cost of purchasing new ships (W) is a function of the number of ships on order,
n�t�. Since newbuilding price will rise with an increase in demand, we assume

dW
dn

> 0;
d2W
dn2

> 0: �3�
The dynamic model encompasses the planning period from 0 to T, the number of vessels in the

¯eet (NH ÿ NL), and the cumulative usage of each vessel. Thus, total net revenues are estimated by
integrating over all vessels in the ¯eet and by integrating revenues and costs over time. Using the
concept developed by Livernois and Uhler (1987) in their resource management model, we for-
mulate the problem as follows. The ¯eet manager is to

max

Z T

0

Z NH �t�

NL�t�
fp�t�q�k; t�

(
ÿ c�q�k; t�;G�k; t��gdk � X �s�t�� ÿ W �n�t��

)
eÿdt dt: �4�

Subject to

_G�k; t� � q�k; t�; k 2 �NL�t�;NH�t��; �5�
_NL�t� � s�t�; �6�
_NH�t� � n�t�; �7�

where t is time; k is the indexing variable; p�t� is the freight rate in dollars per ton-mile at t; q�k; t�
the usage (output) of the kth vessel in ton-miles at t; G�k; t� the cumulative usage of the kth vessel
at t; c�q;G� the operating cost of the kth vessel at t; X �s�t�� the total salvage value of vessels retired
at t; s�t� the number of vessels retired at t; W �n�t�� the total investment in newbuildings at t; n�t�
the number of new ships purchased at t; NL�t� the lower bound on k at t; NH�t� the upper bound on
k at t; eÿdt the continuous-time discount factor; and d is the discount rate.

We assume the shipping market to be competitive, and thus p�t� is exogenously determined.
The revenue generated by the kth vessel is captured by p�t�q�k; t�, while the operating cost of the
ship is represented by c�q�k; t�;G�k; t��. As noted, the total net revenue from ¯eet operation is the
sum of the net revenues of individual ships. At any time t, NL6 k6NH , and thus, the actual ¯eet
size is given by NH ÿ NL.

For each t, the manager determines the utilization of each individual ship, as well as the re-
placement decisions. The total value recovered from ship retirement at t is X, while the total
investment in new ships at t is W.

For each ship, the relationship between current usage and cumulative usage is described by (5).
As ships retire from the ¯eet, the lower bound on the vessel indexing variable (k) rises as de®ned in
(6). Eq. (7) shows the impact of newbuildings on the upper bound on k: as newbuildings are added
to the ¯eet, the upper bound rises.

Our speci®cation of operating cost as a function of current usage 3 (q) and its cumulative usage
(G) is a simpli®cation. In fact, operating cost may increase with the age of the ship regardless of
cumulative usage, such as when a ship has been laid-up. Also, the model does not consider the

3 For a discussion of marginal cost in ship operation, see Evans (1988).
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second-hand vessel market, the possibility of a surplus in the shipping market, or the option of
acquiring ships through chartering. If there is a surplus of vessels in the market, the cost of ac-
quiring vessel services may be much lower than the cost of newbuildings.

The system has three control variables: q�k�, s and n, and three state variables: G�k�, NL and NH .
The current value Hamiltonian is

H �
Z NH �t�

NL�t�
fp�t�q�k; t� ÿ c�k; t�gdk � X �s�t�� ÿ W �n�t��

�
Z NH �t�

NL�t�
a�k; t�q�k; t�dk � b�t�s�t� � c�t�n�t� �8�

with

c�k; t� � c�q�k; t�;G�k; t��: �9�
The optimality condition requires 4

oH
oq�k; t� � 0;

oH
os�t� � 0;

oH
on�t� � 0: �10�

These lead to

a�k; t� � oc�k; t�
oq�k; t� ÿ p�t�; k 2 �NL�t�;NH�t��; �11�

b�t� � ÿ dX �s�t��
ds�t� ; �12�

c�t� � dW �n�t��
dn�t� : �13�

The costate (adjoint) equations are

_a�k; t� ÿ da�k; t� � ÿ oH
oG�k; t� ;

_b�t� ÿ db�t� � ÿ oH
oNL�t� ; _c�t� ÿ dc�t� � ÿ oH

oNH�t� : �14�

These lead to

_a�k; t� ÿ da�k; t� ÿ oc�k; t�
oG�k; t� � 0; k 2 �NL�t�;NH�t��; �15�

_b�t� ÿ db�t� ÿ p�t�q�NL; t� � c�NL; t� ÿ a�NL; t�q�NL; t� � 0; �16�
_c�t� ÿ dc�t� � p�t�q�NH ; t� ÿ c�NH ; t� � a�NH ; t�q�NH ; t� � 0: �17�

4 For an introduction to optimal control theory, see Kamien and Schwartz (1981) and Conrad and Clark (1987).
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The change in the utilization rate of vessel k �q�k; t�� with respect to time can be solved from
(11) and (15). To simplify the notation, we drop k and t from the expression

_q � _p
�
ÿ d p
�
ÿ oc

oq

�
ÿ o2c

oqoG
q� oc

oG

�
o2c
oq2

�� �
; k 2 �NL�t�;NH�t�� �18�

Eq. (18) leads to the ®rst of four propositions regarding optimal utilization and replacement:

Proposition 1. The utilization rate of each vessel in the fleet, q�k; t�, will decline over time, unless the
freight rate is expected to increase substantially over time and/or the impact of cumulative usage on
the operating cost of the vessel is very large.

Proof. From (1), we have oc=oq > 0; o2c=oq2 > 0; oc=oG > 0, and o2c=oqoG > 0. Thus, the de-

nominator of (18) is positive. There are four terms in the numerator of (18). For pro®table op-
eration, p > oc=oq. Thus, the second �ÿd�p ÿ oc=oq�� and the third �ÿqo2c=oqoG� terms are
negative. p-dot can be either positive or negative, depending on the trend in expected future prices.
The last term �oc=oG� is positive. oc=oG is usually relatively small. If p-dot is zero or negative, q-
dot is negative. However, if p-dot is positive and relatively large and/or oc=oG is relatively large, q-
dot may be positive. �

As noted, p is greater than oc=oq in (11), and therefore oc=oqÿ p is negative. We de®ne
a � oc=oqÿ p as the ``usage cost,'' which re¯ects the in¯uence of current usage (q) on the change
in the state variable (G). As an increase in q today leads to an increase in its cumulative usage (G)
and all future operating costs over the remainder of the planning period, a re¯ects an inter-
temporal cost. The usage cost can also be considered as ``marginal losses'' associated with in-
creased operating costs over the remaining future, resulting from undertaking an incremental
action in q today. The manager must balance current usage (q) and future usage (a�ected by G),
for each ship.

Proposition 2. The utilization rates for the fleet, q�k; t�, should be chosen so that the sum of marginal
operating cost and usage cost is the same for all vessels.

Proof. From (11) we have

oc�i; t�
oq�i; t� ÿ a�i; t� � oc�j; t�

oq�j; t� ÿ a�j; t� �19�

for all i 6� j 2 �NL�t�;NH�t��: �

Propositions 1 and 2 imply that since older ships are more costly to operate, ¯eet operation can
be optimized by using new ships more and old ships less.

Eqs. (13) and (17) govern the investment in new ships. The costate variable c represents the
marginal bene®t of adding ships to the ¯eet. Thus, Eq. (13) shows that newbuildings will be or-
dered when the marginal bene®t is equal to the marginal investment cost (dW/dn). From (3), dW/
dn > 0, so c > 0. Eq. (17) indicates that at any t, the marginal bene®t of adding ships to the ¯eet (c)
is in¯uenced only by the net bene®t of the newest vessel (NH ) in the ¯eet.
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The change in newbuilding rate with respect to time (n-dot) can be obtained from (11), (13) and
(17):

_n � d
dW
dn

�
� c�NH� ÿ oc�NH�

oq�NH� q�NH�
�

d2W
dn2

�� �
: �20�

Proposition 3. The addition of new ships is influenced by the operating cost of the newest vessel (NH )

in the fleet. Newbuilding will increase over time when the marginal operating cost of vessel NH

�oc=oq� is smaller than its average cost (c/q). Newbuilding will decrease over time when the marginal
operating cost of vessel NH is much greater than its average cost �qoc=oq > ddW =dn� c�.

Proof. From (3), d2W =dn2 > 0. The denominator of (20) is positive. There are three terms in the

numerator of (20). The ®rst two terms (ddW/dn and c) are positive, and the last term �ÿqoc=oq� is
negative. n-dot is positive if c=q > oc=oq�c > qoc=oq�. When c=q < oc=oq, n-dot may still be
positive, if ddW =dn� c > qoc=oq. However, if oc=oq is much greater than
c=q; ddW =dn� c < qoc=oq, then n-dot is negative. �

Finally, Eqs. (12) and (16) govern the scrapping of old ships. Since dX/ds is the marginal bene®t
from ships sold for scrapping, Eq. (12) suggests that b is the marginal cost of taking ships out of
the ¯eet. Eq. (16) shows that the marginal cost of taking ships out of the ¯eet (b) is determined
only by the net bene®t of the oldest ship (NL) in the ¯eet. Eq. (12) states that ships should retire
when their marginal salvage value is equal to the marginal cost of retiring these ships. From (2),
dX=ds > 0. Thus, b < 0.

The change in scrapping rate with respect to time (s-dot) can be solved using (11), (12) and (16):

_s � d
dX
ds

�
� c�NL� ÿ oc�NL�

oq�NL� q�NL�
�

d2X
ds2

�� �
: �21�

Proposition 4. The rate of scrapping is influenced by the operating cost of the oldest vessel (NL) in the
fleet. Scrapping will decrease over time when the average cost of vessel NL (c/q) is greater than its
marginal cost �oc=oq�. Scrapping will increase over time when the marginal cost of vessel NL is much
greater than its average cost qoc=oq > ddX=ds� c�.

Proof. From (2), d2X=ds2 < 0, so the denominator of (19) is negative. Among the three terms in

the numerator of (21), the ®rst �ddX=ds� and the second term (c) are positive, while the third
�ÿqoc=oq� is negative. s-dot is negative if c=q > oc=oq�c > qoc=oq�. s-dot is positive when oc=oq is
much greater than c=q, so that qoc=oq > ddX=ds� c: �

Our model provides an analytical framework in which the ¯eet manager determines (a) ¯eet
utilization strategy, (b) vessel retirement rate, (c) newbuilding rate, and as a result, (d) ¯eet size.
The model explicitly shows that replacement decisions (the rates of building and scrapping ships)
are a�ected by vessel utilization rates, and that the replacement and utilization problems must be
considered jointly to obtain an e�cient solution. The size of the ¯eet is determined by the resulting
scrapping and newbuilding decisions.
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3. A numerical example

As noted, the model integrates three aspects of ¯eet management: vessel utilization, new-
building, and scrapping. Although the continuous-time model is useful in discussing the general
trends (rules of thumb) of utilization and replacement, the model is not generally solvable for
analytical solutions (e.g., the path of q�t�; s�t� and n�t�). Thus, it is not useful as a practical
management decision tool. In this section, we develop a numerical example using a set of speci®c
functional forms for operating cost (c), investment cost (W), and salvage value (X) to illustrate
optimal strategies for utilization and replacement, and the linkages among them.

To develop a numerical example, we ®rst present the discrete-time 5 version of the model in
Eqs. (4)±(7). The ¯eet manager is to

max
XT

t�0

qt
XNH �t�

k�NL�t�
fp�t�q�k; t�

(
ÿ c�q�k; t�;G�k; t��g � X �s�t�� ÿ W �n�t��

)
�22�

subject to

G�k; t � 1� ÿ G�k; t� � q�k; t�; k 2 �NL�t�;NH�t��; �23�
NL�t � 1� ÿ NL�t� � s�t�; �24�
NH�t � 1� ÿ NH�t� � n�t�; �25�

where q is the discrete-time discount factor �q � 1=�1� d��.
The discrete-time current value Hamiltonian is

H �
XNH �t�

k�NL�t�
fp�t�q�k; t� ÿ c�k; t�g � X �s�t�� ÿ W �n�t�� � q

XNH �t�

k�NL�t�
a�k; t � 1�q�k; t�

� qb�t � 1�s�t� � qc�t � 1�n�t�
�26�

with

c�k; t� � c�q�k; t�;G�k; t��: �27�
The optimality condition requires

oH
oq�k; t� � 0;

oH
os�t� � 0;

oH
on�t� � 0: �28�

Eqs. (11)±(13) become

qa�k; t � 1� � oc�k; t�
oq�k; t� ÿ p�t�; k 2 �NL�t�;NH�t�� �29�

qb�t � 1� � ÿ dX �s�t��
ds�t� ; �30�

5 For a general discussion of discrete dynamic modeling, see Sandefur (1993).
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qc�t � 1� � dW �n�t��
dn�t� : �31�

The costate equations are

qa�k; t � 1� ÿ a�k; t� � ÿ oH
oG�k; t� ; qb�t � 1� ÿ b�t� � ÿ oH

oNL�t� ;

qc�t � 1� ÿ c�t� � ÿ oH
oNH�t� :

�32�

Eqs. (15)±(17) become

qa�k; t � 1� ÿ a�k; t� ÿ oc�k; t�
oG�k; t� � 0; k 2 �NL�t�;NH�t��; �33�

qb�t � 1� ÿ b�t� ÿ p�t�q�NL; t� � c�NL; t� ÿ qa�NL; t � 1�q�NL; t� � 0; �34�
qc�t � 1� ÿ c�t� � p�t�q�NH ; t� ÿ c�NH ; t� � qa�NH ; t � 1�q�NH ; t� � 0: �35�

Now, the discrete model can be used to generate numerical results if speci®c functional forms
are de®ned for c;W and X. In this example, we solve a simple case of this model with additional
assumptions in three steps. First, we examine the optimal utilization schedule for individual
vessels. We then solve the optimal schedule for new ship acquired, given the utilization schedule.
Finally, we analyze the optimal schedule for scrapping old vessels, given the optimized utilization
and purchasing schedules. Unfortunately, as we will show, a more general joint solution for
utilization and replacement is di�cult to achieve even in this simple case. 6

3.1. Utilization

Whether the optimal utilization schedule for each vessel k can be solved depends on the cost
structure and terminal conditions. Here, we use a simple example 7 which is easy to solve. We
specify cost function c�k; t� as

c�k; t� � q2�k; t�
G�k; t� ; �36�

where G is de®ned di�erently from the above to obtain easy numerical solutions. Suppose that
each new vessel has a designed life in terms of cumulative usage (e.g., ton-miles). When life-time
cumulative usage is reached, the vessel's life ends (this is analogous to a resource stock that has
been exhausted). Here, G�t� is the unused part of the life-time cumulative usage at time t, which
equals the life-time cumulative usage (G�0�) minus the cumulative usage up to t ÿ 1�Ptÿ1

t�0 q�t��.
Thus, G decreases over time, contrary to the previous de®nition. Considering the new notion of G,
the cost function speci®ed in (36) satis®es the properties of c described in (1).

6 Our three step approach assumes that all vessels follow a speci®c utilization schedule which is independent of

replacement schedules.
7 The example is from Conrad and Clark (1987).
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Substituting (36) into (29) and (33), we have

ÿqa�k; t � 1� � 2q�k; t�
G�k; t� ÿ p; k 2 �NL�t�;NH�t��; �37�

qa�k; t � 1� ÿ a�k; t� � q2�k; t�
G2�k; t� � 0; k 2 �NL�t�;NH�t��: �38�

The negative sign on the left-hand side in (37) is due to the new notion of G, as (23) becomes

G�k; t � 1� ÿ G�k; t� � ÿq�k; t�: �39�
Also, we assume that price is a constant.

For vessel k, q�k; t� is de®ned only during the life of k. As shown in Fig. 1, the upper bound of
the indexing variable k � NH�t� describes the last new ship added to the ¯eet as of t. Similarly, the
lower bound k � NL�t� describes the last ship retired from the ¯eet as of t. We de®ne the inverse
functions as t � H�k� � Nÿ1

H �k� for the upper bound (the time when vessel k enters the ¯eet) and
t � L�k� � Nÿ1

L �k� for the lower bound (the time when vessel k is scrapped). Then, for any k; q�t� is
de®ned for H�k�6 t6 L�k�, i.e. from the time vessel k enters the ¯eet to its retirement (see Fig. 1).

Since k is the vessel index, for a given vessel k is ®xed. t is the only variable a�ecting the uti-
lization dynamics of vessel k. Since it is assumed that all vessels are identical, we can ignore the
vessel index k. t is de®ned between 0 and T (the planning horizon). q�t� is de®ned between
t � H�k� and t � L�k� for vessel k. Thus, the general expressions q�k; t� and G�k; t� can be re-
written as q�s� and G�s�, with s � t ÿ H�k� > 0. s is the time variable which starts counting when
a vessel enters the ¯eet. In other words, for each vessel k, the utilization dynamics follow q�t�, but
the variable t starts at H�k� (when k enters the ¯eet).

Fig. 1. Vessel acquisition and retirement schedule.
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To solve for q�s�, we need initial and terminal conditions. The conditions describe a, q and G
when a ship k enters or leaves the ¯eet. For simplicity, we assume that besides the life-time cu-
mulative usage, we also have a life ( f ) in time periods. For example, a vessel must retire after f
periods due to regulatory requirements. Then, this becomes a ®xed-time free state problem: we
need to solve for the optimal utilization for s � 0; 1; 2; . . . ; f . Clearly, any units of G remaining in f
must be worthless. 8 Thus, a�f � � 0. In our numerical example, f � 10. Also, the life-time cu-
mulative usage G�0� � 1000. All input parameter values for our numerical example are summa-
rized in Table 1.

Now q�s� can be solved using the terminal conditions and Eqs. (37)±(39). Speci®cally, we ®rst
solve for a and the ratio q=G using (37) and (38) from s � 10 to s � 0; and then solve q and G
from s � 0 to s � 10. The results are shown in Fig. 2 and Table 2. As shown in Fig. 2, with a
constant freight rate, utilization rate (q) declines throughout the life of a vessel, as suggested by
Proposition 1 in the previous section. Table 2 also includes the asset value (v), the discounted sum
of net revenues from all future periods, and net revenue (p) for each period.

We emphasize that ®xed vessel life ( f ) and identical utilization schedule for all vessels are
important assumptions for solving the entire model. If f varies, the optimal path q�s� changes
accordingly. The system will be di�cult to solve, since H�k� and L�k� are a�ected by investment
and scrapping decisions, and q�k; t� is determined jointly by the initial/terminal conditions asso-
ciated with these replacement decisions. With f � 10, we have a unique optimal path for q, which
makes the new building and retirement schedules solvable.

3.2. Investment in new vessels

For investment in new ships, we specify

W �n�t�� � ln2�t�; �40�

8 a is now positive due to the new de®nition of G.

Table 1

Parameter values

Parameter Description Value

d Discount rate 0.05

f Maximum vessel life 10

p Freight rate 1

G(0) Initial condition for G 1000

a(f) Terminal condition for a 0

T Planning horizon 50

l New vessel cost coe�cient 10

NH (0) Initial condition for NH 0

c(T) Terminal condition for c v�0�
u Vessel salvage value coe�cient 200,000

h Vessel salvage value coe�cient 200,000

b(T) Terminal condition for b ÿv�f ÿ 1�
NL(0) Initial condition for NL 0
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where l is a positive constant. With this speci®cation, we have W > 0;dW =dn > 0, and
d2W =dn2 > 0 (see (3)). Substituting (40) and (36) into (31) and (35), and also considering (39), we
have

qc�t � 1� � 2ln�t�; �41�

qc�t � 1� ÿ c�t� � p�t�q�NH ; t� ÿ q2�NH ; t�
G�NH ; t� ÿ qa�NH ; t � 1�q�NH ; t� � 0: �42�

The number of new ships purchased at t, n�t�, is a�ected by the utilization rate of the newest
ship and its asset value. On the path of NH�t� (see Fig. 1), t � H�k� and s � 0. Thus,

Table 2

Utilization schedule

s G(s) q(s) a(s) v(s) p(s)

0 1000.00 197.64 0.64 643.79 158.58

1 802.36 163.00 0.64 509.47 129.89

2 639.36 134.56 0.62 398.57 106.24

3 504.81 111.17 0.61 306.94 86.69

4 393.63 91.91 0.59 231.27 70.45

5 301.72 76.00 0.56 168.86 56.86

6 225.71 62.79 0.52 117.60 45.32

7 162.92 51.73 0.47 75.89 35.30

8 111.19 42.36 0.38 42.61 26.22

9 68.83 34.42 0.25 17.21 17.21

10 34.42 0.00 0.00 0.00 0.00

Fig. 2. Utilization schedule.
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q�NH ; t� � q�s � 0�;G�NH ; t� � G�s � 0�, and a�NH ; t � 1� � a�s � 1�, which have been solved in
the previous subsection (Table 2).

To solve for n�t�, we also need to de®ne initial and terminal conditions. For our numerical
example, we assume a planning horizon (T ) of 50 time periods �t � 0; 1; 2; . . . ; T � 50�;NH�0� � 0,
and c(50) equals the asset value of a new vessel �v�0� � 643:8, see Table 2). 9 Under these as-
sumptions, we actually optimize replacement during the 50 periods and assume that the operation
will continue for another 10 periods after T (hence c�50� � v�0��. Now, n�t� and NH can be solved
using (25), (41) and (42) and similar procedures as in the utilization case.

For our cost function (36), marginal cost �2q=G� is always greater than average cost �q=G� and
qoc=oq > ddW =dn� c. Thus, the newbuilding rate �n�t�� is decreasing over time from n�0� � 38 to
n�49� � 30, which is consistent with Proposition 3. The path of NH is depicted in Fig. 1.

3.3. Scrapping of old vessels

To examine the vessel scrapping schedule, we specify

X �s�t�� � uÿ h
s�t� ; �43�

where u and h are positive constants (u P h). This speci®cation satis®es that X > 0;dX=ds > 0,
and d2X=ds2 < 0 (see (2)). As noted, this is a simpli®ed case since the salvage value of old vessels is
not related to their usage condition (G). If the salvage value (X) is a�ected by G as well, the
utilization schedule (q) will not be unique and will be interrelated with the scrapping schedule.

Substituting (43) and (36) into (30) and (34), and again considering (39), we have

qb�t � 1� � ÿ h
s2�t� ; �44�

qb�t � 1� ÿ b�t� ÿ p�t�q�NL; t� � q2�NL; t�
G�NL; t� � qa�NL; t � 1�q�NL; t� � 0; �45�

s�t� is a�ected by the utilization rate of the oldest ship, q�NL�, and its asset value. Unlike the
investment case, q�NL� varies in each t, depending on the scrapping rate s�t�. Thus, a procedure is
required to determine the relationship between s�t� and q�NL�.

We develop the following procedure to determine q�NL� at t. Suppose that we have no market
for ships of 10 periods old, each vessel exits when it is 10 periods old, as shown by N 0L, (the dashed
line) in Fig. 1. Then, ¯eet size (g) is

g�t � 1� �
Xfÿ1

i�0

n�t ÿ i�: �46�

Note that in our numerical example, f � 10, that is the ¯eet consists of vessels of age 0±9. Thus,
we know the age structure of the ¯eet. Furthermore, in our example, the utilization path q�0�±q�9�

9 For a discussion of this relationship see Livernois and Uhler (1984).
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is determined (see Table 2 and Fig. 2), thus q�NL; t�; G�NL; t�; a�NL; t � 1� can be determined by
s�t� and the age structure.

We construct a function

m�t; f ÿ i� �
Xfÿi

j�fÿ1

n�t ÿ j� for i � 1; . . . ; f : �47�

where m is the number of vessels in the ¯eet purchased more than f ÿ i periods ago. For example,
for f � 10 and i � 2;m�t; 8� � n�t ÿ 9� � n�t ÿ 8�; that is m�t; 8� is the sum of the number of
vessels purchased eight periods ago and nine periods ago. Since each vessel follows the optimal
utilization path in Fig. 2, the corresponding q and G are known.

Thus, for

m�t; f ÿ j� 1� < s�t�6m�t; f ÿ j� for j � 1; . . . ; f ; �48�
we have

q�NL; t� � q�f ÿ j�; G�NL; t� � G�f ÿ j�; a�NL; t � 1� � a�f ÿ j� 1�: �49�
For example, for j � 2;m�t; 9� < s�t�6m�t; 8�, and q�NL; t� � q�8�;G�NL; t� � G�8�, and

a�NL; t � 1� � a(9). That is: if s is greater than the number of vessels acquired nine periods ago but
smaller than (or equal to) the sum of the number of vessels acquired nine periods and eight pe-
riods ago, q�t� and G�t� equal their value at period eight and a�t � 1� equals its value at period
nine (all in Table 2).

Again, to solve for s�t�, we need to de®ne initial and terminal conditions. For our numerical
example, we assume that NL�0� � 0, and c�50� � v�9� � 17:2 (see Table 2). Now, s�t� and NL can
be solved using (24), (44) and (45) and similar procedures as in the newbuilding case.

As noted, for our cost function (36), marginal cost �2q=G� is always greater than average cost
�q=G� and qoc=oq > ddX=ds� c. Thus, the scrapping rate �s�t�� is increasing over time from
s�0� � 24 to s�49� � 110, as suggested by Proposition 4. The path of NL is also depicted in Fig. 1.

An interesting result from this model is that, if the salvage value (X) is in¯uenced by the number
of vessels scrapped, vessels acquired together will not necessarily all be replaced at the same time.
Jones et al. (1991) developed a no-splitting rule for parallel machine replacement where the total
number of machines remains constant over time. The rule suggests that machines of the same age
are either all kept or all replaced. In our example, the no-splitting rule does not hold in general.

As noted, in our example, the model is simpli®ed in that utilization schedule is ®rst solved
independently. However, if the utilization rates a�ect the newbuilding and scrapping schedules,
and vice versa, the model will be more di�cult to solve. In practice, those cases may be solved
numerically using iterative procedures (Malcomson, 1979).

4. Conclusions

We have developed a model of ¯eet management that optimizes both utilization and replace-
ment schedules. Under the assumption of ®xed output, the replacement decision is simply a
question of whether the operating cost of an existing vessel is greater than the annualized total
cost of a replacement vessel (Evans, 1989; see also Malcomson, 1979). More generally, our ¯eet
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operation and replacement model suggests how replacement decisions are interrelated with vessel
operating strategies. The economic e�ciency of a ¯eet can be improved by optimizing its vessel
utilization plan. New ships will be acquired only if such action improves the economic e�ciency of
the ¯eet. Under certain conditions, it may be optimal to scrap a ship without replacing it. We
developed a simple numerical example to illustrate how this model may be solved, and its po-
tential as a practical management decision tool.

As noted, our model extends the existing literature in that it considers a ¯eet with varying
number of vessels over time, where the replacement decision consists of two separate parts: the
investment decision is only related to the newest vessel in the ¯eet and its asset value, while the
scrapping decision depends on the oldest vessel in the ¯eet and its asset value. Thus, a new ship is
not necessarily acquired to replace an old one. By contrast, in the case of a single machine (or a
®xed number of machines), a new one is only (and always) purchased to replace the old.

In summary, our model illustrates several important points:
(a) Fleet replacement and operation are joint decisions. To develop an e�cient replacement

schedule, a ¯eet manager must ®rst optimize ¯eet utilization. In general, this implies high utili-
zation rates for new ships and (relatively) low utilization of old ships.

(b) Replacement strategy is considered only after ¯eet utilization has been optimized. The
economic e�ciency of the ¯eet can be improved by adding new vessels when the marginal bene®t
of adding ships is greater than the marginal cost of these newbuildings.

(c) Optimal replacement does not necessarily imply maintaining a constant ¯eet size. De-
pending on the vessel cost function, newbuilding and scrapping rates may increase or decrease
over time. A vessel is retired only if its salvage value is greater than or equal to the net bene®t it
can generate in the ¯eet.

The analytical framework described in this paper provides a solid basis for the development of
practical decision models. Such models should explicitly consider technological and management
alternatives, and di�erent sets of ®nancial and physical constraints. 10 In its present formulation,
the model does not consider the e�ects of technical change or of management alternatives, such as
chartering, on utilization and replacement decisions. It also ignores the uncertainty associated
with under utilization of an asset due to insu�cient demand, exogenous cost escalation, equip-
ment failure, and asset loss or unavailability. These factors are leading candidates for future
extensions of the model.
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