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A commonly used follow-up experiment strategy involves the use of a foldover design by reversing the
signs of one or more columns of the initial design. De� ning a foldover plan as the collection of columns
whose signs are to be reversed in the foldover design, this article answers the following question: Given
a 2kƒp design with k factors and p generators, what is its optimal foldover plan? We obtain optimal
foldover plans for 16 and 32 runs and tabulate the results for practical use. Most of these plans differ
from traditional foldover plans that involve reversing the signs of one or all columns. There are several
equivalent ways to generate a particular foldover design. We demonstrate that any foldover plan of a
2kƒp fractional factorial design is equivalent to a core foldover plan consisting only of the p out of k

factors. Furthermore, we prove that there are exactly 2kƒp foldover plans that are equivalent to any core
foldover plan of a 2kƒp design and demonstrate how these foldover plans can be constructed. A new
class of designs called combined-optimal designs is introduced. An n-run combined-optimal 2kƒp design
is the one such that the combined 2kƒpC1 design consisting of the initial design and its optimal foldover
has the minimum aberration among all 2kƒp designs.

KEY WORDS: Foldover design; Minimum aberration design; Optimal foldover; Word length pattern.

1. INTRODUCTION

Practitioners often use two-level factorial designs to
investigate the effects of several factors simultaneously. The
number of runs n required by a full 2k factorial design
increases geometrically as the number of factors k increases.
This makes it more desirable to use fractional factorial
designs to reduce the number of runs. One consequence
of using a fractional factorial design is the aliasing of
factorial effects. Consider a project conducted at a major
automotive company. The team used a designed experiment
to determine the effect of postcrimp stresses on the crimp
resistance. The study involved six two-level factors: crimp
height (factor 1), preconditioning thermal shock (factor 2), dry
heat soak (factor 3), � xture material (factor 4), thermal shock
life test (factor 5), and discoloration (factor 6). The team
decided to conduct a 16-run design. The company—which
was experiencing high warranty cost because of the crimp
failure symptoms—had suf� cient funds to conduct another
16-run design when necessary. The � rst 16 experiments were
conducted according to a 26ƒ2 design, in which 5 D 123 and
6 D 124. In this article we follow the notation used by Box,
Hunter, and Hunter (1978) and call the factors 1–4, whose
columns constitute a full 24 factorial design, basic factors.
Factors 5 and 6—which are involved in the two generators
1235 and 1246—are called generated factors. A generator is
also called a de�ning word. The analysis of the initial 16-run
design showed that all main effects and several two-factor
interactions were signi� cant. Because in the initial design,
three pairs of two-factor interactions are fully aliased, the
team decided to conduct another 16-run design to dealias as
many two-factor interactions as possible.

A standard follow-up strategy discussed in many textbooks
involves adding a second fraction, called a foldover design

(or simply foldover), by reversing the signs of one or more
columns of the initial design (e.g., Box et al. 1978; Mont-
gomery 2001; Neter, Kutner, Nachtsheim, and Wasserman
1996; Wu and Hamada 2000). For the crimp project, the team
decided to use a foldover design, and the question was which
foldover design should be used. Note that there are 26 D 64
ways to generate a foldover design. Denote a foldover plan,
ƒ, as the collection of columns whose signs are to be reversed
in the foldover design; then each foldover is generated by
a foldover plan. For example, ƒ D 456 produces a foldover
design by reversing the signs of factors 4, 5, and 6. (Note
that we use “factors” and “columns” interchangeably in this
article.)

In this article we develop optimal foldover plans for com-
monly used fractional factorial designs. The criterion that we
use is the aberration (Fries and Hunter 1980) of the combined
design, as de� ned in Section 2. (A combined design refers to
the combination of the initial design and its foldover.) Note
that foldovers may be constructed for various reasons. If the
analysis of the initial design reveals a particular set of main
and interaction effects that are signi� cant, then the foldover
design should be chosen to resolve confounding problems
with these signi� cant effects. For example, if one particular
factor is very important and should not be confounded with
other factors, then a foldover based on reversing the sign of
this factor is appropriate. On the other hand, if the goals
are to dealias all (or as many as possible) main effects from
two-factor interactions, and to dealias as many as possible
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two-factor interactions from each other, then the aberration
criterion appears to be a good choice.

Note that the aberration criterion has been used (sometimes
implicitly) among the existing foldover strategies. For exam-
ple, a commonly used foldover strategy for a resolution III
design involves reversing the signs of all factors. This is
usually considered a good strategy because the resulting
combined design has resolution IV, which is higher than
the resolution of the initial design. This article demonstrates
that the use of the aberration criterion can lead to further
improvement. The combined design may have a higher
resolution or the same resolution with fewer numbers of
two-factor interactions that are confounded with each other.
Note that the initial design and the foldover are usually
conducted at different stages; thus a blocking factor should be
considered. Ye and Li (2003) demonstrated that all optimal
foldover plans are still optimal in terms of the aberration of
the combined designs in the presence of a blocking variable.

This article is organized as follows. Section 2 introduces
notation and existing work. Section 3 considers equivalent
foldover plans. Section 4 presents an algorithm for search-
ing optimal foldover plans. In particular, we obtain optimal
foldover plans for commonly used 16-run and 32-run frac-
tional factorial designs. Section 5 explores properties of these
foldovers. We then introduce a class of designs of size n whose
optimal foldover plans result in minimum-aberration 2n-run
designs. Conclusions and future work are given in Section 6.

2. NOTATION AND EXISTING WORK

Let wi denote the number of words of length i in
the de� ning relation of a design d. The vector W 4d5 D
4w11w21w31 : : : 1 wk5 is called the word-length pattern (WLP)
of the design. [For simplicity, only 4w31 : : : 1w75 of WLPs
are displayed in this article.] The resolution of d is de� ned as
the smallest r such that wr ¶ 1. For any two designs d1 and
d2, let s be the smallest integer such that ws4d15 6 Dws4d25.
Then d1 is said to have less aberration than d2, denoted by
W 4d15 < W 4d25, if ws4d15 < ws4d25. When there is no design
with less aberration than d1, d1 has minimum aberration.

A classic approach to constructing a foldover design is to
reverse the signs of all k factors. We call this type of foldover
plan a full-foldover plan and denote it by ƒf D 1 ¢ ¢ ¢k. The
corresponding foldover design d04ƒf 5 is called a full-foldover.
Most popular statistical software packages (e.g., SAS) take
this approach. However, the combined design generated by
this foldover plan may not be optimal with respect to its WLP.
Consider a fractional factorial 27ƒ2

IV design generated by 6 D
1234 and 7 D 1245. When the signs of all seven factors are
reversed, the combined design has W D 401 11 010105. This is
a resolution IV design that has three pairs of fully aliased two-
factor interactions. A quick search reveals that ƒ D 6 produces
a resolution V design with W D 40101 11 0105—namely, all
two-factor interactions are clear. A two-factor interaction is
called clear if it is not aliased with any main effects or other
two-factor interactions (Wu and Chen 1992).

Other foldover plans have also been proposed in the lit-
erature. Sign reversal of one factor was considered by, for
example, Box et al. (1978) and Wu and Hamada (2000). Mont-
gomery and Runger (1996) considered foldovers generated by

reversing the signs of one or two factors. For resolution IV
designs, the rule of reversing signs of all factors is not directly
applicable, because the resulting combined design will have
the same number of length-4 words. Some software packages
consider different foldover strategies for these designs; for
example, in Design Expert V6 it is suggested that the sign
of a single column be reversed. Another software package,
RS/Discover, suggests reversing the sign of the factor if the
generator in which this factor is involved is an odd-length
word. However, it is not clear whether any of these previ-
ously given foldovers is optimal (with respect to the WLP of
the combined design). To our knowledge, the optimality of
foldover designs has not been addressed in the literature.

3. EQUIVALENT FOLDOVER PLANS

Denote the initial design by d, the foldover by d0, and
the combined design by D. The optimal foldover plan, ƒ ü ,
is the one such that W4D4ƒ ü 55 D minƒ2â W 4D4ƒ55, where
â D 8ƒ11 : : : 1 ƒq 9 is the foldover plan space and q is the total
number of possible foldover plans. The resulting foldover,
d04ƒ ü 5, and combined design, D4ƒ ü 5, are called the optimal
foldover and optimal combined design.

Given a 2kƒp design, the optimal foldover plan ƒ ü can be
found by searching all q D 2k possible foldover plans. Note,
however, that many of these q foldover plans produce the
same foldover design. We call these equivalent foldover plans.
Consider, for example, a 25ƒ1

V design de� ned by a generat-
ing relation 5 D 1234. Obviously, the foldover plans ƒi

D i
(i D 11 21314) are equivalent to each other, and they are all
equivalent to a foldover plan ƒc

D 5, which involves only the
generated factor of the design—factor 5. (Without loss of gen-
erality, we use 11 : : : 1 k ƒ p to denote the basic factors and
kƒpC11 : : : 1 k to denote the generated factors.) In general, if
a foldover plan ƒc consists only of the generated factors, then
we call it a core foldover plan. An important property is that
every foldover plan is equivalent to a speci� c core foldover
plan.

Theorem 1. For a 2kƒp design with p generators G11 : : : ,
Gp , any foldover plan is equivalent to a core foldover plan.
Moreover, for every core foldover plan, there are 2kƒp foldover
plans that are equivalent to it.

The proof is given in the Appendix. We now use an example
to illustrate how equivalent foldover plans can be constructed
using the foregoing theorem. Consider a 25ƒ2 design generated
by 4 D 12 and 5 D 13. Table 1 indicates how the 25 D 32

Table 1. Four Equivalent Foldover Plan Groups for a 25- 2 Design
with 4 D 12 and 5 D 13

Core Foldover plans consisting only of basic factors
foldover
plans 0 1 2 3 12 13 23 123

0 0 145 24 35 125 134 2345 123
4 4 15 2 345 1245 13 235 1234
5 5 14 245 3 12 1345 234 1235

45 45 1 25 34 124 135 23 12345

NOTE: Each row displays the eight foldover plans that are equivalent to the core foldover
plan listed in the ’ rst column.
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foldover plans can be classi� ed into four groups. The four core
foldover plans—0, 4, 5 and 45—are listed in the � rst column,
where 0 means that no variable is chosen for the sign reversal
in the foldover design and 0 is de� ned as a core foldover
plan. Note that when ƒ D 0, the foldover design is identical
to the initial design. Then each foldover plan in an equivalent
group is a union of a unique combination of the k ƒ p basic
factors 11 21 : : : 1 k ƒ p, and a unique combination of the gen-
erated factors. For example, to � nd the eight foldover plans
that are equivalent to ƒc

D 4, we � rst list all combinations
of the three basic factors: 0, 1, 2, 3, 12, 13, 23, and 123.
We then add the generated factors 4 or 5, or both, or neither,
to each of them, based on the rules (A1) and (A2) stated in
the proof of the theorem (see the Appendix). Consider, for
instance, ƒ D 123, which means that the signs of 1, 2, and 3
are reversed. Then factor 4 satis� es (A1) and should be added,
and factor 5 does not satisfy either (A1) or (A2) and should
not be included. Thus ƒc

D 4 is equivalent to 1234. The other
equivalent foldover plans can be found similarly.

The foldover plans in each group produce the same foldover
design d0. Thus it is suf� cient to use one representative
foldover plan in each group. We recommend the use of core
foldover plans presented in this article.

4. CONSTRUCTION OF OPTIMAL FOLDOVERS

Based on Theorem 1, we present an algorithm to search for
optimal foldover plans. The algorithm is an exhaustive search
method based on a speci� c set of the p generated factors.
Note that the number of candidate foldover plans is only 2p ,
a fraction of the total number of candidate foldover plans 2k.
The computer program comprises the following steps:

1. Input n, k, and p of the initial design d.
2. Generate all 2p ƒ 1 de� ning words of d for a given set

of G11 : : : 1Gp .
3. For each core foldover plan ƒi , (i D 11 : : : 12p):

a. Consider all de� ning words of d. For each word, if
there is an even number of factors whose signs are reversed
by ƒi , then this word is retained in the de� ning relation of
the combined design D4ƒi5; otherwise, the word is deleted.

b. Compare W 4D4ƒi55 with W 4D4ƒ ü 55, where ƒ ü is
the best core foldover plan among those that are considered
before ƒi . Update ƒ ü when W 4D4ƒi55 < W4D4ƒ ü 55.

4. Output ƒ ü and W 4D4ƒ ü 55.

We use this algorithm to construct the optimal foldovers for
16- and 32-run designs. Although fractional factorial designs
with the minimum aberration are commonly used in prac-
tice, in some situations other designs can better meet practi-
cal needs. For example, as argued by Wu and Chen (1992),
there are practical situations in which certain interactions can
be identi� ed a priori as being potentially important and should
be estimated clear of each other. Then one may have to choose
a design with higher aberration. Chen, Sun, and Wu (1993)
presented a catalog of complete 16-run designs and selected
32-run designs. Finding optimal foldovers of these designs
would be useful for practitioners. Thus, by using the com-
puter search method described in this section, we constructed

optimal foldovers of all of these designs. The methodology
described in this article is applicable to any 2kƒp fractional
factorial design. We have focused here on 16-run and 32-run
designs with k µ 11, because most standard textbooks give
designs of up to 11 factors and foldovers of designs with n ¶ 64
are rarely used in practice. However, foldovers of other (larger)
designs can be constructed in a straightforward manner.

Tables 2 and 3 provide optimal foldover plans for all 16-
run designs and selected 32-run designs. The 32-run designs
are selected according to the minimum aberration criterion
and the number of clear two-factor interactions. A complete
catalog of 32-run designs and their optimal foldover plans are
available on request. In the � rst column of each table, designs
are recorded as k ƒ p¢i (i D 11 21 : : : ), which correspond to
those designs presented by Chen et al. (1993). Design 5ƒ1¢1,
for example, refers to the � rst of 25ƒ1 designs. The � rst design
in each group of 4k1 p5 is the minimum aberration 2kƒp design.
The generating relations and the WLP of each design d are
given in the second and third columns. The optimal foldover
plan ƒ ü and the corresponding full-foldover plan ƒf D 1 ¢ ¢ ¢ k
are given in the next column. In all cases, only the equivalent
core foldover plans are reported in the tables. For each design,
if there is more than one optimal core foldover plan, then
all of them are reported as ƒ ü . If ƒ ü D ƒf , then an asterisk
is put beside the optimal foldover plan. The WLPs of two
foldover plans, W4D4ƒ ü 55 and W 4D4ƒf 55, are reported in the
last column. Note that all comparisons are made in terms of
the aberration of the combined design.

5. MAJOR FINDINGS

5.1 Performance of Optimal Foldover Designs

From Tables 2 and 3 it can be seen that for most designs,
there exist better foldover plans than the classic full-foldover
plans under the minimum aberration criterion. In 52 out of
77 cases, we found better foldover plans than the correspond-
ing full-foldover plans. Although some of these plans may be
obtained by previously reported methods in the literature, most
are new. Table 4 provides more detailed information, showing
the number of optimal foldover designs that are better than
the full-foldovers for each given set of 4k1 p5.

For resolution III designs, the full-foldover plans pro-
duce combined resolution IV designs. An optimal foldover
plan can further improve this desirable property by two
means. First, it may further increase the resolution of the
combined design D. One example is design 7 ƒ 2¢5, for
which the WLP of the combined design from full-foldover
is W4D4ƒf 55 D 401 110101 05, whereas the optimal combined
design has W 4D4ƒ ü 55 D 401 010101 15. Second, it may lead
to a resolution IV design with fewer length-4 words. Thus
the optimal combined design can dealias more two-factor
interactions from each other. Consider, for example, design
7ƒ 3¢2, for which the full-foldover plan produces a combined
design with three length-4 words, I D 2356 D 2347 D 4567,
but the corresponding optimal combined design has only one
length-4 word, I D 2356.

Although foldovers of resolution III designs are more com-
mon in practice, augmenting resolution IV designs can some-
times be important as well. Such examples were discussed
by Montgomery and Runger (1996). The objective here is
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Table 2. Optimal Foldover Designs With Respect to W(D) (16 runs, Complete Catalog1)

Optimal foldover plan (ƒ ü ) W(D(ƒ ü ))
k ƒ p Generating relations Initial W(d) Full-foldover plan (ƒ f ) W(D(ƒ f))

5 ƒ1¢1 5 D 12342 (0 0 1) — —
—

5ƒ 1¢2 5 D 123 (0 1 0) 5 Full factorial
0 (0 1 0 0 0)

5ƒ 1¢3 5 D 12 (1 0 0) 5( ü ) Full factorial
5 Full factorial

6 ƒ2¢1 5 D 12316 D 124 (0 3 0 0) 5, 56, 63 (0 1 0 0 0)
0 (0 3 0 0 0)

6 ƒ2¢2 5 D 1216 D 134 (1 1 1 0) 56 (0 0 1 0 0)
5 (0 1 0 0 0)

6ƒ 2¢3 5 D 1216 D 34 (2 0 0 1) 56( ü ) (0 0 0 1 0)
56 (0 0 0 1 0)

7 ƒ3¢1 5 D 12316 D 12417 D 134 (0 7 0 0 0) 5, 56, 567, 57, 6, 67, 7 (0 3 0 0 0)
0 (0 7 0 0 0)

7ƒ 3¢2 5 D 1216 D 1317 D 234 (2 3 2 0 0) 567 (0 1 2 0 0)
56 (0 3 0 0 0)

7 ƒ3¢3 5 D 1216 D 1317 D 24 (3 2 1 1 0) 567( ü ) (0 2 0 1 0)
567 (0 2 0 1 0)

7 ƒ3¢4 5 D 1216 D 1317 D 14 (3 3 0 0 1) 567( ü ) (0 3 0 0 0)
567 (0 3 0 0 0)

7 ƒ3¢5 5 D 1216 D 1317 D 23 (4 3 0 0 0) 567( ü ) (0 3 0 0 0)
567 (0 3 0 0 0)

8 ƒ4¢1 5 D 12316 D 12417 D 13418 D 234 (0 14 0 0 0) 56, 5678, 57, 58, 67, 68, 78 (0 6 0 0 0)
0 (0 14 0 0 0)

8ƒ 4¢2 5 D 1216 D 1317 D 1418 D 234 (3 7 4 0 1) 5678 (0 3 4 0 0)
567 (0 7 0 0 0)

8 ƒ4¢3 5 D 1216 D 1317 D 2418 D 34 (4 5 4 2 0) 5678( ü ) (0 5 0 2 0)
5678 (0 5 0 2 0)

8ƒ 4¢4 5 D 1216 D 1317 D 2318 D 1234 (4 6 4 0 0) 567 (0 3 4 0 0)
5678 (0 6 0 0 0)

8 ƒ4¢5 5 D 1216 D 1317 D 2318 D 14 (5 5 2 2 1) 5678( ü ) (0 5 0 2 0)
5678 (0 5 0 2 0)

8 ƒ4¢6 5 D 1216 D 1317 D 2318 D 123 (7 7 0 0 1) 567( ü ) (0 7 0 0 0)
567 (0 7 0 0 0)

9ƒ 5¢1 5 D 12316 D 12417 D 13418 D 23419 D 1234 (4 14 8 0 4) 5678 (0 6 8 0 0)
9 (0 14 0 0 0)

9 ƒ5¢2 5 D 1216 D 1317 D 2418 D 3419 D 1234 (6 9 9 6 0) 56789( ü ) (0 9 0 6 0)
56789 (0 9 0 6 0)

9 ƒ5¢3 5 D 1216 D 1317 D 2318 D 1419 D 234 (6 10 8 4 2) 5678( ü ) (0 10 0 4 0)
5678 (0 10 0 4 0)

9 ƒ5¢4 5 D 1216 D 1317 D 2318 D 1419 D 24 (7 9 6 6 3) 56789( ü ) (0 9 0 6 0)
56789 (0 9 0 6 0)

9 ƒ5¢5 5 D 1216 D 1317 D 2318 D 12319 D 14 (8 10 4 4 4) 5679( ü ) (0 10 0 4 0)
5679 (0 10 0 4 0)

10 ƒ 6¢1 5 D 12316 D 12417 D 13418 D 234, (8 18 16 8 8) 910( ü ) (0 18 0 8 0)
9 D 1234110 D 34 910 (0 18 0 8 0)

10 ƒ 6¢2 5 D 1216 D 1317 D 2318 D 14, (9 16 15 12 7) 56789( ü ) (0 16 0 12 0)
9 D 24110 D 134 56789 (0 16 0 12 0)

10ƒ 6¢34 5 D 1216 D 1317 D 2318 D 14, (10 15 12 15 10) 5678910(ü ) (0 15 0 15 0)
9 D 24110 D 34 5678910 (0 15 0 15 0)

10 ƒ 6¢4 5 D 1216 D 1317 D 2318 D 123, (10 16 12 12 10) 567910(ü ) (0 16 0 12 0)
9 D 14110 D 24 567910 (0 16 0 12 0)

11 ƒ 7¢1 5 D 12316 D 12417 D 13418 D 234, (12 26 28 24 20) 9 10 11(ü ) (0 26 0 24 0)
9 D 1234110 D 34111 D 24 9 10 11 (0 26 0 24 0)

11ƒ 7¢2 5 D 1216 D 1317 D 2318 D 123, (13 25 25 27 23) 5679 10 11(ü ) (0 25 0 27 0)
9 D 14110 D 24111 D 34 5679 10 11 (0 25 0 27 0)

11 ƒ 7¢3 5 D 1216 D 1317 D 2318 D 123, (13 26 24 24 26) 567910(ü ) (0 26 0 24 0)
9 D 14110 D 24111 D 124 567810 (0 26 0 24 0)

NOTE: 1There are two designs for k D 12, and designs for k D 13114115 are unique. Optimal foldovers for these designs are equivalent to the full foldovers.
2This design is of resolution V; thus its foldover is not considered.
3ƒ D 56 means that the signs of columns 5 and 6 are reversed in the foldover. When there is more than one optimal core foldover plan, they are separated by a comma.
4W(D) of this design is not the minimum aberration 210ƒ5 design.
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Table 3. Optimal Foldover Designs With Respect to W( D) (32 Runs, Selected)

Optimal foldover plan (ƒ ü ) W(D(ƒ ü ))
k ƒp Generating relations Initial W(d) Full-foldover plan (ƒ f) W(D(ƒ f ))

7 ƒ 2¢1 6 D 123417 D 1245 (0 1 2 0 0) 6, 7 (0 0 1 0 0)
67 (0 1 0 0 0)

7 ƒ 2¢2 6 D 12317 D 145 (0 2 0 1 0) 67 (0 0 0 1 0)
0 (0 2 0 1 0)

7 ƒ 2¢3 6 D 12317 D 124 (0 3 0 1 0) 6, 7, 67 (0 1 0 0 0)
0 (0 3 0 0 0)

7 ƒ 2¢4 6 D 1217 D 1345 (1 0 1 1 0) 67(ü ) (0 0 0 1 0)
67 (0 0 0 1 0)

7 ƒ2¢5 6 D 1217 D 345 (1 1 0 0 1) 67 (0 0 0 0 1)
6 (0 1 0 0 0)

7 ƒ 2¢6 6 D 1217 D 134 (1 1 1 0 0) 67 (0 0 1 0 0)
6 (0 1 0 0 0)

7 ƒ 2¢7 6 D 1217 D 34 (2 0 0 1 0) 67(ü ) (0 0 0 1 0)
67 (0 0 0 1 0)

7 ƒ 2¢8 6 D 1217 D 14 (2 1 0 0 0) 67(ü ) (0 1 0 0 0)
67 (0 1 0 0 0)

8 ƒ 3¢1 6 D 12317 D 12418 D 2345 (0 3 4 0 0) 6, 67, 678, 68, 7, 78 (0 1 2 0 0)
0 (0 3 0 0 0)

8 ƒ 3¢2 6 D 12317 D 12418 D 135 (0 5 0 2 0) 78 (0 1 0 2 0)
0 (0 5 0 2 0)

8 ƒ 3¢3 6 D 12317 D 12418 D 125 (0 6 0 0 0) 67, 68, 78 (0 2 0 0 0)
0 (0 6 0 0 0)

8 ƒ 3¢4 6 D 12317 D 12418 D 134 (0 7 0 0 0) 6, 67, 678, 68, 7, 78, 8 (0 3 0 0 0)
0 (0 7 0 0 0)

8 ƒ3¢5 6 D 1217 D 13418 D 235 (1 2 3 1 0) 678 (0 0 2 1 0)
6 (0 2 0 1 0)

8 ƒ 3¢6 6 D 1217 D 1318 D 2345 (2 1 2 2 0) 678(ü ) (0 1 0 2 0)
678 (0 1 0 2 0)

8 ƒ 3¢7 6 D 1217 D 13418 D 135 (1 3 2 0 1) 67, 68 (0 1 1 0 1)
6 (0 3 0 0 0)

8 ƒ3¢8 6 D 1217 D 3418 D 135 (2 1 2 2 0) 678 (0 0 2 1 0)
67 (0 1 0 2 0)

8 ƒ 3¢9 6 D 1217 D 1318 D 245 (2 2 1 1 1) 678 (0 1 1 0 1)
67 (0 2 0 1 0)

8 ƒ 3¢10 6 D 1217 D 1318 D 145 (2 2 2 0 0) 678 (0 1 2 0 0)
67 (0 2 0 0 0)

9 ƒ 4¢1 6 D 234517 D 134518 D 1245, (0 6 8 0 0) 67, 68, 69, 78, 79, 89 (0 2 4 0 0)
9 D 1235 6789 (0 6 0 0 0)

9 ƒ 4¢2 6 D 12317 D 12418 D 134, (0 7 7 0 0) 67, 6789, 68, 69, 78, 79, 89 (0 3 3 0 0)
9 D 2345 9 (0 7 0 0 0)

9 ƒ 4¢3 6 D 12317 D 12418 D 135, (0 9 0 6 0) 678, 679, 689, 69, 78, 789 (0 3 0 4 0)
9 D 145 0 (0 9 0 6 0)

9 ƒ 4¢4 6 D 12317 D 12418 D 134, (0 10 0 4 0) 89 (0 3 0 4 0)
9 D 125 0 (0 9 0 6 0)

9 ƒ 4¢5 6 D 12317 D 12418 D 134, (0 14 0 0 0) 67, 6789, 68, 69, 78, 79, 89 (0 6 0 0 0)
9 D 234 0 (0 14 0 0 0)

9 ƒ4¢6 6 D 1217 D 13418 D 13519 D 245 (1 5 6 2 1) 6789 (0 1 4 2 0)
6 (0 5 0 2 0)

9 ƒ 4¢7 6 D 1217 D 13418 D 13519 D 145 (1 7 4 0 3) 67, 678, 679, 68, 689, 69 (0 3 2 0 2)
6 (0 7 0 0 0)

9 ƒ4¢8 6 D 1217 D 3418 D 13519 D 245 (2 3 6 4 0) 678, 6789, 679 (0 1 4 2 0)
67 (0 3 0 4 0)

9 ƒ 4¢9 6 D 1217 D 1318 D 1419 D 2345 (3 3 4 4 1) 6789( ü ) (0 3 0 4 0)
6789 (0 3 0 4 0)

9 ƒ 4¢10 6 D 1217 D 1318 D 2419 D 345 (3 3 4 4 1) 6789 (0 2 3 1 1)
678 (0 3 0 4 0)

10ƒ 5¢1 6 D 123417 D 123518 D 1245, (0 10 16 0 0) 671610167101 : : : 19101 (0 4 8 0 0)
9 D 1345110 D 2345 678910 (0 10 0 0 0)

10ƒ 5¢2 6 D 12317 D 12418 D 135, (0 15 0 15 0) 6781679168916910178917810 (0 5 0 10 0)
9 D 145110 D 12345 0 (0 15 0 15 0)

( continued )
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Table 3. (continued)

Optimal foldover plan (ƒ ü ) W(D(ƒ ü ))
k ƒ p Generating relations Initial W(d) Full-foldover plan (ƒ f) W(D(ƒ f))

10 ƒ 5¢3 6 D 12317 D 12418 D 134, (0 16 0 12 0) 7101789178101791018918910 (0 6 0 8 0)
9 D 125110 D 135 0 (0 16 0 12 0)

10 ƒ 5¢4 6 D 12317 D 12418 D 134, (0 18 0 8 0) 8910 (0 6 0 8 0)
9 D 234110 D 125 0 (0 18 0 8 0)

10 ƒ 5¢5 6 D 1217 D 13418 D 135, (1 14 7 0 7) 678167101678910167916810168916910 (0 6 4 0 4)
9 D 145110 D 345 6 (0 14 0 0 0)

10 ƒ 5¢6 6 D 1217 D 13418 D 135, (1 10 11 4 3) 678910 (0 3 7 4 0)
9 D 145110 D 2345 610 (0 10 0 4 0)

10 ƒ 5¢7 6 D 1217 D 3418 D 13519 D 245, (2 7 12 7 2) 6781678910167916710 (0 3 6 4 2)
10 D 12345 67 (0 7 0 7 0)

10ƒ 5¢8 6 D 1218 D 1318 D 23419 D 235, (2 8 12 4 2) 678910 (0 2 8 4 0)
10 D 145 67 (0 8 0 4 0)

10 ƒ 5¢9 6 D 1218 D 1318 D 1419 D 234, (2 9 9 6 4) 678910 (0 3 6 4 2)
10 D 245 678 (0 9 0 6 0)

10 ƒ 5¢10 6 D 1217 D 1318 D 1419 D 234, (3 8 11 4 1) 6789 (0 3 7 4 0)
10 D 12345 678 (0 8 0 4 0)

11 ƒ 6¢1 6 D 12317 D 12418 D 134, (0 25 0 27 0) 67101671116891 : : : 189112 (0 10 0 16 0)
9 D 125110 D 135111 D 145 0 (0 25 0 27 0)

11 ƒ 6¢2 6 D 12317 D 12418 D 134, (0 26 0 24 0) 78101781117910 11179111891018910 11 (0 10 0 16 0)
9 D 234110 D 125111 D 135 0 (0 26 0 24 0)

11ƒ 6¢3 6 D 1217 D 1318 D 23419 D 235, (2 14 22 8 6) 678910 (0 4 14 8 0)
10 D 145111 D 12345 67 (0 14 0 8 0)

11 ƒ 6¢4 6 D 1217 D 1318 D 23419 D 235, (2 16 16 12 10) 67891678910 11 (0 6 10 8 4)
10 D 245111 D 1345 6711 (0 16 0 12 0)

11 ƒ 6¢5 6 D 1217 D 1318 D 23419 D 235, (2 18 14 8 14) 67891678101678111678910 11167910167911 (0 8 8 4 8)
10 D 245111 D 345 67 (0 18 0 8 0)

11 ƒ 6¢6 6 D 1217 D 1318 D 2419 D 1235, (3 13 19 11 9) 678 (0 5 12 7 4)
10 D 1245111 D 345 678910 11 (0 13 0 11 0)

11 ƒ 6¢7 6 D 1217 D 1318 D 1419 D 235, (3 15 13 15 13) 67891678101678910 11 (0 7 8 7 8)
10 D 245111 D 1345 67811 (0 15 0 15 0)

11 ƒ 6¢8 6 D 1217 D 1318 D 1419 D 235, (3 16 12 12 16) 6789101678911167810 11 (0 8 8 4 8)
10 D 245111 D 345 678 (0 16 0 12 0)

11 ƒ 6¢9 6 D 1217 D 1318 D 1419 D 234, (3 16 13 12 13) 891018910 1118911 (0 7 9 6 6)
10 D 235111 D 245 9 (0 16 0 12 0)

11 ƒ 6¢10 6 D 1217 D 1318 D 1419 D 234, (4 12 18 12 8) 678910 11 (0 6 10 8 4)
10 D 25111 D 1345 67810 11 (0 12 0 12 0)

NOTE: 1The complete set is: 67, 678, 689, 6710, 68, 689, 6810, 69, 6910, 610, 78, 789, 7810, 79, 7910, 89, 8910, 810, 910.
2The complete set is: 6710, 6711, 689, 6811, 6911, 610 11, 789, 7810, 7910, 8910, 8911.

to dealias two-factor interactions from each other. We � nd
that the improvement over the full-foldover plans from the
optimal foldover plans is usually substantial. For example,
optimal foldovers of the minimum-aberration designs 8 ƒ 3¢1,
9 ƒ 4¢1, 10 ƒ 5¢1, and 11 ƒ 6¢1 dealias 2, 4, 6, and 15 out
of 3, 6, 10, and 25 pairs of two-factor interactions. The per-
centages of dealiased pairs of two-factor interactions by opti-
mal foldovers of non–minimum-aberration designs are also
in the range of 60%–80%. Notable exceptions are designs
7 ƒ 2¢1 and 7 ƒ 2¢2, for which the optimal combined designs
have resolution V and VI. This demonstrates that augmenting

Table 4. Summary of Numbers of Designs for Which Optimal
Foldovers Are Better Than Full Foldovers Under Minimum Aberration

k 5 6 7 8 9 10 11 Total

n D 16 1/3 2/3 2/5 3/6 1/5 0/4 0/3 9/29
n D 32 5/8 9/10 9/10 10/10 10/10 43/48

NOTE: For a given set of (k1n), the denominator is the total number of designs considered,
and the numerator is the number of designs for which optimal foldovers are better than the
full foldovers.

resolution IV designs may also produce designs with a higher
resolution.

5.2 Combined-Optimal Designs

The initial designs are usually chosen according to the aber-
ration criterion. However, as previously discussed, there are
practical situations in which a practitioner would consider
using non–minimum-aberration designs. Thus the other crite-
ria (e.g., the number of clear two-factor interactions) may also
be useful. In the context of the foldover design, one useful
criterion for selecting among initial designs is the aberration
of the optimal combined design. Consider the three designs for
k D 6 and p D 2 in Table 2. Design 6 ƒ 2¢1 is the minimum-
aberration design; however, its optimal combined design has
W D 401110105. In contrast, the optimal combined design
resulting from design 6ƒ2¢3 has W D 40101 0115. We call this
design a combined-optimal design. In general, a 2kƒp design
d ü is called a combined-optimal design if the resulting optimal
combined design has the minimum aberration among all com-
bined optimal designs, that is, W 46d ü

4d ü 504ƒ ü 575 D mind W 46d
d04ƒ ü 575.
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Combined-optimal designs can be useful when the exper-
iment is conducted sequentially. For example, suppose that
the experimenter is determined to conduct a 64-run design
to investigate eight factors. The experimenter may prefer to
conduct a 32-run design at the � rst stage and then use a
foldover design to complete the experiment. The question is
which 28ƒ3 design should be used if the goal is to optimize
the combined design. The traditional approach is to use a
minimum-aberration design of 8 ƒ 3¢1 in Table 3. It has the
WLP of (013141 010), and the optimal combined design has
W D 401 11 210105. Table 3 shows that the combined-optimal
design is 8 ƒ 3¢5. This design has the WLP of (11213111 0)
for the initial design. However, the optimal combined design
has W 4D5 D 40101 211105. This is not obtainable if the initial
design has minimum aberration.

Interestingly, in the crimp project described earlier, the best
combined design that the team could get was a resolution IV
design (see design 6 ƒ 2¢1 in Table 2). Had the team chosen
design 6ƒ2¢3 (the combined-optimal 26ƒ2 design), they would
have been able to obtain a resolution VI combined design,
in which all two-factor interactions are clear. As one referee
pointed out, a similar idea was also used by Bullington, Hool,
and Maghsoodloo (1990). They mentioned that an n-run two-
level design from Taguchi’s orthogonal arrays (Taguchi 1986)
can be conducted sequentially; the � rst half is an orthogonal
n-run array, and the second half is a foldover of the � rst
design.

Tables 2 and 3 identify all combined-optimal designs by
printing them in bold in the � rst column. (To � nd the 32-run
combined-optimal designs, we have checked the complete
set of 32-run designs.) A careful check on the W 4D5’s
of the combined designs reveals an interesting fact: Most
combined-optimal designs with n runs, when combined by
their optimal foldovers, result in combined designs that are
minimum-aberration 2kƒpC1 designs. For example, the optimal
foldover of the combined-optimal 27ƒ3 design produces
a 27ƒ2 design D with W 4D5 D 40111 21 0105. This is the
corresponding 27ƒ2 minimum-aberration design. We call this
type of combined-optimal design a strong combined-optimal
design. The only combined-optimal design that is not a
strong combined-optimal design in Tables 2 and 3 is design
10 ƒ 6¢3. The optimal combined design from this design has
W 4D5 D 401 15101 151 05, which is the second best to design
10 ƒ 5¢1. We are unable to explain such a special case. It
will be an interesting research topic to � nd out under what
conditions strong combined-optimal designs exist.

6. CONCLUSIONS AND FUTURE WORK

In this article we have obtained and tabulated the optimal
foldover plans under the aberration criterion for all 16-run and
selected 32-run designs. We have also proposed a computer-
search method for constructing optimal foldover plans. We
reduced the computations substantially by focusing on the core
foldover plans, which constitute a much smaller subset of all
foldover plans. It has come to our attention that Li and Mee
(2002) have also recently considered the optimality of foldover
designs. Their emphasis is on providing a suf� cient condition
for the situation where using an alternative foldover plan can

be a better choice than reversing the signs of all factors. This
provides a nice complement to this research.

We conclude the article with two remarks. First, one disad-
vantage of the foldover design is that the run size may become
large in some situations. In these cases, partial foldovers pro-
posed by Mee and Peralta (2000) can be considered. Optimal
partial foldover plans are currently under study. Mee and Per-
alta (2000) pointed out that foldover designs are sometimes
inef� cient. Such an argument, however, is valid for conven-
tional full-foldover, but may not apply to the optimal foldover
plan given in this article. Second, as indicated in Section 1,
there are various reasons for using a foldover design. Thus
the aberration criterion should not be considered the only cri-
terion. However, in the situation where the use of aberration
criterion is justi� ed, the optimal foldover plans presented in
this article are recommended. We also note that the proposed
approach can be applied to � nding optimal foldovers with
respect to other design criteria in a straightforward manner.
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APPENDIX: PROOF OF THEOREM 1

We prove the theorem by showing that all 2k foldover plans
can be classi� ed into 2p groups. In each group there are 2kƒp

foldover plans, all of which are equivalent to a core foldover
plan.

First, a 2kƒp design has p generated factors 4k ƒ p C
151 : : : 1 k, which are involved in the generators G11 : : : 1Gp .
Thus there are 2p distinct core foldover plans. (We de� ne 0
as a core foldover plan.)

Second, for any given core foldover plan ƒc, we can con-
struct 2kƒp equivalent foldover plans as follows. A foldover
plan consisting only of the k ƒ p basic factors ƒb

D a1 ¢ ¢ ¢al

( 1 µ l µ k ƒ p) is chosen. Then we construct a new foldover
plan by including all factors in ƒb and all of the generated
factors, (k ƒ p C j)’s, that satisfy one of the following two
statements:

(A1) k ƒ p C j is in the core foldover plan ƒc, and there is
an even number of ai’s in Gj .

(A2) kƒpC j is not in the core foldover plan ƒc, and there
is an odd number of ai’s in Gj .

It can be easily seen that the resulting foldover plan ƒ con-
sisting of columns in ƒb and the generated factors chosen by
the rules of (A1) and (A2) is equivalent to ƒc. Note that two
foldover plans are equivalent if the sign changes of all gen-
erators are the same according to both plans. (The sign of
the generator is changed if there is an odd number of fac-
tors involved in this generator whose signs are reversed.) For
a given generator Gj

D 4a1 ¢ ¢ ¢al54k ƒ p C j5, if its sign is
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changed according to ƒc, then the generated factor k ƒ p C j

is in the core foldover plan. According to (A1), if there is an
even number of ai’s in Gj , then k ƒ p C j should be added to
ƒb; according to (A2), if there is an odd number of ai’s in Gj ,
then k ƒ p C j should not be added to ƒb. In both cases, the
sign of Gj is also changed.

The foregoing step shows that there are 2kƒp distinct
foldover plans in each of these 2p groups. (The example
displayed in Table 1 can be used for illustration purposes.)
When the foregoing step is repeated for all core foldover
plans, a total of 2kƒp � 2p D 2k foldover plans are constructed
by this method. If we can prove that all of these foldover
plans are distinct, then the theorem is proved. To show that
all of these foldover plans are distinct, consider two different
core foldover plans, ƒc and ƒc0 . The construction method
described in the last step shows that for all ƒb consisting
only of basic factors, there exists a foldover plan ƒ2 such
that ƒc ² ƒb

C ƒ2, where ƒ2 consists of all generated factors
k ƒ p C j (j D 11 : : : 1 p5 satisfying (A1) and (A2) for ƒc .
Similarly, ƒc 0 ² ƒb

C ƒ20 , where ƒ20 consists of all generated
factors satisfying (A1) and (A2) for ƒc 0 . Because ƒc

6 Dƒc0 , we
have ƒ2

6 Dƒ20 ; that is, the two foldover plans are distinct.

[Received January 2001. Revised August 2002.]
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