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Optimal foraging: Lévy pattern or process?

M. J. Plank and A. James*

Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800,
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Many different species have been suggested to forage according to a Lévy walk in which the
distribution of step lengths is heavy-tailed. Theoretical research has shown that a Lévy
exponent of approximately 2 can provide a higher foraging efficiency than other exponents. In
this paper, a composite search model is presented for non-destructive foraging behaviour
based on Brownian (i.e. non-heavy-tailed) motion. The model consists of an intensive search
phase, followed by an extensive phase, if no food is found in the intensive phase. Quantities
commonly observed in the field, such as the distance travelled before finding food and the net
displacement in a fixed time interval, are examined and compared with the results of a Lévy
walk model. It is shown that it may be very difficult, in practice, to distinguish between the
Brownian and the Lévy models on the basis of observed data. A mathematical expression for
the optimal time to switch from intensive to extensive search mode is derived, and it is shown
that the composite search model provides higher foraging efficiency than the Lévy model.

Keywords: Brownian random walk; foraging behaviour; foraging efficiency;
Lévy random walk; power law; stochastic differential equation
1. INTRODUCTION

The observed foraging behaviour of many different
species has been found to fit closely to a power law
distribution with an exponent close to 2, for example
grey seals (Austin et al. 2004), spider monkeys (Ramos-
Fernández et al. 2004) and even human tribes (Brown
et al. 2007). That is, the observed distribution has a
probability density function (PDF)

f ðxÞZCxKm; xOxmin; ð1:1Þ

where mz2. The common assumption is that this
pattern of observations is generated by a Lévy random
walk, i.e. the forager is selecting movement distances
directly from a distribution of the form (1.1). If m%3,
this distribution is heavy-tailed, meaning that there
is a significant probability of extremely large values
of x occurring, and the distribution does not have a
finite variance.

Viswanathan et al. (2000) proposed a Lévy walk
model for the random search problem of locating
randomly located search targets and examined the
relationship between foraging efficiency and power-law
exponent m. Two types of foraging were considered:
non-destructive, in which the forager may visit and
feed at the same target site many times; and destruc-
tive, in which the forager may feed at a given target site
only once.

In destructive foraging, after a food item has been
consumed, the individual is effectively placed randomly
among randomly scattered food items to begin the next
search. In this case, the most efficient search strategy is
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often a ballistic one, i.e. to move in a straight line until
food is found. Indeed, Viswanathan et al. (2000) showed
that decreasing m always increases efficiency. For
equation (1.1) to be a valid PDF, m must be greater
than 1, so the optimal strategy occurs as m/1, which is
tending towards ballistic motion. Optimal strategies for
destructive foraging have also been investigated by
Bartumeus et al. (2002), Condamin et al. (2006) and
Shlesinger (2006). Some of these studies have compared
Lévy and Brownian motion strategies, but restricted to
the case where step lengths are drawn from a power law
distribution (m!3 for Lévy; mR3 for Brownian). This
gives no indication as to whether alternative strategies
that are not based solely on a power law can provide a
higher efficiency. In contrast, Bénichou et al. (2005,
2006) and Lomholt et al. (2007) looked at strategies for
searching for non-revisitable targets (i.e. a form of
destructive foraging), in which the searcher switches
intermittently between two different search modes. As
well as presenting expressions for the mean optimal
switching times, it was shown that this intermittent
searching can lead to higher efficiencies than purely
ballistic or power law-based searching.

The question of optimal strategies for non-destruc-
tive foraging is a separate problem. The forager begins
each search in the knowledge that there is another food
item in close proximity, but in an unknown direction.
This can be thought of as modelling a patchy environ-
ment, where the finding of one food item implies an
increased likelihood of other food items locally in
the same patch. Unlike purely ballistic movement, an
efficient strategy will make use of this knowledge. In the
power law model of Viswanathan et al. (2000), it was
shown that the maximum efficiency occurs when mz2
J. R. Soc. Interface (2008) 5, 1077–1086
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(i.e. a Lévy walk), provided that the distance between
food items is large relative to the distance at which
the forager can detect food. The model was extended
in Santos et al. (2004) to include scenarios, intermediate
between the destructive and non-destructive extremes,
in which a target site may be revisited only after
a certain period of time has elapsed. Again, these
studies consider only walks with power law-distributed
step sizes.

Raposo et al. (2003) claimed that the optimal search
strategy for the random search problem is always a
Lévy walk. Recently, however, the paradigm of a Lévy
process corresponding to an optimal foraging strategy
has come under closer scrutiny. Edwards et al. (2007)
showed that the original findings of Viswanathan et al.
(1996), which fitted power law distributions to data for
flight lengths of wandering albatrosses, were incorrect.
Additionally, Benhamou (2007) demonstrated that a
Brownian random walk model (i.e. one in which step
lengths are selected from a distribution with finite
variance) for non-destructive foraging can produce data
that appear to fit a power law distribution. The model
consists of a composite random walk—the forager
initially moves according to a Brownian random walk
with a relatively small mean step size (intensive search).
However, after searching for a prescribed length of time
without finding any food, it switches to a largermean step
size (extensive search) until it finds a food item. It then
reverts to the original intensive search method. Not only
did simulations of this model produce what could be
interpreted as a Lévy pattern from a non-Lévy process,
the efficiency of the composite search strategy was shown
to be significantly higher than for a Lévy walk. This is in
agreement with the results of Bénichou et al. (2006) for
destructive foraging.

In this paper, a one-dimensional model for non-
destructive foraging movements based on a stochastic
differential equation (SDE) for the location of the
forager is presented. One-dimensional models are a
common tool for studying foraging in this way
(Bartumeus et al. 2002; Bénichou et al. 2005; Lomholt
et al. 2007). They capture the essence of a search
strategy but are often amenable to analytical manipu-
lation. Most of the qualitative results obtained from
one-dimensional models can be seen in two-dimensional
simulations. In particular, Viswanathan et al. (2000,
2001) carried out extensive numerical explorations of
power law random walks and showed a good corre-
spondence between the one- and two-dimensional cases.

Similarly to Benhamou (2007) the basis of the model
is a combination of Brownian intensive and extensive
search modes, and a rule for when to switch from one to
the other. The efficiency of the model and the observed
distributions of movements it produces are compared
with a Lévy random walk. Both this approach and that
of Benhamou (2007) use the same underlying scenario.
However, the advantage of the continuous SDE model
over the discrete random walk model is that of higher
tractability to analytical manipulation. The use of
SDEs allows analytical expressions to be derived for the
observed distributions and for the foraging efficiency,
rather than relying on purely numerical simulations.
J. R. Soc. Interface (2008)
SDEs have been used previously for understanding
foraging strategies. Condamin et al. (2006) examined
the mean first passage time for SDEs in a range of
geometries and the consequences of this work for
foraging strategies were discussed by Shlesinger
(2006). Our work looks at a slightly more specialized
case but presents expressions for the distribution of
the encounter time in addition to the mean. We also
give distributions of other commonly measured distri-
butions observed in foraging data. These analytical
results highlight the important parameters (e.g. aver-
age distance between food items within a patch,
average distance between patches and average search
velocity) involved in factors such as foraging efficiency,
and in determining optimal strategies, thus allowing for
improved insight into the observed data.
2. THE COMPOSITE SEARCH MODEL

Consider an individual who displays two distinct types
of behaviour. The first mode is a local, area-intensive
search with frequent turning and a mean velocity vI.
The second mode is far more extensive with few turns
and potentially a much higher velocity vE. Composite
search behaviour of this type gives movement patterns
similar to the observed data, particularly for individ-
uals in patchy environments. For example, Klaassen
et al. (2006) studied swans and typical foraging paths
showed short intrapatch movements connected by
longer interpatch movements.

In this work, the individual is modelled by a forager
searching for a food item on a one-dimensional line. The
individual starts at position x0, the point at which the
previous food item was found. In one direction, the next
food item is close by at xZ0; in the other direction, the
food item is much further away. This scenario
represents a forager in a patchy environment with
only limited knowledge of its surroundings, and is very
similar to the non-destructive foraging scenario of
Viswanathan et al. (2000). If the forager chooses the
correct direction, it will stay in the patch and find its
next food item quickly. If it chooses the other direction,
it will move out of the patch and potentially have to
travel a large distance to the next item.

Presume that the forager follows a composite search
strategy. It starts by carrying out an intensive local
search, characterized by frequent changes of direction.
However, if, after time t, this strategy has not been
successful, the forager abandons the intensive search and
simply runs in a straight line (ballistic motion), in a
randomly chosen direction, until it finds food. As a
simplifying assumption, it is assumed that the distance
the forager must travel before finding a food item in this
second phase is exponentially distributed withmean d/2,
independently of the position X(t) after the intensive
phase. (Note that this travel distance is due to the
distribution of food items rather than to any decision by
the forager.) In fact this is a reasonable assumption since,
in an environment where food patches are distributed
randomly (i.e. according to a Poisson process), the
distance travelled before the next patch is encountered
is exponentially distributed and the mean distance is the
mean free path (Viswanathan et al. 2000). Hence d is a
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Figure 1. Two sample foraging paths, both starting at xZx 0.
On the path represented by the dashed line, the forager finds
the food item at xZ0 during the intensive search phase; on the
path represented by the solid line, the forager fails to find food
during the intensive phase and would continue to perform an
extensive search.
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measure of the average distance between food patches,
while x0 is a measure of the average distance between
items in the same patch; it is assumed that x0/d.
Figure 1 shows two sample foraging paths: on one path,
the forager only carries out an intensive search as the food
item at xZ0 is found before tZt; on the other path, the
forager would continue to do an extensive search at a
constant velocity.

Once a food item is found, it is assumed that the
forager resumes a new search, restarting in the original
configuration, i.e. a distance x0 from a food item. This
scenario describes a patchy environment, in which food
items within a patch are spaced at distance x0 apart, and
the patches themselves are an average distance d apart.

In the intensive phase, the forager’s movement is
described by Brownian-type random motion in one
dimension and follows the SDE:

dX Z s dW ðtÞ; ð2:1Þ

where X(t) is the forager’s position at time t, and
s dW(t) is a standard white noise process. Equation
(2.1) is written in the standard notation of SDEs
(see Grimmett & Stirzaker (2001) for details) and
represents a stochastic process in which a series of small
steps (dX ) are drawn from a normal distribution with
mean 0 and variance s2. The forager starts at X(0)Zx0
and reaches the food item at xZ0 at time T, the
shortest value of t such that X(t )Z0. This corresponds
to the Brownian motion of a particle along a line with
an absorbing barrier at xZ0.

The PDF fX(x, t) of the position of a searcher moving
according to (2.1) with an absorbing barrier at xZ0 is
given by Grimmett & Stirzaker (2001) as

fXðx; tÞZ
1ffiffiffiffiffiffiffiffi
2pt

p
s

exp K
ðxK x0Þ2

2s2t

� ��

Kexp K
ðxCx 0Þ2

2s2t

� ��
; xO0; tR0:
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Integrating this PDF over 0!x!N for a fixed value of t
gives the total probability of being at any positive x
value (i.e. of not having been absorbed by time t). From
this, the probability of having been absorbed before
time t (i.e. the cumulative distribution function (CDF)
FT of the random variable T ) is

FTðtÞZPðT% tÞZ 1K

ðN
0
fXðx; tÞ dx; tR0: ð2:2Þ

The PDF fT(t) may be found by differentiating FT(t)
with respect to t.

The central limit theorem predicts that the discrete
random walk model of Benhamou (2007) will converge
to the continuous model provided a large enough
number of independent steps have been taken, and
the distribution of the step lengths has finite variance.
2.1. Comparisons with observed distributions

Many studies have observed individual foraging
behaviour and fitted the observed distributions to a
number of statistical models. However, field studies use
a wide range of observation techniques, resulting in a
variety of observed distributions. Here, we examine
some of the more common observation methods and
find the corresponding analytical solutions of the SDE
model. In all cases, the predicted distributions were
verified with the results from 105 individual-based
simulations of the SDE using the Euler–Maruyama
method (Higham 2001).
2.1.1. Distance travelled between food items.
Viswanathan et al. (1996) observed the foraging
patterns of wandering albatross. Individuals were
tracked over a period of days and the times between
immersions in water were recorded. A constant velocity
was presumed and this gave a distribution of distances
between immersions, which was assumed to be the
distribution of distances between food items. Similar
data were recorded by Klaassen et al. (2006) for
foraging swans in a patchy food environment—the
position of a swan was recorded every time it
submerged its head, giving both time and position
data at food sites. Both these recording methods give no
information of the individual’s path from one food
item to the next. The distance travelled between
food items is inferred by measuring the time between
food items and assuming a constant velocity. The
continuous model presented here can be used to give an
analytical form for the distribution of the time spent
and hence the distance travelled between food items.

The mean instantaneous speed of the intensive
search process described by (2.1) is vIZ

ffiffiffiffiffiffiffiffi
2=p

p
s, and

the total distance travelled during this phase is vIT. If a
time t has elapsed (i.e. TOt), the intensive search is
abandoned and an additional straight-line distance R is
travelled, which is a random variable from an expo-
nential distribution Rwexp (2/d ). The mean speed of
the forager during the extensive search period is vE.

The distance travelled between successive food
items, L, has a distribution that must be found in the
two separate cases. If the item is found in the intensive
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Figure 2. Distribution of distance travelled L before finding food (S(l )ZP(LOl )), calculated from SDE simulations and
analytically from equation (2.4). (a) Early changeover from intensive to extensive search mode (tZ50 s). (b) Late changeover
(tZ1000 s). Other parameter values: vIZ4 msK1, x0Z10 m and dZ10 000 m. Solid line, SDE simulations; dashed line, analytic.
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search period, L has, essentially, the same distribution
as the time to absorption. If the item is found during the
extensive search period, the distance is the sum of the
distance travelled in the intensive period and a distance
R taken from an exponential distribution.

LZ
vIT if T%t;

vItCR if TOt:

(
ð2:3Þ

Hence the PDF of the total distance travelled before
finding food is

fLðlÞZ
1

vI
fT

l

vI

0
@

1
A l%vIt;

ð1KFT ðtÞÞfRðlK vItÞ lOvIt:

8>><
>>: ð2:4Þ

Figure 2 shows the distribution of distances travelled
before finding food, with an early changeover from an
intensive to an extensive search (small t) and with a
late changeover (large t). The analytical distribution
(calculated using (2.4)) shows excellent agreement with
the results of simulations. The parameter values used in
figure 2 were chosen, for illustrative purposes, to be
approximately representative of wandering albatross
foraging—Weimerskirch et al. (2007) reported a
minimum flying speed and an overall mean speed
of approximately 3 and 10 m sK1, respectively, and a
maximum patch diameter of 1 km. The qualitative
results shown in figure 2, and the agreement of the
analytical and numerical results, are the same for a
wide range of parameter values.
2.1.2. Observed distance travelled in a given time
interval. An alternative method of observing foraging
paths is to measure the position of an individual at a
series of fixed time intervals and to calculate the
straight-line distance between successive points to give
a distribution of move lengths. Data of this type are
usually combined with observations of wait times, i.e.
time intervals inwhich the individual does notmove and
is presumed to have arrived at a food item. Observation
intervals for this type of data cover a wide range
depending on the method of observation and the type of
individual. For example, Mårell et al. (2002) observed
reindeer at 30 s intervals, Ramos-Fernández et al. (2004)
J. R. Soc. Interface (2008)
observed the positions of spider monkeys at 5 min
intervals and Austin et al. (2004) observed seals at
daily intervals. Clearly, the exact shape of the observed
distribution will depend on the relative sizes of the
observation interval and the average time taken tomove
between food items.

Initially, to obtain a distribution of the movement
lengths in a given time interval, it is presumed that the
observation interval ts is smaller than the changeover
time between the intensive search phase and the
extensive phase so that, during any one interval, the
behaviour observed is either entirely intensive or
entirely extensive, rather than a mixture of the two.
The SDE model predicts that the observed distance
moved during a time interval of length ts in the
intensive phase, YIZ jXðtC tsÞKXðtÞj, follows an
absolute Gaussian distribution with PDF

fYI
ðyÞZ 2

pvI
ffiffiffiffi
ts

p exp K
y2

pv2I ts

� �
: ð2:5Þ

It should be noted that, in a Brownian process of this
type, the actual distance travelled by an individual is
vIts, as the individual is moving at a constant speed vI.
However, observations at discrete intervals will record
only the net distance of the individual from its previous
point.

In a foraging sequence, the individual either finds the
food item during the intensive search (T!t) and the
number of observed move lengths is approximately
T/ts, or it finds food during the extensive search (TRt)
and there will be approximately t/ts observed move
lengths during the intensive phase, followed by a
number of observations during the straight-line run.
As previously, during the extensive search phase, the
forager travels a random distance Rw exp (d/2). It is
assumed that the mean speed during each observed
interval also follows a Gaussian distribution with mean
vE and variance s2E , so the distance travelled YE during
each interval is distributed according to

fYE
ðyÞZ 1ffiffiffiffiffiffi

2p
p

sEts
exp K

ðyK vEtsÞ2

2s2Et
2
s

� �
: ð2:6Þ

The proportion q of move length observations drawn
from the intensive distribution (2.5) can be approxi-
mated by the proportion of the foraging cycle spent in
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Figure 3. Distribution of observed step lengths Y (S(y)ZP(YOy)), calculated from SDE simulations and analytically
from equation (2.8). (a) Early changeover from intensive to extensive search mode (tZ50 s). (b) Late changeover (tZ1000 s).
Other parameter values are vIZ4 m sK1, vEZ10 m sK1, sEZ2.5 m sK1, x 0Z10 m, dZ10 000 m and tsZ3 s. Solid line, SDE
simulations; dashed line, analytic.
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Figure 4. (a) Mean efficiency (reciprocal of distance travelled to find food) against t, calculated from SDE simulations and
analytically from equation (2.9): vIZ1, dZ1000 (solid line, SDE simulations x0; dashed line, analytic x0; dot-dashed line,
SDE simulations x0; dotted line, analytic x0). (b) Optimal switching time t̂�ZvIt

�=d against e (solid line, numerical; dashed
line, analytical). The curves are calculated by numerical minimization of E(L) according to equation (2.9) and using the
approximation (2.10). If e!0:19, there is a global minimum in E(L) at a value of t closely approximated by (2.10). If eO0.19,
this local minimum ceases to be a global minimum—the optimal value of t is zero.
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the intensive search mode,

q Z
intensive time

intensive timeCextensive time

Z

Ð t
0 tfT ðt Þ dtCt

ÐN
t fT ðt Þ dtÐ t

0 tfT ðt Þ dtC tC d
2vE

� � ÐN
t fT ðt Þ dt

; ð2:7Þ

and the remaining proportion 1Kq is from the extensive
distribution (2.6). Note that this formulation for q does
not depend on the sampling frequency tK1

s , but it does
presume a zero handling time for each food item.

Hence, the PDF fY of observed step lengths is

fY ðyÞZ q fYI
ðyÞCð1KqÞfYE

ðyÞ: ð2:8Þ
Figure 3 shows examples of this distribution for two
different values of the changeover time t and the
sampling time ts. Again the analytical values agree well
with those generated from the simulations of the SDE.
2.2. Optimal foraging theory

Of particular interest in any model of foraging
behaviour is the optimal foraging strategy. This is the
strategy that maximizes the net energy gain—the
J. R. Soc. Interface (2008)
energy intake from food minus the energy expended
during the search. In simple mathematical models,
finding the optimal strategy usually corresponds to
optimizing the values of one or more parameters. For
example, in the Lévy walk model of Viswanathan et al.
(2000), the value of the power law exponent m is
optimized; in the present model, it is the optimal value
of the changeover time t which is of primary interest.

It is assumed that energy expenditure is proportional
to distance travelled, and that the energy obtained from
each food item found is the same. Thus by minimizing
the mean distance travelled between food items, the
forager will maximize its net energy gain. From
equation (2.4), the expected distance travelled E(L)
before finding a food item is

EðLÞZ
ðN
0
lfLðl Þ dl Z vI

ðt
0
tfTðt Þ dtCð1KFT ðtÞÞ

! vItC

ðN
0
sfRðsÞ ds

� �
: ð2:9Þ

This expression for E(L) can be written in closed form
(see appendix A), and is valid for any distribution of
extensive travel distances with mean d/2. Hence the
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walk model with mZ1.9 and xminZ0.01. For both curves,
vIZvEZ1, sEZ0.1, x0Z10, dZ1000 and tsZ1. Solid line,
SDE simulations; dashed line, analytic.
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results of this section are independent of the assump-
tion that the length of the extensive movement follows
an exponential distribution. Figure 4a shows the mean
efficiency 1/E(L) against t calculated using equation
(2.9) and from simulations. The optimal value of t is the
one that minimizes E(L) and can be approximated by

t* Z
d

4vI
1K

4

3
3K

2

5
32

� �
; ð2:10Þ

where

3Z
2x 2

0

pvI d
!0:19:

If eO0.19 then the minimum value of E(L) occurs at
tZ0 (see appendix A). Figure 4b shows the optimal
value of t against e, calculated both from numerical
minimization of equation (2.9) and using the analytical
approximation (2.10). These two show excellent agree-
ment provided e!0.19. Efficiency drops significantly as
x0 increases.

These results show that if food patches are dis-
tributed sufficiently densely relative to the density of
items within a patch (i.e. a relatively unpatchy
environment, eO0.19), then the optimal strategy is
always to move in a straight line (tZ0) until food is
encountered. This strategy is often termed ballistic
foraging (Santos et al. 2004) and the mean distance
travelled is d/2. On the other hand, if intrapatch
distances are much smaller than interpatch distances
(i.e. a very patchy environment, e!0.19), then
efficiency is improved by performing an intensive
search. The optimal duration of this intensive period
increases almost linearly with decreasing e.

The SDE model highlights a case of the marginal
value theorem (MVT) of Charnov (1976). The MVT
states that a forager in a patchy environment will move
on from a patch when the average gain from that patch
falls below the average gain from the overall area
(Stephens & Krebs 1986). The SDE model presented
here presumes that the forager has recently consumed a
food item and continues to search the patch using an
intensive search mode. While in this mode the energy
gain per unit time will decrease steadily if no food is
J. R. Soc. Interface (2008)
found. The MVT states that the forager should change
modes when the expected energy gain from changing
patches is equal to the expected gain from the current
patch. This result predicts that the optimal time to
switch strategies will be such that the average distance
travelled in intensive mode is equal to the average
distance travelled in extensive mode. The optimal time
found here corresponds well to that predicted by the
MVT (found by equating average distance travelled in
the intensive and extensive search phases via equation
(2.7)), provided the initial starting position of the
forager is close to the food item (i.e. x0 is small). In the
limit e/0, i.e. the forager starts in the patch as
required by the MVT, both times are identical, d/4vI.
As e increases and the forager starts further away from
the patch, the switching time predicted by equating
intensive and extensive distances increases, whereas
the time predicted by minimizing E(L) decreases. The
optimal switching time (2.10) can, therefore, be
thought of as a generalization of Charnov’s theorem
to situations where each search begins a significant
distance away from the nearest food item.
3. COMPARISONS TO OTHER DISTRIBUTIONS
AND PROCESSES

Recent work on foraging behaviour has often focused on
fitting power law distributions to observed step length
distributions (Viswanathan et al. 1996; Mårell et al.
2002; Austin et al. 2004; Ramos-Fernández et al. 2004;
Weimerskirch et al. 2005; Brown et al. 2007). However,
as has been pointed out previously (Benhamou 2007),
one must not confuse pattern with process. For
example, if the best-fit model to an observed distri-
bution is a power law distribution, this does not
automatically imply that the individual is taking
steps from a power law distribution (i.e. performing a
Lévy walk). Conversely, an individual who is perform-
ing a Lévy walk may have an observed distribution of
step lengths which is not a power law.

To illustrate this point, simulations of a Lévy
random walk were also carried out. Step lengths were
drawn from the distribution (1.1), and each step was
randomly chosen to be left or right. The forager began
each search at xZx0, and food items were assumed to
be positioned at xZ0 and xZd. Figure 5 shows the
distribution of observed step lengths Y (as described in
§2) under both the composite search model and the
Lévy random walk model (under the assumption that
the Lévy forager always travels with instantaneous
velocity vI). By eye the two distributions are quite
similar, despite being produced from two different
mechanisms. If these results were observed field data, a
standard technique would be to try a range of common
candidate models to find the best-fit distribution. Using
the appropriate technique of maximum-likelihood
estimation (Newman 2006), an exponential and a
power law distribution were trialled as candidates
for the results shown in figure 5. For both underlying
mechanisms, composite search and Lévy walk, the
best-fit parameters were found for both these candidate
models. The log likelihood L was also found for
each model and, in both cases, the exponential model



Table 1. Statistical results of fitting candidate distributions to
the distributions of observed step lengths of the SDE and Levy
models. LZlog likelihood.

candidate distribution

exponential power law

fY(y)Zl eKl(yKxmin) fY (y)ZCyKm

underlying model
SDE lZ0.83, LZK1.2, mZ1.1, LZK3.2
Lévy lZ0.78, LZK1.2 mZ1.1, LZK3.3
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Figure 6. Mean maximum efficiency (reciprocal of distance
travelled to find food) against x0, for the composite strategy
and the Lévy strategy. The analytical results for the SDE
model were calculated using equations (2.9) and (2.10). The
analytical results for the Lévy model were calculated
according to equation (2.1) of Viswanathan et al. (2000)
(with rvZxmin), maximized over all values of m. Parameter
values: xminZ0.01, dZ1000. Solid line, SDE simulations;
dashed line, SDE analytic; dot-dashed line, Lévy RW
simulations; dotted line, Viswanathan analytic.
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provided a better fit to the observations (higher log
likelihood) than the power law model. The best-fit
parameter values were notably similar for both
underlying mechanisms. These results are summarized
in table 1. Similar conclusions can be drawn by
examining the distribution of travel distances, L (as
described in §2.1.1), from the two underlying processes.

These results complement those of Benhamou
(2007), which showed that it is possible for both a
Lévy and a non-Lévy process to produce an apparent
Lévy pattern. Here it has been shown that both a Lévy
and a non-Lévy process can produce a non-Lévy
pattern. In fact, the non-Lévy process of Benhamou
(2007) produces a non-Lévy pattern, because the step
lengths are drawn from an exponential distribution,
which is not heavy-tailed. Nevertheless, owing to the
relatively large mean step length in the extensive search
mode, the pattern may appear to be Lévy, especially
when working with a limited sample size. In the present
model, where both the Lévy and the non-Lévy processes
produce a non-Lévy pattern, this is, in large part, a
consequence of observing the position of the forager
at fixed time intervals, which effectively provides an
upper limit on the observed step lengths, thus preclud-
ing the observation of a truly heavy-tailed distribution.
Likewise, the assumption that the length of the
extensive search phase is exponentially distributed
means that the distribution of distances travelled
cannot be heavy-tailed.

Figure 6 shows the mean maximum efficiency for the
Lévy model and the SDE model over a range of starting
positions, x0. The efficiency of the SDE model at the
optimal switching time was calculated using (2.9) and
(2.10). For the Lévy model, the efficiency was maxi-
mized over all values of the exponent 1!m%3, for each
particular value of x0. The optimal SDE model
consistently gives higher efficiency values than the
optimal Lévy model. Again, this is in agreement with
Benhamou (2007), whose composite Brownian random
walk search was more efficient than a Lévy walk. As x0
increases the efficiency of the two strategies tends
towards d/2 which is the efficiency of a ballistic strategy
in a random (i.e. non-patchy) environment. For smaller
values of x0, the efficiency of the SDE strategy is
significantly higher than that of the Lévy strategy
because the latter does not take effective advantage of
a starting position that is close to a food item. Note that
altering the value of xmin in the Lévy model can change
J. R. Soc. Interface (2008)
the efficiency, but a wide range of values of xmin were
tested, and the efficiency of the SDE model was always
significantly higher, as shown in figure 6.
4. DISCUSSION

A model of animal foraging movements has been
presented, based on a one-dimensional Brownian-type
intensive search, followed by a straight-line movement
if the intensive search fails to find food inside a
prescribed time. The intensive search may be described
by a simple SDE, while the length of the straight-line
movement is assumed to be exponentially distributed.
This is a toy model in the sense that it is a simplification
of the true situation and does not attempt to replicate
accurately real-world foraging behaviour. Nevertheless,
a series of one-dimensional searches captures the
essence of the decision facing a forager—how far to
move in a particular direction before changing direc-
tion? One-dimensional foraging models have been
employed in a similar way previously (Bartumeus
et al. 2002; Lomholt et al. 2007) and been shown to
produce results consistent with two-dimensional
simulations (Viswanathan et al. 2000, 2001). The
assumption of an exponentially distributed straight-
line running distance to a food item is realistic in the
sense that, for uniformly distributed food patches in
a two-dimensional area, the distance travelled in a
straight line before hitting a patch is exponentially
distributed, the mean of the distribution being the
mean free path (Viswanathan et al. 2000).

Working from the probability distribution of the
position of the forager after a given amount of time,
analytical expressions have been found for the mean
foraging efficiency (number of food items found per unit
distance travelled), and the distributions of the total
distance travelled before finding food and the observed
movement lengths in a fixed time interval. In addition,
an approximation to the optimal switching time t� has
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been derived. All of these results have been shown to
match closely with data generated from the simulations
of the search process. It is this analytical tractability
that distinguishes the SDE model from the more usual
random walk models (Viswanathan et al. 2000).
Provided the step distribution has a finite variance
the results of a random walk model will converge to the
SDE presented here as a large number of steps are
taken. However, most random walk models can be
explored only through numerical simulation.

It was found that, although the mechanisms in
the search process are Brownian in nature (i.e. step
lengths have finite variance), the resulting observed
distributions could feasibly be fitted to a power law
distribution, especially under the limitation of a
relatively small sample size. It should be noted,
however, that a power law may not provide the best
fit of the common candidate distributions. In the
scenario shown here, an exponential distribution
provided a better fit. Klaassen et al. (2006) fitted two
separate normal distributions to their data on inter-
patch and intrapatch swan movements. The model
presented here would be an excellent choice for data
of that form in which there are two distinct types of
behaviour being exhibited.

Under the models of Viswanathan and co-workers
(Viswanathan et al. 2000; Bartumeus et al. 2002;
Raposo et al. 2003), all movements are drawn from an
underlying power law distribution (1.1). With this
constraint, the optimal strategy is always m%3,
corresponding to a Lévy rather than a Brownian
random walk. In contrast, the present model and the
model of Benhamou (2007) allow the forager to switch
between two distinct types of foraging behaviour
(intensive and extensive search), each with its own
distribution of step lengths. The intensive search is
Brownian in nature; the extensive search is ballistic,
which is equivalent to a power law distribution as m/1,
although the truncation of the ballistic movement at
the next food item results in a non-heavy-tailed
distribution of step lengths. This additional flexibility
in the search strategy increases the efficiency of the
search and removes the need for the forager to choose
its movements by sampling directly from a power law
distribution. There is a clear intuitive reason for this.
Although both models consist of a mixture of short and
long step sizes, the composite search model has an
inbuilt mechanism for focusing the intensive search
phases in areas known to be close to food items,
especially when the food items within a patch are close
together (small x0). In contrast, the Lévy model
intersperses short and long steps randomly, so intensive
search effort is potentially wasted in the areas distant
from food. This is in agreement with the results of
Benhamou (2007).

Overall, these findings suggest that data on foraging
movements should be treated with caution. An
apparent fit to a power law distribution does not
necessarily imply that the movement was based on a
Lévy process. Furthermore, recent work (Clauset et al.
2007; Edwards et al. 2007; James & Plank 2007) has
shown that some of the foraging datasets proposed to fit
to Lévy distributions can be equally, or in some cases
J. R. Soc. Interface (2008)
better, fitted to non-heavy-tailed distributions with
finite variance, such as the exponential distribution.
The model presented in this paper reinforces the
findings of Edwards et al. (2007) by giving an analytical
example in which a Lévy process is not the most
efficient strategy. However, it also provides an example
in which the underlying process is based on a Lévy
walk, but the observed patterns are not best described
by a Lévy (i.e. power law) distribution. This corre-
sponds with the work of Sims et al. (in press), who claim
to have evidence of Lévy distributions in marine
predators. One reason that the Lévy and composite
search models can produce observed distributions that
are similar in certain respects is that both have the
common feature of a mixture of short and long step
lengths.

In agreement with an increasing number of other
studies (Bénichou et al. 2005, 2006; Benhamou 2007),
this model has shown that, frequently, there are simple
composite search strategies that are more efficient than
ballistic or Lévy strategies. This is particularly so in the
less well-studied case of non-destructive foraging
(corresponding to a patchy food environment)
considered in this paper.

The authors are grateful to three anonymous referees for
comments that greatly improved the paper.
APPENDIX A. MAXIMIZINGMEAN EFFICIENCY

From equation (2.9) for E(L), we may write

EðLÞ
d
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erf
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Ke;
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; eZ
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pvI d
:

If there is a local minimum in E(L) for a positive value
of t̂, it will occur where the derivative of this function
with respect to t̂ is zero, i.e.

0ZFðt̂ÞKGðt̂Þ; ðA 1Þ
where

Fðt̂ÞZ erf

ffiffiffiffiffiffi
e

2t̂

r� �
; Gðt̂ÞZ e1=2

23=2p1=2
t̂Kð3=2ÞeKðe=2t̂Þ:

This is a transcendental equation for t̂ for which there is
no closed-form solution. However, by considering the
functions F and G, it may be seen that there are two
possibilities, depending on the value of e.

Fðt̂Þ is monotonic decreasing in t̂, F(0)O0 and
Fðt̂Þ/0 as t̂/N. Gðt̂Þ has a unique local maximum
at, say, t̂Z t̂m, Gð0ÞZ0 and Gðt̂Þ/0 as t̂/N. G
decays to zero more rapidly than F so, for sufficiently
large t̂, Gðt̂Þ!Fðt̂Þ. There are thus two possibilities:
(a) Gðt̂Þ!Fðt̂Þ for all t̂R0; or (b) Gðt̂ÞOFðt̂Þ for
some t̂ (see figure 7). In case (a), E(L) is a monotonic
increasing function of t̂, hence the optimal value of t̂ is
zero. In case (b), there is a range of t̂ for which E(L) is
a decreasing function of t̂. There is hence a local
maximum and a local minimum in E(L); the local
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minimum is a global minimum if it is smaller than the
value of E(L) at t̂Z0.

Case (b) is guaranteed to occur if Gðt̂ÞOFðt̂Þ at
t̂Z t̂m (the local maximum of G). Solving the equation
G 0ðt̂mÞZ0 shows that t̂mZe=3. Hence Gðt̂mÞOFðt̂mÞ
if and only if

33=2

23=2p1=2e3=2e
Oerf

31=2

21=2

 !
; ðA 2Þ

i.e. em!ez0.25. To find an approximation to the
solution to equation (A 1), we let sZ t̂K1 and expand F
and G as power series in s. Equation (A 1) then reads
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Collecting powers of s gives
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In case (b), where there is a solution to equation (A 1),
e/1 by (A 2). We thus seek a solution as a power
series in e

sZ
XN
nZ0

sne
n: ðA 4Þ

Substituting this series into equation (A 3) and equating
coefficients of en (nZ0, 1, 2) give the coefficients in the
series for s as follows:

s0 Z 4; s1 Z
16

3
; s2 Z
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45
:

Hence, provided that condition (A 2) is satisfied, there
is a local minimum of E(L) with respect to t, which
occurs at
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d
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J. R. Soc. Interface (2008)
Numerical explorations indicate that if e!0.19, then
this local minimum is also the global minimum. If
0.19!e!0.25 then the local minimum still exists, but
the global minimum is at tZ0. If 0.25!e then there is
no solution to equation (A 1) and the global minimum is
at tZ0.

Disregarding terms of order e3 in or higher in (A 5)
yields the approximation (2.10). It is straightforward to
calculate more terms in the series (A 4), but the
approximation provided by calculating terms up to
order e2 was judged to be sufficiently accurate.
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