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Optimal forest management under financial risk aversion with
discounted Markov decision process models
Mo Zhou and Joseph Buongiorno

Abstract: The common assumption of risk neutrality in forest decision making is generally inadequate because the stakeholders
tend to be averse to fluctuations in the return criteria. In Markov decision processes (MDPs) of forest management, risk aversion
and standard mean-variance analysis can be readily dealt with if the criteria are undiscounted expected values. However, with
discounted criteria such as the fundamental net present value of financial returns, the classic mean-variance optimization is
numerically intractable. In lieu of this, this paper (i) presents a linear-programming method to calculate the variance of
discounted criteria conditional on any specific policy and (ii) adopts, as an alternative to the variance measure of risk, the
“discount normalized variance” (DNV), an economically meaningful criterion consistent with income-smoothing behavior. The
DNV is then used in procedures analogous to mean-variance analysis and certainty-equivalent optimization tractable by qua-
dratic programming. The methods are applied to the management of uneven-aged, mixed-species forests in the southern United
States. The results document the trade-off between the expected net present value and risk of financial returns, as well as the
consequences for selected ecological criteria.

Key words: uneven-aged management, risk aversion, economics, multiple criteria, Markov decision process, quadratic
programming.

Résumé : L’hypothèse répandue de la neutralité à l’égard du risque dans la prise de décision forestière est généralement
inadéquate puisque les acteurs ont tendance à s’opposer aux fluctuations des critères de rendement. Dans les modèles de
processus de décision de Markov (PDM) en aménagement forestier, les analyses d’aversion au risque et de variance moyenne
standard peuvent être facilement effectuées si les critères sont des valeurs attendues non actualisées. Cependant, avec des
critères actualisés, tels que la valeur actuelle nette fondamentale des rendements financiers, l’optimisation classique de la
variance moyenne est numériquement insoluble. En revanche, cet article (i) présente premièrement une méthode de program-
mation linéaire pour calculer la variance des critères actualisés selon aucune politique spécifique et (ii) adopte, à titre
d’alternative à la variance de la mesure du risque, la « variance normalisée escomptée » (VNE), un critère économiquement
significatif compatible avec le comportement de lissage des revenus. La VNE est ensuite utilisée dans des procédures analogues
à l’analyse de variance moyenne et à l’optimisation d’équivalent certain qui peuvent être résolues par la programmation
quadratique. Les méthodes sont appliquées à l’aménagement des forêts mélangées inéquiennes dans le sud des États-Unis. Les
résultats documentent le compromis entre la valeur actuelle nette et le risque des rendements financiers, ainsi que les con-
séquences pour certains critères écologiques. [Traduit par la Rédaction]

Mots-clés : aménagement inéquienne, aversion au risque, économie, critères multiples, processus de décision de Markov,
programmation quadratique.

Introduction
The assumption of risk-neutral decision making is common in

forest management, and the solution methods are well developed.
It is nevertheless inappropriate when the stakeholders are sensi-
tive to fluctuations in the return criteria and, under some circum-
stances, are willing to settle for a non-optimal expected return in
exchange for reduced risk. This is, in particular, the case of non-
industrial private forest owners who tend to differ widely in terms of
their financial risk tolerance (e.g., Lunnan et al. 2006; Andersson and
Gong 2010; Tian et al. 2015; Feliciano et al. 2017; Laakkonen et al.
2018).

Recent works to address this issue in the context of optimal
harvesting include Eyvindson and Kangas (2016), Couture et al.

(2016), and Buongiorno et al. (2017), among others. Notwithstand-
ing differences in risk measures, a consistent finding is that finan-
cial risk aversion leads to a cutting cycle (or rotation) shorter than
the optimal one determined with the risk-neutral assumption. In
the case of multistand forest planning, Tahvonen and Kallio
(2006), Couture and Reynaud (2011), and Roessiger et al. (2011)
conclude that natural or near-natural forests may arise from risk
aversion due to diversification of age classes or structures.

One frequently used approach in dealing with decision making
under risk is the family of Markov decision processes (MDPs)
(Puterman 2009). MDPs with expected average or discounted cri-
teria have often been applied in forest planning (e.g., Lembersky
and Johnson 1975; Martell 1980; Buongiorno 2001; Zhou and
Buongiorno 2011).
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Risk-sensitive MDPs with expected average (undiscounted)
criteria, first introduced in Howard and Matheson (1972) and
Jaquette (1976), have been further analyzed by, for instance, Sobel
(1994) and Fleming and Hernández-Hernández (1997, 1999). The
much more difficult problem of MDPs with discounted criteria,
investigated by Sobel (1982), Chung and Sobel (1987), and Levitt
and Ben-Israel (2001), is still the subject of active research (e.g.,
Mannor and Tsitsiklis 2011; Guo et al. 2012; Xia 2018).

For applications to risk-averse conditions with undiscounted
criteria, a quadratic programming (QP) formulation of MDPs is
particularly attractive. It allows for constraints to reflect multiple
objectives, and large problems can readily be solved with avail-
able quadratic programming algorithms (Filar et al. 1989). In for-
estry, Buongiorno et al. (2017) use quadratic programming models
that, based on the variances of the undiscounted economic and
ecological criteria, obtain optimal harvesting policies for risk-
seeking and risk-averse landowners, using either mean-variance
(Markowitz 1952) or certainty-equivalent (Freund 1956; Levitt and
Ben-Israel 2001) theory.

Undiscounted criteria, however, fail to reflect the time prefer-
ence of decision makers and the opportunity cost of investment
alternatives, but discounting in mean-variance optimization of
MDPs leads to hard nonlinear problems with no guarantee of
convergence (Sobel 1982; Mannor and Tsitsiklis 2011), as the vari-
ance of MDPs with discounted criteria lacks the mathematical
properties required for an optimal stationary policy (Denardo
1967; Sobel 1975, 1982). Thus, mean-variance or certainty-equivalent
optimization is not feasible with discounted criteria such as the
net present value (NPV) of financial returns commonly used in
forest management.

The objective of this study was to seek ways of dealing with risk
aversion and discounted criteria in forest management MDPs.
First, based on Sobel (1982), we show how the variance of a dis-
counted criterion resulting from any policy in an MDP framework
can be calculated by linear programming. Second, we adopt Filar
et al.’s (1989) “discount normalized variance” measure of risk, the
variation in the difference between the periodical return and the
long-run expected annual return. With this measure, a decision-
making problem with risk aversion and discounted criteria can
be expressed as a “variance-penalized optimization” (Filar et al.
1989), analogous to the certainty-equivalent optimization with
undiscounted criteria. Following the description of these meth-
ods, the paper describes their application to the management of
uneven-aged, mixed-species forests in the southern United States
(US). The results show the trade-off between expected NPV and
risk of financial returns, as well as the consequences of particular
choices of financial risk – NPV combinations for undiscounted
ecological criteria.

Methods

Markov decision process
In general, an MDP with discounted criteria is a 5-tuple (S, P, D,

R, �), where S is a set of finite states {st}, P is a transition probability
matrix containing entries of pij = p(st+1 = j|st = i), D is a set of decisions, R
is a real-valued reward function, and � is the discount factor. A
policy � is a mapping from state space S to decision space D.

In the context of this paper, S is a set of composite states of the
forest stand condition and market level. Assuming that the two
are independent, the composite transition probability is the prod-
uct of the probability of stand growth between states and of mar-
ket changes. A decision is a change from one stand state to
another due to a harvest. For a decision, the monetary reward is
determined by the amount of harvests and the market level. Eco-
logical rewards are only associated with the postharvest forest
condition.

The maximum expected sum of discounted values of monetary
rewards over an infinite planning period, i.e., the expected NPV,

E(NPV), of harvests, is obtained by solving the following linear
programming problem (d’Epenoux 1963):

(1) maxyik
E(NPV) � �

i,k

Rikyik

subject to

�k
yjk � ��i,k

yikp(j|i, k) � �j j � 1, …, N

yik ≥ 0 i � 1, …, N

in which the decision variable yik is the discounted time of being
in stand-market state i and making decision k; Rik is the instanta-
neous return associated with the state–decision pair (i, k), a func-
tion of stumpage price in state i and the volume harvested due to
action k; � is the discount factor, 1/(1 + r), where r is the annual
interest rate, assumed to be 3% in the case study; �j is the initial
probability of state j; p(j|i, k) is the probability of the state transi-
tioning to j in one year, given current state i and decision k. After
solving eq. 1, the optimal policy is given by

(2) dik �
yik

�k
yik

∀i, k

where dik is the probability of decision k given state i. In the ab-
sence of constraint, dik = 0 or 1, the policy is deterministic and
stationary: there is only one decision for each system state.

Variance of discounted criteria
The expected discounted value, vi, of a criterion for any given

policy {dik} and initial state i is obtained by solving the following
system of linear equations (Hillier and Lieberman 2005, p. 919):

(3) vi � �k
dikRik � ��j

p(j|i, dik)vj ∀i

Given the expected discounted returns by the initial state, vi, ob-
tained by eq. 3, the variance, Vi, of the discounted value of returns
conditional on a policy and initial state is then obtained by solving
the following system of linear equations (Sobel 1982):

(4) Vi � �2��j
p(j�i, dik)vj

2 � ��j
p(j�i, dik)vj�2�

� �2�j
p(j|i, dik)Vj ∀i

Lastly, the variance of the NPV conditional on the probability
distribution of the initial states, {�i}, is obtained with the general
conditional variance formula (Lindgren 1968 p. 118):

(5) var(X) � var[E(X|Y)] � E[var(X|Y)]

which in this application becomes

(6) var(NPV) � var[E(NPV|i)] � E[var(NPV|i)]

or

(7) var(NPV) � var(v) � E(V)

with
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(8) var(v) � �i
�ivi

2���i
�ivi�2

and E(V) � �i
�iVi

Discount normalized variance penalized MDP
Attempting a mean-variance optimization such as maximizing

the expected NPV with a constraint on the variance would require
solving eqs. 3 to 8 simultaneously, but this is a highly nonlinear
problem with no readily available algorithm and no guarantee of
convergence. In view of this difficulty, Filar et al. (1989) proposed
an alternative measure of variability, the discount normalized
variance (DNV) associated with a policy �, defined as

(9) DNV� � �t�1

∞
�t�1E��[Rt � (1 � �)E(NPV�)]2�

in which E� is the expected value operator with policy � and Rt is
the random instantaneous reward at time t.

In eq. 9, (1 – �)E(NPV�) is the approximate annualized NPV with
policy �, because (1 – �) ≈ r. Thus the DNV can simply be inter-
preted as the sum of discounted expected squared differences
between actual return and expected annualized return over an
infinite time horizon. In forestry, the expected annualized return
from timber production can be viewed as a reference point for
landowners to measure gain and loss, and reducing variations
around it is consistent with income- smoothing behavior (Morduch
1995) as part of the risk-averse landowners’ attempt to smooth con-
sumption due to constraints on insurance and credit.

With this DNV measure of risk, Filar et al. (1989) proposed a
“variance-penalized optimization” (VPO) that maximizes the
weighted sum of the expected NPV and its discount penalized
variance, analogous to the certainty-equivalent criterion for un-
discounted criteria (Freund 1956; Levitt and Ben-Israel 2001):

(10) VPO � max�[E(NPV) � 	DNV]

where 	 is a nonnegative parameter that represents the risk-
aversion level.

Filar et al. (1989) showed that the eq. 10 problem and the follow-
ing variance-penalized MDP

(11) VPO � maxyik��i,k
Rikyik � 	��i,k

Rik
2 yik

�(1 � �)��i,k
Rikyik�2��

are related in that the optimal solution of eq. 11, yik
� , leads to the

optimal policy, �*, for eq. 10.
The eq. 11 model is a quadratic program, attractive for its ease

of computation for large practical problems. Furthermore, it is
analogous to the certainty-equivalence model with undiscounted
objectives (Freund 1956; Levitt and Ben-Israel 2001) with the inter-
pretation that

(12) DNV � �i,k
Rik

2 yik � (1 � �)��i,k
Rikyik�2

In the following application, the DNV (eq. 12) was used in objec-
tive functions as in eq. 11 and in constraints for mean-variance
analysis. To compare the two measures of variability, var(NPV)
and DNV, after a solution was obtained with the DNV criterion,
the corresponding variance of the NPV was computed with eqs. 3
to 8.

Forest and market models
The methods outlined above were applied with an MDP of

mixed loblolly pine and hardwood forests in the southern US.
There were 64 forest states, defined by the basal area (low or high)

in pines and hardwood trees of three size classes (pulpwood, small
sawtimber, large sawtimber). The transition probabilities be-
tween stand states were those reported in Zhou and Buongiorno
(2006). The market state was defined by a price index (low, me-
dium, or high), based on the prices of softwoods and hardwoods
from 1977 to 2014, and the transition probabilities between mar-
ket states were obtained from Buongiorno et al. (2017). Combining
the transition probabilities of stand states and market states gave
the 192 × 192 transition probability matrix between all possible
stand–market states.

Ecological criteria
While discounting is well established in economics and finance

and the use of NPV is widely accepted, this is not generally the
case for ecological criteria. There is still no consensus on whether
the current and future environment and nature should have dif-
ferent weights and what should be the discount factor, if any
(Arrow et al. 1996, 2014; Portney and Weyant 1999; Goulder and
Stavins 2002; Hardisty and Weber 2009; Harrison 2010). Here, as in
some previous studies (e.g., Buongiorno and Zhou 2015), each eco-
logical criterion such as tree species diversity was measured with
its undiscounted expected value over an infinite horizon, a value
directly comparable with its current value. Consequently, only
the long-term expected value of ecological criteria was considered
in this study, in view of tracing the consequences of financial
objectives and financial risk aversion on the long-term ecological
condition of the forest.

In the MDP, a decision consisted of changing the stand state
with a harvest or leaving it intact. Each postdecision stand state
corresponded to two stand diversity criteria: tree species diversity
and tree size diversity measured with Shannon’s index (Zhou and
Buongiorno 2006). Other indices of the stand condition were the
postharvest basal area, the amount of CO2e stored in the residual
stand, the annual removals in sawtimber and pole timber, and the
expected interval between harvests (cutting cycle), the inverse of
the harvest frequency (Kaya and Buongiorno 1987). The long-term
condition of the forest landscape (landscape diversity) was mea-
sured with a Shannon index based on the frequency of the various
stand states in the steady state resulting from the continuous
application of a particular harvesting policy (Zhou and Buongiorno
2006).

Results

Mean-variance analysis
Figure 1 shows, for the data used in this paper, the relationship

between risk and the expected value of financial returns, using
both the variance of the NPV, the classic measure of risk in fi-
nance, and the DNV suggested by Filar et al. (1989). Each pair of
points on the graph was obtained by minimizing the DNV subject
to a constraint on expected NPV and then computing the corre-
sponding variance of the NPV with eqs. 3 to 9.

As seen in Fig. 1, both measures of financial risk increased at an
increasing rate as the expected NPV increased from zero to its
maximum unconstrained value of nearly US$14 000·ha−1. For a
given value of expected NPV, the DNV was less than the variance
of NPV; however, there was a strong linear relationship between
the logarithm of the variance of NPV and the logarithm of the
DNV, with a slope nearly equal to unity (Fig. 2). Thus, a relative
change in var(NPV) corresponded to an approximately equal rela-
tive change in DNV, confirming that the DNV could be used as a
proxy for variance in mean-variance analysis.

This is illustrated in Fig. 3 where a mean DNV frontier analo-
gous to a mean-variance frontier was obtained by maximizing the
expected NPV with the DNV less than or equal to a fraction of its
level at maximum unconstrained NPV. Any point below the fron-
tier was suboptimal because it provided less than the highest NPV
for the level of risk represented by the DNV, and any point above
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it was infeasible. With the data of this study, a 25% reduction in
the DNV from its highest value resulted in a reduction of expected
NPV by approximately US$1000·ha−1, while a 75% reduction of the
DNV caused the expected NPV to drop by half (Fig. 3). The extreme
case of zero financial risk could only be achieved with no harvest
and zero NPV.

The consequences of two choices along the risk-expectation
frontier are shown in Table 1 for financial and ecological criteria.
One choice assumed a risk-neutral decision maker who wanted to
maximize the expected NPV of financial returns. The other choice

was a risk-averse decision maker who wanted to halve the risk,
expressed by the DNV, compared with what it was without risk
aversion.

Solution of the quadratic programming problem maximizing
the expected NPV with or without the DNV constraint showed a
reduction of expected NPV of 23% due to risk aversion and a cor-
responding reduction of expected undiscounted annual returns of
21%. The variance of the NPV obtained with eqs. 3 to 9 was reduced
by 56%, similar for practical purposes to the DNV reduction of
50%.

The other large relative effect of risk aversion was the reduction
of the landscape diversity index by 19%. The species diversity was
reduced by 4%. Surprisingly, perhaps, there was no effect of risk

Fig. 1. Relation between the minimum discounted normalized
variance, DNV, of financial returns and the corresponding variance
of net present value, var(NPV), conditional on expected net present
value, E(NPV). The data points at each level of expected net present
value show the minimum discounted normalized variance of
returns and the corresponding variance of their net present value.
[Colour online.]
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Table 1. Effects of financial risk aversion on management criteria.

Criteria
Risk
neutral (1)

Risk
averse (2)

Relative
difference (2/1)

Discounted financial
E(NPV) ($·ha−1) 14024 10754 0.77
DNV ($·ha−1)2 47260078 23630039 0.50
var(NPV) ($·ha−1)2 23743580 10522139 0.44

Undiscounted financial
Annual returns ($·ha−1·year−1) 321 255 0.79
Sawlog harvest (m3·ha−1·year−1) 5.2 4.9 0.94
Pole harvest (m3·ha−1·year−1) 2.4 2.5 1.07
Total harvest (m3·ha−1·year−1) 7.6 7.4 0.98

Undiscounted ecological
Species diversity (index) 0.9 0.8 0.96
Size diversity (index) 1.8 1.8 1.00
Basal area (m2·ha−1·year−1) 12.8 12.1 0.94
CO2e stock (t·ha−1) 103.6 98.9 0.95
Landscape diversity (index) 1.71 1.19 0.73
Cutting cycle (year) 5.5 5.2 0.95

Note: The risk-neutral solution maximized the expected net present value
of financial returns, E(NPV), without constraint. The risk-averse solution con-
strained the discount normalized variance of the financial net present value,
DNV, to half of its level in the risk-neutral case. Currency: US dollars.
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aversion on the diversity of tree size, despite the more frequent
harvests that shortened the expected cutting cycle by 5%. The
basal area and the stock of CO2e were 5% to 6% lower, respectively,
with risk aversion. Although there was little difference in the total
volume of harvest, risk aversion lowered the harvest of sawlogs by
6%, while the harvest of poles increased by 7%.

Variance-penalized optimization

Effects of financial risk aversion
Table 2 shows the results of the second approach to modeling

decision making under risk aversion with discounted criteria.
This was analogous to the classic certainty-equivalent approach
with undiscounted criteria, but substituting the DNV for the vari-
ance of NPV.

The variance-penalized optimization model (eq. 12), maximiz-
ing the weighted sum of the expected NPV and DNV, was solved
with weights of the DNV varying from 	 = 0 (risk neutrality) to 	 =
0.005 (high risk aversion). The results for 	 = 1 are also shown as a
limit with absolute risk aversion leading to no harvest. The results
in Table 2 are relative to their value in the risk-neutral case
(Table 1, column 1).

All four discounted criteria, the variance-penalized optimum
(VPO), the expected NPV (E(NPV)), the DNV, and the variance of
NPV (var(NPV)) decreased monotonically as the risk aversion in-
creased. Increasing risk aversion lowered the variability of the
NPV of financial returns at a lower rate than the decrease in vari-
ability measured by DNV and var(NPV). There was a close relation-
ship between the DNV and var(NPV) for different 	s, which again
supported the use of the DNV as a proxy for the variance of the
NPV. At the limit for 	 = 1, all of the discounted criteria were zero
in accordance with the absence of harvest.

Among the undiscounted criteria, the expected annual finan-
cial returns decreased with rising financial risk aversion at ap-
proximately the same rate as the expected NPV. The corresponding
expected annual harvest also decreased with 	, but less rapidly than
annual financial returns. Risk aversion substantially decreased the
sawtimber harvest, while it had little effect on the pole harvest.

The expected tree species diversity index tended to decrease
with moderate increases of 	, but at the limit 	 = 1, in the absence
of harvest, species diversity was practically the same as with the
risk-neutral management. The expected tree size diversity was
only raised by high levels of risk aversion, 	 = 0.0005, and the
extreme 	 = 1 with no harvest.

The expected basal area, the stock of CO2e, and the landscape
diversity, in particular, exhibited a U-shaped relationship with
risk aversion. They decreased with moderate values of 	 and then
increased at extreme values. The landscape diversity index de-
creased by 27% as the risk aversion increased from 	 = 0 to 	 =
0.002, but it then increased to reach a maximum value under
natural conditions in the absence of harvest. A similar U-shaped
pattern was observed for the expected length of the cutting cycle,
which tended to be lower for moderate risk aversion, but then
increased steadily to tend to infinity at 	 = 1 in the absence of
harvest.

Variance-penalized optimum policies
Table 3 shows the policies that maximized the variance-

penalized optimum for the case of risk neutrality, 	 = 0, and
moderate risk aversion, 	 = 0.0002, which, as seen earlier, reduced
the variance of the NPV by 54%. For each level of risk aversion,
Table 3 shows the stand state after harvest conditional on the
stand and market state at decision time. For example, for a stand
in state 3 with high basal area only in the hardwood small saw-
timber, the best decision of a risk-neutral decision maker was to
do nothing, while for a risk-averse decision maker, it was to thin
the stand to state 1 by reducing the basal area of hardwood small
sawtimber.

Within the 192 possible stand–market states, the decision dif-
fered between risk-neutral and risk-averse decision makers for
136 stand–market states: 38 at low market, 46 at medium market,
and 52 at high market. Under risk neutrality, 169 stand–market
states called for a harvest, 54 at low market, 56 at medium market,
and 59 at high market. With risk aversion (	 = 0.0002), the number
of stand–market states calling for a harvest increased to 183 (61 at
low market, 62 at medium market, and 60 at high market).

As indicated by the coefficients of variation in the last row of
Table 1, there was more variation in the postharvest decisions
under risk neutrality (	 = 0) than under risk aversion (	 = 0.0002),
regardless of the market state.

Summary and conclusion
Since its introduction in Markowitz (1952), the mean-variance

analysis has become a fundamental base in financial investment
theory. Over six decades later, it still has considerable relevance in
research and practice (e.g., Markowitz et al. 2000; De Giorgi and Hens
2009; Fabozzi et al. 2012; García et al. 2015), despite criticisms of its

Table 2. Effects of increasing financial risk aversion on management criteria in variance-penalized optimum model.

Criteria

Risk aversion parameter 	

0 0.0001 0.0002 0.0003 0.0004 0.0005 1.0000

Discounted financial
VPO ($·ha−1) 1.00 0.70 0.44 0.28 0.17 0.13 0.00
E(NPV) ($·ha−1) 1.00 0.99 0.82 0.62 0.58 0.23 0.00
DNV ($·ha−1)2 1.00 0.85 0.56 0.34 0.30 0.06 0.00
var(NPV) ($·ha−1)2 1.00 0.91 0.54 0.32 0.28 0.06 0.00

Undiscounted financial
Annual returns ($·ha−1·year−1) 1.00 0.98 0.82 0.62 0.59 0.18 0.00
Sawlog harvest (m3·ha−1·year−1) 1.00 1.01 0.96 0.82 0.79 0.26 0.00
Pole harvest (m3·ha−1·year−1) 1.00 1.05 1.03 1.05 1.06 0.99 0.00
Total harvest (m3·ha−1·year−1) 1.00 1.03 0.98 0.89 0.88 0.49 0.00

Undiscounted ecological
Species diversity (index) 1.00 0.97 0.96 0.94 0.94 0.87 1.01
Size diversity (index) 1.00 0.99 1.00 1.00 1.01 1.05 1.11
Basal area (m2·ha−1) 1.00 0.93 0.95 0.98 0.99 1.19 1.70
CO2e stock (t·ha−1) 1.00 0.94 0.95 0.95 0.96 1.04 2.06
Landscape diversity (index) 1.00 0.64 0.73 0.73 0.76 0.81 2.02
Cutting cycle (year) 1.00 0.92 0.95 1.00 1.01 1.42 ∞

Note: The criteria values are relative to their level under risk neutrality (	 = 0), shown in Table 1. VPO, variance penalized optimum; E(NPV),
expected net present value; DNV, discount normalized value; var(NPV), variance of net present value. Currency: US dollars.
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Table 3. Decisions by stand and market state (low, medium, high) that maximized the variance-penalized discounted value of
financial returns for risk-neutral and risk-averse decision makers.

Stand
state no.

Stand
compositiona

Decisionb

Risk neutral (	 = 0.0000) Risk averse (	 = 0.0002)

Low Medium High Low Medium High

1 000, 000 — — — — — —
2 000, 001 1 1 1 1 1 1
3 000, 010 — — — — — 1
4 000, 011 3 3 3 3 3 3
5 000, 100 1 1 — 1 1 1
6 000, 101 1 1 5 5 5 5
7 000, 110 3 3 3 3 3 5
8 000, 111 3 3 3 7 7 7
9 001, 000 1 1 1 1 1 —
10 001, 001 1 1 1 2 2 9
11 001, 010 3 3 3 3 3 9
12 001, 011 3 3 3 4 4 11
13 001, 100 1 1 5 5 5 9
14 001, 101 1 1 5 6 6 13
15 001, 110 3 3 3 7 7 11
16 001, 111 3 3 3 8 8 15
17 010, 000 — 1 1 1 1 1
18 010, 001 — — 1 2 2 2
19 010, 010 — — 3 3 3 3
20 010, 011 19 19 3 19 4 4
21 010, 100 — — 5 5 5 5
22 010, 101 21 21 5 21 6 6
23 010, 110 19 19 3 7 7 7
24 010, 111 19 19 3 19 8 8
25 011, 000 17 1 1 17 17 9
26 011, 001 18 18 1 18 18 10
27 011, 010 19 19 3 19 19 11
28 011, 011 19 19 3 20 20 12
29 011, 100 21 21 5 21 21 13
30 011, 101 21 21 5 22 22 14
31 011, 110 19 19 3 23 23 15
32 011, 111 19 19 3 24 24 16
33 100, 000 1 1 — 1 1 —
34 100, 001 1 1 33 33 33 33
35 100, 010 3 3 3 3 3 33
36 100, 011 — — — — 35 35
37 100, 100 1 1 33 5 33 33
38 100, 101 1 1 33 2 37 37
39 100, 110 3 3 3 7 35 33
40 100, 111 36 36 36 36 36 35
41 101, 000 — 1 33 33 33 —
42 101, 001 41 1 33 34 34 41
43 101, 010 3 3 3 35 35 41
44 101, 011 36 36 36 36 36 43
45 101, 100 41 1 33 37 37 41
46 101, 101 41 1 33 38 38 41
47 101, 110 3 3 3 39 39 41
48 101, 111 36 36 36 40 40 47
49 110, 000 — — 33 33 33 33
50 110, 001 18 49 33 49 34 34
51 110, 010 19 19 3 19 35 35
52 110, 011 — — 36 36 36 36
53 110, 100 21 21 33 21 37 37
54 110, 101 21 21 33 18 38 38
55 110, 110 19 19 3 19 39 39
56 110, 111 52 52 36 52 36 40
57 111, 000 49 49 33 49 49 41
58 111, 001 18 49 33 50 50 42
59 111, 010 19 19 3 51 51 43
60 111, 011 52 52 36 52 52 44
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theoretical limitations and drawbacks in empirical applications
(e.g., Steinbach 2001; Michaud 2004).

Within the MDP framework and for undiscounted expected
value criteria, it is possible to directly apply mean-variance theory
and the closely related certainty-equivalent optimization with
quadratic programming. Buongiorno et al. (2017) present examples
of these methods for undiscounted expected values of financial and
ecological criteria in the context of uneven-aged mixed-species
forests in the southern US. For the case of discounted criteria such
as the NPV of returns crucial in investment analysis, however,
straight mean-variance theory in the MDP framework leads to
highly nonlinear optimization problems that are hard to solve in
practice and for which convergence is not even guaranteed
(Mannor and Tsitsiklis 2011).

In view of this difficulty, as an alternative to the classic variance
measure of risk, we adopted the DNV (Filar et al. 1989), the sum of
the discounted expected squared deviation of returns with re-
spect to the annualized expected NPV. A strong motivation of the
DNV is that the annualized expected NPV can be viewed as a
“reference point” for gain or loss as in prospect theory (Tversky
and Kahneman 1992). Minimizing the expected fluctuations around
the reference point, therefore, is similar to income smoothing
(Morduch 1995) and is a reasonable way of modeling objectives
such as nonindustrial private landowners’ risk-reduction behav-
ior. Furthermore, with the data in this study, there was an almost
one to one correspondence between relative changes in the DNV
and relative changes in the variance of NPV.

The forests used as the case study are of high commercial im-
portance in the southern US, known as the world’s “wood basket”
(Oswalt et al. 2014). In this context, management that reduced risk
also lowered the NPV of financial returns, in accordance with
previous findings (e.g., Eyvindson and Kangas 2016). Management
consistent with risk aversion that reduced the variance of the
financial NPV by half led to a near 60% lower expected NPV of
financial returns. Previous studies have shown that the current
actual management generates approximately 25% of the maxi-
mum possible NPV (Buongiorno and Zhou 2015). Zhou (2017) attri-
butes this difference between actual and potential revenues to the
amenity value of the standing trees. The present results suggest
that it may also reflect, in part, the financial risk aversion of the
forest owners. How to combine the effects of risk aversion and
non-market values in a single model may be a worthwhile topic
for future research.

Another notable result of this study was the non-monotonic
relationship between financial risk aversion and the expected un-
discounted value of nonfinancial criteria. As a case in point, the
length of the cutting cycle is an important ecological yardstick for
the frequency of harvest-induced disturbances. Although it was

found that the expected cutting cycle did decrease with low to
moderate levels of financial risk aversion, it then increased
steadily with higher financial risk aversion to ultimately ap-
proach infinity in the absence harvest. A similar U-shaped effect of
financial risk aversion was observed for the expected landscape
diversity, the stock of CO2e stored in forest stands, and the diver-
sity of tree species and size. The higher landscape diversity, at
each market level, was induced by observed higher variation of
the postdecision stand states under risk neutrality than under risk
aversion. Overall, in contrast to previous results with undis-
counted financial returns (Buongiorno et al. 2017), low to medium
risk aversion of discounted financial returns did not necessarily
induce expected undiscounted ecological benefits. The effect of
discounting ecological criteria would be worth exploring in fu-
ture research, with methods similar to those applied here to dis-
counted financial returns.
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