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Am Flughafen 17, 79110 Freiburg, Germany

ruhl,hartenst@informatik.uni-freiburg.de

Abstract

In fractal compression a signal is encoded by the parameters of a contractive trans-
formation whose fixed point (attractor) is an approximation of the original data. Thus
fractal coding can be viewed as the optimization problem of finding in a set of admissi-
ble contractive transformations the transformation whose attractor is closest to a given
signal. The standard fractal coding scheme based on the Collage Theorem produces
only a suboptimal solution. We demonstrate by a reduction from MAXCUT that the
problem of determining the optimal fractal code is NP-hard. To our knowledge, this is
the first analysis of the intrinsic complexity of fractal coding. Additionally, we show
that standard fractal coding is not an approximating algorithm for this problem.

1 Introduction

Data compression is inherently an optimization problem: the aim is to find the shortest
description of a given data satisfying some quality constraint or, vice versa, to find the best
quality representation for a given size. Usually one restricts oneself to a specific type of
representation, e.g., vector quantization, transform coding or fractal coding. Since time is
another cost factor in a compression scheme besides quality and size, it is of interest to
analyze the time needed to find the optimal representation within a given scheme. In other
words, it is useful to analyze the computational complexity of the involved optimization
problem. It is of special importance to examine whether the problem may be generally in-
tractable, i.e., NP-hard. In this case the result would provide an additional stimulus for the
design of approximating or heuristic algorithms. Previous work in the field of data com-
pression and complexity has shown that, e.g., optimal codebook design in vector quantiza-
tion is NP-hard [1] as are versions of optimal pruning for tree structured vector quantizers
[2]. For a comprehensive list of NP-hard optimization problems see [3].

This paper is concerned with the optimization problem involved with fractal compres-
sion. Fractal compression is a lossy data compression technique which attracted much at-
tention in the last years mainly for its use in image compression. For a general introduction
to this topic see [4, 5].

In this paper we analyze one-dimensional signal coding. In fractal coding, a target sig-
nal T is partitioned into disjointranges ri ∈ Rm, i = 1, . . . ,nr , thusT = (r1, r2, . . . , rnr ) ∈
R

m·nr . A domain is a signal block with twice the size of a range. Thedomain pool
1This paper appears inProceedings DCC’97 Data Compression Conference, J. A. Storer, M. Cohn (eds.),
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contains the nonoverlapping domains that are unions of ranges, i.e.,d1 = (r1, r2),d2 =
(r3, r4), ...,dnd = (r2·nd−1, r2·nd), wherend = bnr

2 c. Let d̂i denote them-dimensional vector

obtained by down-filteringdi – thek-th component of̂di is the mean of the(2k−1)-th and
2k-th component ofdi . In standard fractal coding for each ranger i the domaind j is sought
that minimizes the squared error distortion under an affine mapping, i.e., that minimizes

‖r i− (s· d̂ j +o·1)‖2,

where1 = (1,1, . . . ,1) ∈ Rm,

(s,o) = arg min
s,o∈R

‖r i− (s· d̂ j +o·1)‖2,

ands is clamped to[−smax,smax], 0< smax< 1. s is called the scaling ando the offset
parameter.

The sequence of triplets(adri ,si ,oi)i=1,...,nr , specifying the addressadri of the domain
that has been chosen for ranger i together with the scaling and offset parameters for the
affine mapping, represents a contractive transformationf whose fixed pointΩ f , called
attractor, is an approximation of the target signal as suggested by the Collage Theorem [6].

The above mentioned scheme is usually calledcollage codingsince it searches for the
transformationf that minimizes thecollage error‖T− f (T)‖2. Clearly this problem can
be solved in polynomial time. But, on the other hand, there may be an attractorΩ f ∗, which
is closer to signalT thanΩ f , even thoughf ∗ has a larger collage error.

The set of possible fractal codes for a signalT is

Π = { f =̂ ((adr1,s1,o1), . . . ,(adrnr ,snr ,onr )) | 1≤ adri ≤ nd, si ∈ [−smax,smax], oi ∈ R}.

f ∗ is an optimal fractal code for the signalT if the attractorΩ f ∗ of f ∗ satisfies

‖T−Ω f ∗‖2 = min
f∈Π
‖T−Ω f ‖2.

The number of different domain-range assignments inΠ alone is(nd)nr = bnr
2 c

nr . Thus,
even with a finite set of admissibles and o values the number of feasible codes grows
exponentially with the number of ranges or the signal length, respectively. We show that
the problem of finding the optimal fractal code inΠ is NP-hard. For our analysis we can
assume that the signal contains only integer values. We also note that the computation of
the attractorΩ f given f can be computed in polynomial time.

Let us formally define the problem of optimal fractal coding as a decision problem,
called FRACCODE:

INSTANCE: SignalT = (r1, ..., rnr ), each ranger i is anm-dimensional vector with integer
components, positive numberD.
QUESTION: Is there an elementf ∈Π whose attractorΩ f satisfies‖T−Ω f ‖2≤ D ?

The rest of the paper is organized as follows. In sections 2 and 3, we give a polynomial
reduction from MAXCUT to FRACCODE, thus showing the NP-hardness of this problem.
The behavior of collage coding as a non-approximating algorithm is analyzed in section 4.
In section 5, we conclude the paper summarizing and discussing the main results as well as
raising some open questions.
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2 The main theorem

In this and the next section we will show that finding an optimal fractal code is at least as
hard as solving an instance of (unweighted) MAXCUT. MAXCUT is defined as follows:

INSTANCE: Undirected graphG = (V,E) with nv vertices andne edges, positive integerk.
QUESTION: Is there a partition ofV into disjoint setsV1 andV2 such that the number of
edges that have one endpoint inV1 and one endpoint inV2 is at leastk?

Since MAXCUT is known to be NP-hard (cf. [7]), it then follows that optimal fractal
coding is also NP-hard.

The reduction from MAXCUT will proceed as follows: given a graphG = (V,E) we
will construct in polynomial time a signalT(G) and a functionD(G,k) monotonically de-
creasing ink, such that the following holds:

Theorem: G has a cut of size≥ k ⇐⇒ ∃ f ∈ Π with attractorΩ f , such that‖Ω f −
T(G)‖2≤ D(G,k).

Thus, the question whether there exists a cut of a given cardinalityk is reduced to the
question whether there is an attractorΩ f that is closer to a given signal thanD(G,k).

The construction ofT(G) andD(G,k) will be given in this section. From the construc-
tion it will follow immediately that

Lemma 2.1: G has a cut of size≥ k =⇒ ∃ f ∈ Π with attractorΩ f , such that‖Ω f −
T(G)‖2 = D(G,k).

Combined with Lemma 3.1, shown in the next section, this proves our theorem.

2.1 Construction ofT(G)

The signalT(G) will consist of several segments that will be represented as staircase func-
tions in the figures and in our discussion. In the following, we describe the design of these
segments and give a rationale behind the construction.

First of all, each vertex of the graphG will be represented by a distinct signal part, the
vertex ID. IDs pertaining to different vertices will differ significantly from each other. This
enforces that only signal parts with the same ID can be mapped to each other.

The signalT(G) is obtained by concatenating the following signal parts:

• Signal segmentS1 contains for each vertexv∈V four ranges as shown in figure 1a).
The first and third ranges contain the vertex ID forv, the second and fourth range
contain complementary signals used asflags, calledF1 andF2.

• SegmentS2 contains two ranges for each vertexv (cf. figure 1b)). The first half of
the first range is again the vertex ID ofv, shrunk to half its original width. The rest
of the two ranges equals zero.
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• In the third segment,S3, for each edge(vi ,v j) ∈ E we have the following two ranges
(cf. figure 1c)): The first quarter of the first range is the appropriately shrunk vertex
ID of vi , the first quarter of the second range contains the vertex ID ofv j . The rest of
the ranges is zero.

• The fourth segment,S4, contains two ranges for every edge(vi ,v j) ∈ E (cf. figure
1d)). Both contain the (shrunk) vertex IDs ofvi andv j . Next to the vertex IDs are
placed copies of the flags. In one range, these are the flagsF1 andF2, in the otherF2

andF1 (in this order).

The amplitudesa1, . . . ,a4 of the signal are related bya2 = s1 · a1,a3 = s2 · a2,a4 =
s3 ·a3. Furthermore, we setbi = ai√

2
for i = 1, . . . ,4. Thus, all parameters are completely

determined bya4,s1,s2,s3. We seta4 to some arbitrary, but fixed, constant. The values of
thesi will be determined in section 3. Note that due to this definition the signal does not
necessarily consist of integer values. The assumption is that the parameters can be scaled
by some sufficiently large factor and then rounded.

We now sketch how the optimal attractor forT(G) is related to the size of the cut ofG.
Let us assume that the ranges ofSi have to be coded by domains fromSi−1 for i = 2,3,4,
andS1 is given as side information. As said before, the ID design leads to the property that
an ID mismatch will beverycostly. Thus, for each range inS2 the only possible domains
are the two with corresponding ID inS1. Both contribute the same distortion in the attractor.
Selecting one of them for each range corresponds to the partitioning ofV into V1 andV2.
The flag (F1 resp. F2) associated with a vertexv therefore indicates to which set of the
partitionv belongs (V1 resp.V2). Again, each range ofS3 has to be coded by the domain
of S2 with the same vertex ID. In the attractor this third segment contains the information
which edges of the graphG belong to the cut. The segmentS4 will be used tocount the
number of these edges. An edge in the cut consists of a pair of vertices to which different
flags (F1 andF2, or vice versa) have been assigned. In that and only in that case, we can
find an exact match for one of the ranges inS4 belonging to that edge. Thus, the error of
the attractor is coupled with the size of the cut.

2.2 ID design

To make things explicit, we now give the remaining details of our construction. The IDs
are built using the following lemma:

Lemma 2.2: For eachn∈ N there exists a binary code withn codewordsc1, ...,cn, each of
length`= O(n), such that fori 6= j the Hamming distancesdH(ci ,c j) anddH(ci ,c j) equal
`/2. ci denotes the binary complement ofci .
Proof: We will show by induction that the lemma holds forn = `= 2m for all m∈ N. For
all othern simply choosen of the codewords constructed for size 2dlogne. To begin the in-
duction,c1 = 0 is such a code forn = 20. Forn = 2m+1 take the set{cici ,cici |1≤ i ≤ 2m},
where the(ci)i=1,...,2m form a code of the desired type of length 2m. This gives a new binary
code of size 2m+1 that is easily shown to have the desired property.�
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Let (ci)i=1,...,nv be a binary code ofnv codewords constructed as in lemma 2.2. The
binary codeC := {cici |1≤ i ≤ nv} not only has the property that two different codewords
differ in half their bits, but also has the following features which we will use in our calcu-
lations:

• Every codeword consists of` 0s and̀ 1s.

• For two different codewordsp,q∈C the following holds: for alli, j ∈ {0,1} there
are exactly`2 positions wherep has ai-bit andq has aj-bit.

When one interprets the 0s and 1s of the binary codeC as−a1 and+a1 respectively,
this provides us withnv vertex IDs that have a linear length representation and the prop-
erty that an ID mismatch will introduce a large distortion. We add construction segments
S0,1, . . . ,S0,L, with L = O(lognv), to the signal in order to have all ingredients for coding
segmentS1 without any distortion. We setS0 := S0,1 . . .S0,L.

For the edge counting we also need an extra block inS3 of the shape as sketched in
figure 1e). Of course, this also leads to the addition of some construction blocks in segments
S0,S1,S2. Details are omitted due to space constraints.

2.3 Constructing an attractor

For the signalT(G) = S0S1S2S3S4 as described above we now give a transformationf that
will be used to defineD(G,k).

First of all, the segmentS0S1 can be coded without any distortion. By hypothesis,
G = (V,E) has a cut of cardinalityk by partitioningV into V1 andV2. For a range inS2

we choose the domain inS1 with the same ID and the flag set in accordance with the graph
partition. The scaling and offset are set tos= 2

3s1 ando = 0. In this way the height of the
attractor is2

3 the height of the original signal inS2 (see figure 1f). Thus, the total distortion
of Ω f in segmentS2 is nv · 16a2

2. (See case 2 in the proof of lemma 3.1 for how to derive this
value.)

For each range inS3 we choose the corresponding domain ofS2 and scale it using
s= s2,o = 0. The error introduced in segmentS3 is ne · 1

12a2
3.

The distortion in segmentS4 depends on the numberk. For each edge there are two
ranges inS4 differing only in the flags. Depending on whether or not an edge belongs to
the cut, we do the following:

• Edge belongs to cut.In this case, one of the two ranges can be coded without any
distortion by the corresponding domain inS3. The second range will be coded by the
extra block mentioned above (s= s3,o = 0) yielding a distortion of14a2

4.

• Edge does not belong to cut.In this case, we code both of the ranges inS4 with the
corresponding domain inS3 (s= s3,o = 0) yielding a total error of512a2

4.

Thus, the total error introduced in segmentS4 is (1
4ne+ 1

6(ne−k))a2
4. We defineD(G,k) as

the distortion made by the attractor in all segments of the signal:

D(G,k) :=
1
6

nva
2
2 +

1
12

nea
2
3 +(

1
4

ne+
1
6

(ne−k))a2
4

This finishes our proof of Lemma 2.1.�
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3 The main theorem, continuation of proof

Lemma 3.1: G has a maximal cut of sizek =⇒ @ f ∈ Π with attractorΩ f such that
‖Ω f −T(G)‖2≤ D(G,k+1).

Proof: Assume that, on the contrary, such an attractorΩ f does exist. From Lemma 2.1
we know there is an attractorΩ with ‖Ω−T(G)‖2 = D(G,k). Obviously,Ω f is closer
to the original signalT(G) than Ω. Consequently it must approximateT(G) better on
at least one of the segments of the signal,S0,S1,S2,S3,S4. By settings1,s2,s3, depend-
ing only on the input graphG, we will enforce that the error||Ω f −T(G)||2 is at least
||Ω−T(G)||2− 1

2(D(G,k)−D(G,k+1))>D(G,k+1). Thus, our hypothesis is false and
the lemma is proven.

For the following discussion let us assume that the ranges ofS2 have to be coded by
domains fromS1, ranges fromS3 by domains fromS2 and ranges fromS4 by domains from
S3. At the end of the proof we will indicate how to remove this restriction.

Case 1:Ω f is better thanΩ on S0 or S1

SinceΩ andT(G) do not differ onS0 andS1, no improvement is possible.

Case 2:Ω f is better thanΩ on S2

For simplicity first assume thatΩ f is identical toT(G) on partS1. For a range there are
two possibilities for choosing a domain:

1. When mapping a domain with a fitting ID segment, the incurred error is (depending
on scaling factors and offseto)

E(s,o) =
1
4

(
(a2− (a1s+o))2 +(−a2− (−a1s+o))2 +(b1s+o)2 +(−b1s+o)2

)
Solving this equation for the optimal values ofs ando yields s = 2

3s1,o = 0. This
leads to an error ofE(2

3s1,0) = 1
6a2

2 for the range.

2. When mapping a domain with an incorrect ID segment on a range, the error will be

E(s,o) =
1
8

(
(a2− (a1s+o))2 +(−a2− (−a1s+o))2 +(a2− (−a1s+o))2 +

(−a2− (a1s+o))2 +2· (b1s+o)2 +2· (−b1s+o)2
)

Again, solving for optimals,o yieldss= o = 0 with an error ofE(0,0) = 1
2a2

2, three
times the error incurred when matching correct IDs.

Thus, the error ofΩ f on S2 is at least(n+ 2l) · 1
6a2

2, wherel is the number of incorrect ID
assignments. We chooses2 so small that the error made by one ID mismatch is larger than
the error made byΩ on segmentsS3 andS4:

2· 1
6

a2
2 >

1
12

nea
2
3 +(

1
4

ne+
1
6

(ne−0))a2
4 ⇐⇒ s2 <

2√
(1+5s2

3)ne
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Therefore,l must equal zero, since otherwise the error incurred in segmentS2 alone would
be larger thanD(G,k).

Let us now deal with the assumption thatΩ f equalsT(G) on segmentS1. Note that the
difference betweenΩ f andT(G) onS1 has to be less thanD(G,k), and this value does not
depend ons1. By choosings1 sufficiently small, we can assure that the error ofD(G,k) is
very small relative toa1. This relative error will then change our calculations slightly. But
by scalings1 we can make these differences arbitrarily small, in fact, significantly smaller
than 1

2(D(G,k)−D(G,k+1)).

Case 3:Ω f is better thanΩ on S3

We use a similar argument as in case 2.
First, we can assume thatΩ f looks essentially likeΩ onS2. This is because by choosing

s2 small enough, any difference that is noticeable after scaling down a domain fromS2

would mean a large additional error in the domain, larger than any potential savings inS3

andS4. Details of this argument will be given in the full version of this paper.
Secondly, by matching correct IDs on our ranges, we incur exactly the same error as in

Ω. On the other hand, by choosings3 small enough, we can assure that if we use incorrect
IDs, the error will be larger than the error made byΩ in S4 (which does not depend ons3).
Thus, the total error would be larger than the error ofΩ.

Case 4:Ω f is better thanΩ on S4

Again, we can assume thatΩ andΩ f look ’the same’ on segmentS3.
We will now examine the error that possible domain-range pairings will incur. To this

end, we distinguish two cases: first, if an edge belongs to the cut, i.e., the flags of the two
vertices are different, and secondly, if the flags are the same.

1. Edge belongs to cut.In this case, one of the two edge copies inS4 can be mapped
with error zero. As for the other copy, by computing the optimal transformation
parameters for all possible domains inS3, we see that mapping the extra block on the
range yields the minimum error of1

4a2
4.

2. Edge does not belong to cut.In this case, there exists no exact matching domain in
S3 for the two edge copies inS4. Thus, these ranges can only be coded with a mis-
matched ID, wrong flag or the extra block. By computing the optimal transformation
parameters for all possible domains, we see that the error for each of the two edge
copies is at least524a2

4 for a total of 5
12a2

4.

Thus, the error ofΩ f in S4 is at leastne
1
4a2

4 +(ne−k)1
6a2

4 which is exactly the error ofΩ.
It remains to be shown how to assure that ranges from segmentSi are only coded by

ranges from segmentSi−1 for i = 2,3,4. This can be achieved by a slight modification of
the signalT(G). All considerations made so far will still remain valid. All we have to do
is to change the IDs slightly. We add, for example, at the left end of the ID a peak of height
h and widthδ (cf. figure 2). The rest of the ID is shrunk accordingly. Observe that at the
left end of the ranges inS2,S3,S4 we now have a peak of widthδ2,

δ
4,

δ
8, respectively. By

choosingh sufficiently large, we can achieve our goal: If, for example,f maps a domain
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from S3 to S2, it will map a peak of widthδ
8 (the width is halved) on a peak of widthδ2. If h

is chosen large enough, this will lead to an arbitrarily large error no matter what the rest of
the domain and range look like. This consideration concludes our proof of lemma 3.1.�

4 Collage coding

In this section we demonstrate that collage coding is not an approximating algorithm for
the optimization problem of fractal coding.

Lemma 4.1: For every∆ ∈R+ there exists a signalT and a transformationg∈Π such that

‖Ω f −T‖2 > ∆ · ‖Ωg−T‖2,

where f is the transformation that gives the best collage error‖T− f (T)‖2.

Proof (Sketch): For each range the standard algorithm looks for the best matching domain
in a ’greedy’ manner without taking into account the dependencies between different do-
main range assignments. This can be seen by coding the signal depicted in figure 3, where
ranges are numbered 1,2, . . .. When theai are appropriately chosen, we can force the col-
lage coder to encode the ranges inSi by domains inSi−1 for i = 2,3,4. The only ’choice’
for an attractor is to decide which domain ofS2 is to be mapped on the ranges inS3.

In one case, if domain (3,4) is mapped on ranges 7 and 8, the whole ofS4 can be coded
without any distortion. This is mappingg.

The other case – (5,6) is mapped on 7 and 8 –, will lead to a large error inS4. The
collage coder can be forced to use this choice inf by making the transformation from (5,6)

���
�

���
�

h
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Figure 2: Adding a peak to
the ID
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to 7 and 8 just a little bit cheaper than the transformation from (3,4) to 7 and 8. By adding
many copies of range 9 toS4, we see that the distance between the attractor found with the
collage based scheme and the optimal attractor can be made arbitrarily large.�

5 Conclusion

In this paper we have examined for the first time the intrinsic complexity of fractal coding.
We have shown that finding an optimal fractal code for a given signal – theinverse problem
of fractal coding – is NP-hard. Consequently, there exists no algorithm that solves this
problemfast, i.e., in polynomial time, unless P = NP. Additionally, we have shown that
collage coding is not an approximating algorithm for this problem.

What does this result imply for current research in fractal coding? First note that our
proof readily carries over to higher dimensional signals, in particular to (two-dimensional)
images. We are aware that our transformation parameterss ando are continuous, whereas
in an implementation they will have to be discrete. But, in fact, the transformations con-
structed in section 2 use only a finite number of parameter values. Thus, the problem
remains NP-hard when a finite set of admissible parameter values are given as additional
input. Our result shows that an algorithm supposedly solving the problem in polynomial
time cannot be a simple modification of existing ones. To build such an algorithm, one
therefore has to deviate from our model in some significant way.

We close with some ideas for further research. First, it should be examined whether
the bounds in our proof can be strengthened. Secondly, one should consider restrictions of
the problem, e.g., with fixed scaling factor, or input signals with a certain regularity. And,
finally, the next step after proving a problem NP-hard is to determine whether it admits an
approximating algorithm.
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