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Abstract

In fractal compression a signal is encoded by the parameters of a contractive trans-
formation whose fixed point (attractor) is an approximation of the original data. Thus
fractal coding can be viewed as the optimization problem of finding in a set of admissi-
ble contractive transformations the transformation whose attractor is closest to a given
signal. The standard fractal coding scheme based on the Collage Theorem produces
only a suboptimal solution. We demonstrate by a reduction froax&UT that the
problem of determining the optimal fractal code is NP-hard. To our knowledge, this is
the first analysis of the intrinsic complexity of fractal coding. Additionally, we show
that standard fractal coding is not an approximating algorithm for this problem.

1 Introduction

Data compression is inherently an optimization problem: the aim is to find the shortest
description of a given data satisfying some quality constraint or, vice versa, to find the best
quality representation for a given size. Usually one restricts oneself to a specific type of
representation, e.g., vector quantization, transform coding or fractal coding. Since time is
another cost factor in a compression scheme besides quality and size, it is of interest to
analyze the time needed to find the optimal representation within a given scheme. In other
words, it is useful to analyze the computational complexity of the involved optimization
problem. It is of special importance to examine whether the problem may be generally in-
tractable, i.e., NP-hard. In this case the result would provide an additional stimulus for the
design of approximating or heuristic algorithms. Previous work in the field of data com-
pression and complexity has shown that, e.g., optimal codebook design in vector quantiza-
tion is NP-hard [1] as are versions of optimal pruning for tree structured vector quantizers
[2]. For a comprehensive list of NP-hard optimization problems see [3].

This paper is concerned with the optimization problem involved with fractal compres-
sion. Fractal compression is a lossy data compression technique which attracted much at-
tention in the last years mainly for its use in image compression. For a general introduction
to this topic see [4, 5].

In this paper we analyze one-dimensional signal coding. In fractal coding, a target sig-
nal T is partitioned into disjointanges r € R™i =1,...,n;, thusT = (rq,rp,...,M,) €
R™™ A domainis a signal block with twice the size of a range. Téemain pool

1This paper appears Proceedings DCC’97 Data Compression Conferedcd\. Storer, M. Cohn (eds.),
IEEE Computer Society Press, March 1997.
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contains the nonoverlapping domains that are unions of rangesgi.e- (r1,r2),d2 =
(r3,r4),...,dny = (r2.ngy—1,"2.ny), Whereng = L%j. Letai denote than-dimensional vector
obtained by down-filteringl — thek-th component ofii is the mean of th¢2k — 1)-th and
2k-th component ofi;. In standard fractal coding for each rangénhe domaird; is sought
that minimizes the squared error distortion under an affine mapping, i.e., that minimizes
Iri = (s-dj +0-1)[|%,
wherel=(1,1,...,1) e R™,
(s,0) = arg min||r; — (s-dj +0-1)|?,
s,0eR

ands is clamped to/—Smax Smax, 0 < Smax < 1. sis called the scaling and the offset
parameter.

The sequence of tripletadr;, s, 0i)i—1,..n,, Specifying the addressr; of the domain
that has been chosen for rangeogether with the scaling and offset parameters for the
affine mapping, represents a contractive transformatiavhose fixed poinQs, called
attractor, is an approximation of the target signal as suggested by the Collage Theorem [6].

The above mentioned scheme is usually cadlelhge codingsince it searches for the
transformationf that minimizes theollage error||T — f(T)||%. Clearly this problem can
be solved in polynomial time. But, on the other hand, there may be an att€agtowhich
is closer to signal' thanQ+, even thought * has a larger collage error.

The set of possible fractal codes for a sighas

N={f=((adry,s1,01),...,(adrm,,S,,0n)) | 1 <adn <ng,S € [—Smax Smax, 0 € R}.
f* is an optimal fractal code for the signglif the attractorQ;- of f* satisfies

IT = Q4| = min|| T —Q¢||%
fen

The number of different domain-range assignmenf3 alone is(ng)™ = [ % |". Thus,
even with a finite set of admissibkeand o values the number of feasible codes grows
exponentially with the number of ranges or the signal length, respectively. We show that
the problem of finding the optimal fractal codelihis NP-hard. For our analysis we can
assume that the signal contains only integer values. We also note that the computation of
the attractoQ+ given f can be computed in polynomial time.

Let us formally define the problem of optimal fractal coding as a decision problem,
called lRACCODE

INSTANCE: SignalT = (ry,...,rn,), €ach range; is anm-dimensional vector with integer
components, positive numbBr
QUESTION: Is there an elemertft € 1 whose attracto€) ¢ satisfieg|T — Qj |]2 <D?

The rest of the paper is organized as follows. In sections 2 and 3, we give a polynomial
reduction from MaxcuT to FRACCODE, thus showing the NP-hardness of this problem.
The behavior of collage coding as a non-approximating algorithm is analyzed in section 4.
In section 5, we conclude the paper summarizing and discussing the main results as well as
raising some open questions.



OPTIMAL FRACTAL CODING IS NP-HARD 3

2 The main theorem

In this and the next section we will show that finding an optimal fractal code is at least as
hard as solving an instance of (unweightedd X uUT. MAXCUT is defined as follows:

INSTANCE: Undirected grapl® = (V, E) with n, vertices and edges, positive integd
QUESTION: Is there a partition oY into disjoint sets/; andV, such that the number of
edges that have one endpoinMnand one endpoint iW5 is at leask?

Since MaxcuT is known to be NP-hard (cf. [7]), it then follows that optimal fractal
coding is also NP-hard.

The reduction from MxcuT will proceed as follows: given a graph = (V,E) we
will construct in polynomial time a signdl(&) and a functiorD(®, k) monotonically de-
creasing irk, such that the following holds:

Theorem: & has a cut of size> k <= 3f € N with attractorQ¢, such that||Q; —
T(8)[|> < D(&,K).

Thus, the question whether there exists a cut of a given carditkaktyeduced to the
question whether there is an attractdy that is closer to a given signal th&{®, k).

The construction of (&) andD(®&, k) will be given in this section. From the construc-
tion it will follow immediately that

Lemma 2.1: & has a cut of size> k = 3f € N with attractorQs, such that||Q¢ —
T(8)]>=D(&k).

Combined with Lemma 3.1, shown in the next section, this proves our theorem.

2.1 Construction of T(®)

The signalT (&) will consist of several segments that will be represented as staircase func-
tions in the figures and in our discussion. In the following, we describe the design of these
segments and give a rationale behind the construction.

First of all, each vertex of the grah will be represented by a distinct signal part, the
vertex ID IDs pertaining to different vertices will differ significantly from each other. This
enforces that only signal parts with the same ID can be mapped to each other.

The signalT (®) is obtained by concatenating the following signal parts:

e Signal segments; contains for each vertexe V four ranges as shown in figure 1a).
The first and third ranges contain the vertex ID ¥pithe second and fourth range
contain complementary signals usedlags calledF; andF.

e SegmentS, contains two ranges for each vertexcf. figure 1b)). The first half of
the first range is again the vertex ID wfshrunk to half its original width. The rest
of the two ranges equals zero.
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e In the third segments, for each edgévi,vj) € E we have the following two ranges
(cf. figure 1c)): The first quarter of the first range is the appropriately shrunk vertex
ID of v, the first quarter of the second range contains the vertex \pp. dfhe rest of
the ranges is zero.

e The fourth segment, contains two ranges for every edge,v;) € E (cf. figure
1d)). Both contain the (shrunk) vertex IDs wfandvj. Next to the vertex IDs are
placed copies of the flags. In one range, these are theFlasdF, in the other~
andF; (in this order).

The amplitudesay,...,a4 of the signal are related bgp = s1-a1,a3 = S -ap, a4 =
s3-ag. Furthermore, we sdf; = % fori=1,...,4. Thus, all parameters are completely
determined byas, 51,5, S3. We setay to some arbitrary, but fixed, constant. The values of
thes will be determined in section 3. Note that due to this definition the signal does not
necessarily consist of integer values. The assumption is that the parameters can be scaled
by some sulfficiently large factor and then rounded.

We now sketch how the optimal attractor fbf®) is related to the size of the cut &f.
Let us assume that the rangesphave to be coded by domains frdgn 1 for i = 2, 3,4,
and$, is given as side information. As said before, the ID design leads to the property that
an ID mismatch will bevery costly. Thus, for each range # the only possible domains
are the two with corresponding ID 8. Both contribute the same distortion in the attractor.
Selecting one of them for each range corresponds to the partitionivigrad Vv, andV,.
The flag ¢ resp. ) associated with a vertextherefore indicates to which set of the
partitionv belongs Vi1 resp.V,). Again, each range & has to be coded by the domain
of S with the same vertex ID. In the attractor this third segment contains the information
which edges of the grapé belong to the cut. The segme®f will be used tocountthe
number of these edges. An edge in the cut consists of a pair of vertices to which different
flags 1 andF, or vice versa) have been assigned. In that and only in that case, we can
find an exact match for one of the rangesSinbelonging to that edge. Thus, the error of
the attractor is coupled with the size of the cut.

2.2 ID design

To make things explicit, we now give the remaining details of our construction. The IDs
are built using the following lemma:

Lemma 2.2: For eachh € N there exists a binary code withcodewords;, ..., c,, each of
lengthZ = O(n), such that foil # j the Hamming distanced (¢, cj) anddy (i, Tj) equal
¢/2. ¢t denotes the binary complementapf

Proof: We will show by induction that the lemma holds foe= ¢ = 2™ for all me N. For
all othern simply choosen of the codewords constructed for siZ&2"!. To begin the in-
duction,c; = 0 is such a code fan = 2°. Forn = 2™ take the sefcic, G|l <i < 2™},
where thg(c)i—1,.. om form a code of the desired type of lengtR. ZT'his gives a new binary
code of size 21 that is easily shown to have the desired propéity.
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Let (Gi)i—1,....n, be a binary code ofi, codewords constructed as in lemma 2.2. The
binary codeC := {¢Ti|1 <i < ny} not only has the property that two different codewords
differ in half their bits, but also has the following features which we will use in our calcu-
lations:

e Every codeword consists 6f0s and/ 1s.

e For two different codewords, q € C the following holds: for alli, j € {0,1} there
are exactlyé positions wherg has a-bit andq has aj-bit.

When one interprets the Os and 1s of the binary @des —a; and+a; respectively,
this provides us withn, vertex IDs that have a linear length representation and the prop-
erty that an ID mismatch will introduce a large distortion. We add construction segments
S.1,---,SL, With L = O(logny), to the signal in order to have all ingredients for coding
segment,; without any distortion. We s&d :=S1... S L.

For the edge counting we also need an extra bloc&iof the shape as sketched in
figure 1e). Of course, this also leads to the addition of some construction blocks in segments
S, S1, S. Details are omitted due to space constraints.

2.3 Constructing an attractor

For the signall (&) = S59SS as described above we now give a transformafidimat
will be used to defin®(&, k).

First of all, the segmen§S; can be coded without any distortion. By hypothesis,
® = (V,E) has a cut of cardinalitk by partitioningV into V; andV,. For a range irs
we choose the domain & with the same ID and the flag set in accordance with the graph
partition. The scaling and offset are seste %sl ando = 0. In this way the height of the
attractor is% the height of the original signal i, (see figure 1f). Thus, the total distortion
of Qs in segmen& isny - %a%. (See case 2 in the proof of lemma 3.1 for how to derive this
value.)

For each range irs3 we choose the corresponding domainSgfand scale it using
s=5,0=0. The error introduced in segmegis ne- %Zag.

The distortion in segmerf, depends on the numb&r For each edge there are two
ranges inS; differing only in the flags. Depending on whether or not an edge belongs to
the cut, we do the following:

e Edge belongs to cutln this case, one of the two ranges can be coded without any
distortion by the corresponding domainSg The second range will be coded by the
extra block mentioned above £ s3,0 = 0) yielding a distortion oﬁ—kaﬁ.

e Edge does not belong to cuh this case, we code both of the range&irwith the
corresponding domain i& (s= s3,0 = 0) yielding a total error o%aﬁ.

Thus, the total error introduced in segmé&ais (%ne+ %(ne— k))aZ. We defineD(&,k) as
the distortion made by the attractor in all segments of the signal:

1 1 1 1
D(&,k) := én\,a§+ 1—2nea§ +(ZNe+ 5 (ne— k))a3

This finishes our proof of Lemma 2.0
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3 The main theorem, continuation of proof

Lemma 3.1: & has a maximal cut of sizk = Af € I with attractorQ; such that
1Qf —T(8)[|? < D(6,k+1).

Proof: Assume that, on the contrary, such an attra@Qerdoes exist. From Lemma 2.1
we know there is an attract@® with ||Q — T(&)||? = D(&,k). Obviously,Qs is closer
to the original signall (&) thanQ. Consequently it must approximalg ®) better on
at least one of the segments of the sigil.S1, S, S5, S4. By settings:, s, s3, depend-
ing only on the input grapl®, we will enforce that the erro{Qs — T(®)||? is at least
1Q—T(8)||>— %(D(@, k) —D(®,k+1)) > D(&,k+1). Thus, our hypothesis is false and
the lemma is proven.

For the following discussion let us assume that the rang&s bhve to be coded by
domains fronts;, ranges frongss by domains fron$, and ranges frorg, by domains from
Ss. At the end of the proof we will indicate how to remove this restriction.

Case 1:Q¢ is better thamQ on S or §;
SinceQ andT (&) do not differ onS andS;, no improvement is possible.

Case 2:Q¢ is betterthamQ on S
For simplicity first assume th&¢ is identical toT (&) on partS;. For a range there are
two possibilities for choosing a domain:

1. When mapping a domain with a fitting ID segment, the incurred error is (depending
on scaling factos and offsei)
1
E(s0)= <(a2 — (a15+0))2 + (—az — (—a15+0))? + (b1s+0)% + (—bys+ o)2>

Solving this equation for the optimal values ®&ndo yieldss = %sl,o = 0. This
leads to an error d(s;,0) = a3 for the range.

2. When mapping a domain with an incorrect ID segment on a range, the error will be
E(s,0) = é((az— (2154 0))? + (—az — (—ays+0))% + (a2 — (—a18+0))* +
(—ap— (a15+0))?+2- (b1S+0)?+2- (—bys+ o)z)
Again, solving for optimak, o yieldss= o0 = 0 with an error of£(0,0) = %a%, three
times the error incurred when matching correct IDs.

Thus, the error of2s on S is at leastn+21) - %a%, wherel is the number of incorrect ID
assignments. We choosgso small that the error made by one ID mismatch is larger than
the error made b2 on segment§; and$y:

1 1 1 1
2-éa§> 1—2nea§+(zne+ é(ne—O))aﬁ — 9<

2
W/ (1+ 5%)ne
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Therefore] must equal zero, since otherwise the error incurred in seg&eione would
be larger tha (&, k).

Let us now deal with the assumption tifa¢ equalsT (&) on segmeng;. Note that the
difference betweeQ¢ andT (&) on S has to be less thad(®, k), and this value does not
depend ors;. By choosings; sufficiently small, we can assure that the errobo®, k) is
very small relative t@;. This relative error will then change our calculations slightly. But
by scalings; we can make these differences arbitrarily small, in fact, significantly smaller
than3(D(®,k) —D(&,k+1)).

Case 3:Q+ is betterthamQ on S
We use a similar argument as in case 2.

First, we can assume th@t looks essentially lik€ onS,. This is because by choosing
s, small enough, any difference that is noticeable after scaling down a domainSyom
would mean a large additional error in the domain, larger than any potential savi§gs in
and%,;. Details of this argument will be given in the full version of this paper.

Secondly, by matching correct IDs on our ranges, we incur exactly the same error as in
Q. On the other hand, by choosisgsmall enough, we can assure that if we use incorrect
IDs, the error will be larger than the error made®yn & (which does not depend @g).
Thus, the total error would be larger than the erroQof

Case 4:Q+ is better thamQ on &
Again, we can assume th@tandQ+ look 'the same’ on segmest.

We will now examine the error that possible domain-range pairings will incur. To this
end, we distinguish two cases: first, if an edge belongs to the cut, i.e., the flags of the two
vertices are different, and secondly, if the flags are the same.

1. Edge belongs to cutin this case, one of the two edge copiesSincan be mapped
with error zero. As for the other copy, by computing the optimal transformation
parameters for all possible domains3f we see that mapping the extra block on the
range yields the minimum error éhﬁ.

2. Edge does not belong to cun this case, there exists no exact matching domain in
S for the two edge copies if;. Thus, these ranges can only be coded with a mis-
matched ID, wrong flag or the extra block. By computing the optimal transformation
parameters for all possible domains, we see that the error for each of the two edge
copies is at leasf;aZ for a total of a3

Thus, the error o€ in & is at Ieashe%a§+ (Ne— k)%af1 which is exactly the error aR.

It remains to be shown how to assure that ranges from seggan¢ only coded by
ranges from segmeig_1 for i = 2,3,4. This can be achieved by a slight modification of
the signalT (&). All considerations made so far will still remain valid. All we have to do
is to change the IDs slightly. We add, for example, at the left end of the ID a peak of height
h and widthd (cf. figure 2). The rest of the ID is shrunk accordingly. Observe that at the
left end of the ranges i, S3, Sy we now have a peak of widtB, 3,3, respectively. By
choosingh sufficiently large, we can achieve our goal: If, for examglenaps a domain
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from S; to S, it will map a peak of width§ (the width is halved) on a peak of widé If h
is chosen large enough, this will lead to an arbitrarily large error no matter what the rest of
the domain and range look like. This consideration concludes our proof of lemma 3.1.

4 Collage coding

In this section we demonstrate that collage coding is not an approximating algorithm for
the optimization problem of fractal coding.

Lemma 4.1: For everyA € R there exists a signdl and a transformatiog € M such that
1Qt =T|?>A-[1Qg— T2,
wheref is the transformation that gives the best collage éffor- f(T)||2.

Proof (Sketch) For each range the standard algorithm looks for the best matching domain
in a 'greedy’ manner without taking into account the dependencies between different do-
main range assignments. This can be seen by coding the signal depicted in figure 3, where
ranges are numbered2 . ... When theg; are appropriately chosen, we can force the col-
lage coder to encode the rangesSirby domains in§_1 for i = 2,3,4. The only 'choice’
for an attractor is to decide which domain$fis to be mapped on the ranges3n

In one case, if domain (3,4) is mapped on ranges 7 and 8, the wh8lecah be coded
without any distortion. This is mapping

The other case — (5,6) is mapped on 7 and 8 —, will lead to a large erfar ifthe
collage coder can be forced to use this choicé by making the transformation from (5,6)

" ]
s b ﬂf iy
] '
I S Sl

FO+—1- 6 —

Figure 2: Adding a peak to Figure 3: A hard signal for collage coding, consisting of seg-
the ID mentsS;,....&
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to 7 and 8 just a little bit cheaper than the transformation from (3,4) to 7 and 8. By adding
many copies of range 9 &, we see that the distance between the attractor found with the
collage based scheme and the optimal attractor can be made arbitrarilyiTarge.

5 Conclusion

In this paper we have examined for the first time the intrinsic complexity of fractal coding.
We have shown that finding an optimal fractal code for a given signal intleese problem

of fractal coding — is NP-hard. Consequently, there exists no algorithm that solves this
problemfast i.e., in polynomial time, unless P = NP. Additionally, we have shown that
collage coding is not an approximating algorithm for this problem.

What does this result imply for current research in fractal coding? First note that our
proof readily carries over to higher dimensional signals, in particular to (two-dimensional)
images. We are aware that our transformation paramsterdo are continuous, whereas
in an implementation they will have to be discrete. But, in fact, the transformations con-
structed in section 2 use only a finite number of parameter values. Thus, the problem
remains NP-hard when a finite set of admissible parameter values are given as additional
input. Our result shows that an algorithm supposedly solving the problem in polynomial
time cannot be a simple modification of existing ones. To build such an algorithm, one
therefore has to deviate from our model in some significant way.

We close with some ideas for further research. First, it should be examined whether
the bounds in our proof can be strengthened. Secondly, one should consider restrictions of
the problem, e.g., with fixed scaling factor, or input signals with a certain regularity. And,
finally, the next step after proving a problem NP-hard is to determine whether it admits an
approximating algorithm.
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