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Abstract

Given a finite sequence of vectors F0 in Cd we characterize in a complete and explicit way
the optimal completions of F0 obtained by adding a finite sequence of vectors with prescribed
norms, where optimality is measured with respect to majorization (of the eigenvalues of the
frame operators of the completed sequence). Indeed, we construct (in terms of a fast algorithm)
a vector - that depends on the eigenvalues of the frame operator of the initial sequence F0 and
the sequence of prescribed norms - that is a minimum for majorization among all eigenvalues of
frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame
operator of the initial sequence F0 we describe the frame operators of all optimal completions for
majorization. Hence, the concrete optimal completions with prescribed norms can be obtained
using recent algorithmic constructions related with the Schur-Horn theorem.

The well known relation between majorization and tracial inequalities with respect to convex
functions allow to describe our results in the following equivalent way: given a finite sequence of
vectors F0 in Cd we show that the completions with prescribed norms that minimize the convex
potential induced by a strictly convex function are structural minimizers, in the sense that they
do not depend on the particular choice of the convex potential.
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Keywords: frames, frame completions, majorization, convex potentials, Schur-Horn theorem.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 General notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Basic framework of finite frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Submajorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Optimal completions with prescribed norms 6
3.1 Presentation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 On the structure of the minimizers of Pf on Ca(F0) . . . . . . . . . . . . . . . . . . . 8
3.3 The feasible case of the CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Uniqueness and characterization of the minimum 12

5 Proofs of some technical results. 16
5.1 Description of the sets Ki and Ji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Several proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

∗e-mail addresses: massey@mate.unlp.edu.ar , mruiz@mate.unlp.edu.ar , demetrio@mate.unlp.edu.ar

1

http://de.arxiv.org/abs/1302.3859v1


1 Introduction

A finite sequence of vectors F = {fi}i∈In in Cd is a frame for Cd if the sequence spans Cd. It is well
known that finite frames provide (stable) linear encoding-decoding schemes. As opposed to bases,
frame are not subject to linear independence; indeed, it turns out that the redundancy allowed in
finite frames can be turned into robustness of the transmission scheme that they induce, which make
frames a useful device for transmission of signals through noisy channels (see [5, 6, 7, 15, 24, 28, 27]).

On the other hand, the so-called tight frames allow for redundant linear representations of
vectors that are formally analogous to the linear representations given by orthonormal basis; this
feature makes tight frames a distinguished class of frames that is of interest for applications. In
several applications we would like to consider tight frames that have some other prescribed proper-
ties leading to what is known in the literature as frame design problems [2, 8, 11, 13, 17, 18, 19, 26].
It turns out that in some cases it is not possible to find a frame fulfilling the previous demands.

An alternative approach to deal with the construction of frames with prescribed parameters and
nice associated reconstruction formulas was posed in [3] by Benedetto and Fickus; they defined a
functional, called the frame potential, and showed that minimizers of the frame potential (within a
convenient set of frames) are the natural substitutes of tight frames with prescribed parameters (see
also [14, 22, 25, 30] and [12, 31, 32] for related problems in the context of fusion frames). Moreover,
in [30] it is shown that minimizers of the frame potential under suitable restrictions (considered in
the literature) are structural minimizers in the sense that they coincide with minimizers of more
general convex potentials (see Section 2.2).

Recently, the following frame completion problem was posed in [20] (in the vein of [3]): given
an initial sequence F0 in Cd and a sequence of positive numbers a then compute the sequences G
in Cd whose elements have norms given by the sequence a and such that the completed sequence
F = (F0 , G) minimizes the so-called mean square error (MSE) of F , which is a (convex) functional
(see also [9, 19, 29] for completion problems for frames). In this setting, the initial sequence of
vectors can be considered as a checking device for the measurement, and therefore we search for a
complementary set of measurements (given by vectors with prescribed norms) in such a way that the
complete set of measurements is optimal with respect to the MSE. Notice there are other possible
(convex) functionals that we could choose to minimize such as, for example, the frame potential.
Therefore, a natural extension of the previous problem is: given a functional defined on the set
of frames, compute the frame completions with prescribed norms that minimize this functional.
Moreover, this last problem raises the question of whether the completions that minimize these
functionals coincide i.e., whether the minimizers are structural in this setting.

A first step towards the solution of the general version of the completion problem was made
in [33]. There we showed that under certain hypothesis (feasible cases, see Section 3.3), optimal
frame completions with prescribed norms are structural (do not depend on the particular choice
of the convex functional), as long as we consider convex potentials, that contain the MSE and the
frame potential. On the other hand, it is easy to show examples in which the previous result does
not apply (non-feasible cases); in these cases the optimal frame completions with prescribed norms
were not known even for the MSE nor the frame potential. Recently, in some feasible cases the set
of all optimal frame completions is characterized in [35, 21].

In [34] we considered the structure of completions that minimize a fixed convex potential (non
feasible case). There, we showed that the eigenvalues of optimal completions with respect to a fixed
convex potential are uniquely determined by the solution of an optimization problem in a compact
convex subset of Rd for a convex objective function that is associated to the convex potential in a
natural way. Then, we showed an important geometrical feature of optimal completions F = (F0,G)
for a fixed convex potential, namely that the vectors in the completion G are eigenvectors of the
frame operator of the completed sequence F (see Section 3.2 for a detailed exposition of these
results). Based on these facts, we developed an algorithm that allowed us to compute the solutions
of the completion problem for small dimensions. In this setting we conjectured some properties
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of the optimal frame completions in the general case, based on common features of the solutions
of several examples obtained by this algorithm (see Section 4 for a detailed description of these
conjectures).

In this paper, building on our previous work [33] and [34], we give a complete and explicit
description of the spectral and geometrical structure of optimal completions with prescribed norms
with respect to a convex potential induced by a strictly convex function. Our approach is construc-
tive and allows to develop a fast and effective algorithm that computes the spectral structure of
optimal completions. As we shall see, given an initial sequence F0 in Cd and a sequence of positive
numbers a, both the spectral and geometrical structure of optimal completions depend only on
the frame operator of F0 and a, but they do not depend on the particular choice of the convex
potential. Hence, we show that in the general case the minimizers of convex potentials (induced
by strictly convex functions) are structural.

In order to obtain the previous results, we begin by proving the properties of general optimal
completions conjectured in [34]. These properties (that are structural, in the sense that they do not
depend on the convex potential) are then used to compute several other structural parameters - that
involve the notion of feasibility developed in [33] - that completely describe the spectral structure
of optimal completions. As a consequence of this description, we conclude that optimal solutions
have the same eigenvalues and hence, the eigenvalues of optimal completions are minimum for the
so-called majorization preorder. Moreover, all the parameters involved in the description of the
spectral structure of optimal completions can be computed in terms of fast algorithms. With the
spectral data and results from [33] we completely describe the set positive matrices that correspond
to the frame operators of sequences G with norms prescribed by a and such that F = (F0,G) are
optimal. Finally, some optimal completions G can be also effectively computed by using recent
results from [8] (see also [17] and [21]) that implements the Schur-Horn theorem.

The paper is organized as follows. In Section 2 we briefly recall the basic framework of finite
frame theory, the notion of submajotization - that will play a central role in this note - and the
relation of submajorization with tracial inequalities involving convex functions. In section 3 we
describe the context of our main problem - namely, optimal completions with prescribed norms,
where optimality is described in terms of majorization - and give a detailed account of several
related results that were developed in our previous works [33] and [34] that we shall need in the
sequel, in a way suitable for this note; in particular, we include a new construction of the spectra
of optimal completions in the feasible cases. In Section 4 we introduce new structural parameters -
that can be efficiently computed in terms of explicit algorithms - and show how to give a complete
description of the spectra of optimal completions for strictly convex potentials, in terms of these
parameters in the general case. This allow us to show that the spectra of such optimal completions
do not depend on the choice of strictly convex potential, so that minimizers are then structural.
The proofs of the technical results of this section is presented in Section 5. In particular, we settle in
the affirmative some features of the structure of optimal completions for strictly convex potentials
that were conjectured in [34]. As a byproduct we also settle in the affirmative a conjecture on local
minimizers of strictly convex potentials with prescribed norms posed in [30].

2 Preliminaries

In this section we describe the basic notions that we shall consider throughout the paper. In
Section 2.1 we describe some general notations and terminology. In Section 2.2 we describe some
basic notions and facts of frame theory and we recall the notion of convex potential from [30]. In
Section 2.3 we describe some aspects of submajorization that we shall need in the sequel.
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2.1 General notations.

Given m ∈ N we denote by Im = {1, . . . ,m} ⊆ N and 1 = 1m ∈ Rm denotes the vector with all its
entries equal to 1. For a vector x ∈ Rm we denote by tr x =

∑

i∈Im
xi and by x↓ (resp. x↑) the

rearrangement of x in decreasing (resp. increasing) order. We denote by (Rm)↓ = {x ∈ Rm : x =
x↓} the set of downwards ordered vectors, and similarly (Rm)↑.

Given H ∼= Cd and K ∼= Cn, we denote by L(H , K) the space of linear transformations T : H → K.
If K = H we denote by L(H) = L(H , H), by Gl (H) the group of all invertible operators in L(H),
by L(H)+ the cone of positive operators and by Gl (H)+ = Gl (H)∩L(H)+. If T ∈ L(H), we denote
by σ(T ) the spectrum of T , by rkT = dimR(T ) the rank of T , and by trT the trace of T .

If W ⊆ H is a subspace we denote by PW ∈ L(H)+ the orthogonal projection onto W . Given
x , y ∈ H we denote by x⊗ y ∈ L(H) the rank one operator given by x⊗ y (z) = 〈z , y〉x for every
z ∈ H. Note that if ‖x‖ = 1 then x⊗ x = Pspan{x} .

By fixing orthonormal basis’s (ONB’s) of the Hilbert spaces involved, we shall identify operators
with matrices, using the following notations: by Mn,d(C) ∼= L(Cd , Cn) we denote the space of
complex n×dmatrices. If n = d we write Md(C) = Md,d(C) ; H(d) is the R-subspace of selfadjoint
matrices, Gl (d) the group of all invertible elements of Md(C), U(d) the group of unitary matrices
in Md(C), Md(C)

+ the cone of positive semidefinite matrices, and Gl (d)+ = Md(C)
+ ∩ Gl (d).

Given S ∈ Md(C)
+, we write λ(S) = λ↓(S) ∈ (Rd

≥0)
↓ the vector of eigenvalues of S - counting

multiplicities - arranged in decreasing order. Similarly we denote by λ↑(S) ∈ (Rd
≥0)

↑ the reverse

ordered vector of eigenvalues of S. If λ = (λi)i∈Id ∈ Rd
≥0 (not necessarily ordered), a system

B = {hi}i∈Id ⊆ Cd is a “ONB of eigenvectors for S , λ ” if it is an orthonormal basis for Cd such
that S hi = λi hi for every i ∈ Id . In other words, an orthonormal basis

B = {hi}i∈Id is a “ONB of eigenvectors for S , λ ” ⇐⇒ S =
∑

i∈Id

λi · hi ⊗ hi . (1)

2.2 Basic framework of finite frames

In what follows we consider (n, d)-frames. See [3, 10, 16, 23, 30] for detailed expositions of several
aspects of this notion.

Let d, n ∈ N, with d ≤ n. Fix a Hilbert space H ∼= Cd. A family F = {fi}i∈ In ∈ Hn is an
(n, d)-frame for H if there exist constants A,B > 0 such that

A‖x‖2 ≤
n
∑

i=1

| 〈x , fi〉 |
2 ≤ B‖x‖2 for every x ∈ H . (2)

The frame bounds, denoted by AF , BF are the optimal constants in (2). If AF = BF we call
F a tight frame. Since dimH < ∞, a family F = {fi}i∈ In is an (n, d)-frame if and only if
span{fi : i ∈ In} = H. We shall denote by F = F(n , d) the set of all (n, d)-frames for H.

Given F = {fi}i∈ In ∈ Hn, the operator TF ∈ L(H , Cn) defined by

TF x =
(

〈x , fi〉
)

i∈In
, for every x ∈ H (3)

is the analysis operator of F . Its adjoint T ∗
F ∈ L(Cn , H) is called the synthesis operator and is

given by T ∗
F v =

∑

i∈ In
vi fi for every v = (vi)i∈In ∈ Cn. The frame operator of F is

SF = T ∗
F TF =

∑

i∈In
fi ⊗ fi ∈ L(H)+ .

Notice that, if F = {fi}i∈ In ∈ Hn then 〈SF x , x〉 =
∑

i∈In

∣

∣ 〈x , fi〉
∣

∣

2
for every x ∈ H. Hence,

F ∈ F(n , d) if and only if SF ∈ Gl (H)+ and in this case AF ‖x‖2 ≤ 〈SF x , x〉 ≤ BF ‖x‖2 for
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every x ∈ H. In particular, AF = λmin(SF ) = ‖S−1
F ‖−1 and λmax(SF ) = ‖SF‖ = BF . Moreover,

F is tight if and only if SF = τ
d IH , where τ = trSF =

∑

i∈In
‖fi‖

2 .

In their seminal work [3], Benedetto and Fickus introduced a functional defined, the so-called frame
potential, given by

FP ({fi}i∈In) =
∑

i, j ∈In
|〈fi , fj〉|

2 .

One of their major results shows that tight unit norm frames - which form an important class of
frames because of their simple reconstruction formulas - can be characterized as (local) minimizers
of this functional among unit norm frames. Since then, there has been interest in (local) minimizers
of the frame potential within certain classes of frames, since such minimizers can be considered as
natural substitutes of tight frames (see [14, 30, 31]). Notice that, given F = {fi}i∈In ∈ Hn then
FP (F) = tr S2

F =
∑

i∈Id
λi(SF )

2. These remarks have motivated the definition of general convex
potentials as follows:

Definition 2.1. Let us denote by

Conv(R≥0) = {f : [0 , ∞) → [0 , ∞) : f is a convex function }

and Convs(R≥0) = {f ∈ Conv(R≥0) : f is strictly convex }. Following [30] we consider the
(generalized) convex potential Pf associated to any f ∈ Conv(R≥0), given by

Pf (F) = tr f(SF ) =
∑

i∈Id
f(λi(SF ) ) for F = {fi}i∈In ∈ Hn ,

where the matrix f(SF ) is defined by means of the usual functional calculus. △

As shown in [30, Sec. 4] these convex potentials (which are related with the so-called entropic
measures of frames) share many properties with the BF-frame potential. Indeed, under certain
restrictions both the spectral and geometric structures of minimizers of these potentials coincide
(see [30] and Remark 5.6 below).

Remark 2.2. The results that we shall develop in this work apply in the case of convex potentials
Pf for any f ∈ Convs(R≥0). Notice that this formulation does not formally include the Mean
Square Error (MSE), which is the convex potential associated with the strictly convex function
f : (0,∞) → (0,∞) given by f(x) = x−1, since f is not defined in 0 in this case. In order to
include the MSE within our results we proceed as follows: we define f̃ : [0,∞) → (0,∞] given by
f̃(x) = x−1 for x > 0 and f̃(0) = ∞. Assuming that x < ∞ and x + ∞ = x · ∞ = ∞ for every
x ∈ (0 , ∞), it turns out that the new map f̃ is a (extended) strictly convex function and all the
results obtained in this paper apply to the convex potential induced by f̃ . △

2.3 Submajorization

Next we briefly describe submajorization, a notion from matrix analysis theory that will be used
throughout the paper. For a detailed exposition of submajorization see [4].

Given x, y ∈ Rd we say that x is submajorized by y, and write x ≺w y, if

k
∑

i=1
x↓i ≤

k
∑

i=1
y↓i for every k ∈ Id .

If x ≺w y and trx =
∑d

i=1 xi =
∑d

i=1 yi = tr y, then we say that x is majorized by y, and write
x ≺ y. In case that x ≺ y but y ⊀ x we say that y majorizes x strictly. If the two vectors x and
y have different sizes, we write x ≺ y if the extended vectors (completing with zeros to have the
same size) satisfy the previous relationship.
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On the other hand we write x6 y if xi ≤ yi for every i ∈ Id . It is a standard exercise to show that
x6 y =⇒ x↓6 y↓ =⇒ x ≺w y. Majorization is usually considered because of its relation with
tracial inequalities for convex functions. Indeed, if we let x, y ∈ Rd and let I ⊆ R be an interval
such that x, y ∈ Id then (see for example [4]):

1. x ≺ y ⇔ tr f(x)
def
=

d
∑

i=1
f(xi) ≤

d
∑

i=1
f(yi) = tr f(y) for every convex function f : I → R.

2. If only x ≺w y, but the map f : I → R is convex and increasing, then tr f(x) ≤ tr f(y).

3. If x ≺ y and f : I → R is a strictly convex function such that tr f(x) = tr f(y) then there
exists a permutation σ of Id such that yi = xσ(i) for i ∈ Id .

As a consequence of item 3. above, if x ≺ y strictly and f : I → R is a strictly convex function
then tr f(x) < tr f(y): indeed, if tr f(x) = tr f(y) then by item 3. above we would have that
yi = xσ(i), i ∈ Id , for a permutation σ of Id and hence that y ≺ x.

The notion of vector submajorization can be extended to a preorder between selfadjoint matrices
as follows: given S1 , S2 ∈ H(d) we say that S1 is submajorized by S2 , and write S1 ≺w S2 (resp.
S1 ≺ S2 ) if λ(S1) ≺w λ(S2) (resp. λ(S1) ≺ λ(S2), i.e. S1 ≺w S2 and tr S1 = tr S2).

Remark 2.3. Majorization between vectors in Rd is intimately related with the class of doubly
stochastic d × d matrices, denoted by DS(d). Recall that a d× d matrix D ∈ DS(d) if it has non-
negative entries and each row sum and column sum equals 1. It is well known (see [4]) that given
x , y ∈ Rd then x ≺ y if and only if there exists D ∈ DS(d) such that Dy = x. As a consequence
of this fact we see that if x1 , y1 ∈ Rr and x2 , y2 ∈ Rs are such that

xi ≺ yi for i = 1 , 2 =⇒ x = (x1 , x2) ≺ y = (y1 , y2) in Rr+s . (4)

Indeed, if D1 and D2 are the doubly stochastic matrices corresponding the previous majorization
relations then D = D1 ⊕D2 ∈ DS(r + s) is such that Dy = x. △

3 Optimal completions with prescribed norms

In this section we give a detailed description of the optimal completion problem and recall some
notions and results from our previous work [33, 34], in a way suitable for the exposition of the
results herein. In particular, the exposition of the results in Section 3.3 differs from that of [34],
since this new presentation is better suited for our present purposes.

3.1 Presentation of the problem

In several applied situations it is desired to construct a sequence G in such a way that the frame
operator of G is given by some B ∈ Md(C)

+ and the squared norms of the frame elements are
prescribed by a sequence of positive numbers a = (ai)i∈Ik ∈ Rk

>0 . That is, given a fixed B ∈
Md(C)

+ and a ∈ Rk
>0 , we analyze the existence (and construction) of a sequence G = {gi}i∈Ik such

that SG = B and ‖gi‖
2 = ai , for i ∈ Ik . This is known as the classical frame design problem. It

has been treated by several research groups (see for example [2, 8, 11, 13, 17, 18, 19, 26]). In what
follows we recall a solution of the classical frame design problem in the finite dimensional setting,
in the way that it is convenient for our analysis.

Proposition 3.1 ([2, 29]). Let B ∈ Md(C)
+ with λ(B) ∈ (Rd

≥0)
↓ and let a = (ai)i∈Ik ∈ Rk

>0 . Then

there exists a sequence G = {gi}i∈Ik ∈ Hk with frame operator SG = B and such that ‖gi‖
2 = ai

for every i ∈ Ik if and only if a ≺ λ(B) (completing with zeros if k 6= d). �
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Recently, researchers have made a step forward in the classical frame design problem and have
asked about the structure of optimal frames with prescribed parameters. Indeed, consider the
following problem posed in [20]: let H ∼= Cd and let F0 = {fi}i∈Ino

∈ Hno be a fixed (finite)
sequence of vectors. Consider a sequence a = (ai)i∈Ik ∈ Rk

>0 such that rkSF0 ≥ d − k and denote
by n = no + k. Then, with this fixed data, the problem is to construct a sequence

G = {gi}i∈Ik ∈ Hk with ‖gi‖
2 = ai for i ∈ Ik ,

such that the resulting completed sequence F = (F0 , G) ∈ F(n , d) - obtained by juxtaposition of
the two finite sequences - is a frame whose MSE, given by tr S−1

F , is minimal among all possible
such completions.

Note that there are other possible ways to measure robustness (optimality) of the completed frame F
as above. For example, we can consider optimal (minimizing) completions, with prescribed norms,
for the Benedetto-Fickus’ potential. In this case we search for a frame F = (F0 , G) ∈ F(n , d),
with ‖gi‖

2 = ai for i ∈ Ik, and such that its frame potential FP (F) = tr S2
F is minimal among all

possible such completions (indeed, this problem has been considered before in the particular case in
which F0 = ∅ in [3, 14, 22, 25, 30]). More generally, we can measure robustness of the completed
frame F = (F0,G) in terms of general convex potentials (see Definition 2.1).

In order to describe the main problems we first fix the notation that we shall use throughout the
paper.

Definition 3.2. Let F0 = {fi}i∈Ino
∈ Hno and a = (ai)i∈Ik ∈ (Rk

>0)
↓ such that d − rkSF0 ≤ k.

Define n = no + k. Then

1. In what follows we say that (F0 , a) are initial data for the completion problem (CP).

2. For these data we consider the sets

Ca(F0) =
{

(F0,G) ∈ Hn : G = {gi}i∈Ik and ‖gi‖
2 = ai for i ∈ Ik

}

,

and SCa(F0) = {SF : F ∈ Ca(F0)} ⊆ Md(C)
+ .

When the initial data (F0 , a) are fixed, we shall use the notations S0 = SF0 and λ = λ↑(S0) .

We remark that we shall use the vector λ = λ↑(S0) instead of λ↓(S0) for convenience (see the
comments at the beginning of Section 3). △

Main problems: (Optimal completions with prescribed norms for majorization) Let (F0 , a) be
initial data for the CP and let f ∈ Convs(R≥0).

P1. Give an explicit description (both spectral and geometrical) of F ∈ Ca(F0) that are the
minimizers of Pf in Ca(F0).

P2. Construct a fast algorithm that efficiently computes all possible F ∈ Ca(F0) that are the
minimizers of Pf in Ca(F0).

P3. Verify that the set of F ∈ Ca(F0) that are the minimizers of Pf in Ca(F0) is the same for
every f ∈ Convs(R≥0).

△

In previous works we have obtained some results related with the problems above. Indeed, in [33]
we obtained a partial affirmative answer to P3, while in [34] we obtained some partial results related
with P1. and a non-efficient algorithm as in P2. that worked in small examples (see Sections 3.2
and 3.3 below).

In this paper, building on our previous work, we completely solve the three problems above in
terms of a constructive (algorithmic) approach.
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3.2 On the structure of the minimizers of Pf on Ca(F0)

In this section we collect results of [34] that we shall use in this paper. Throughout this section
we fix the initial data (F0 , a) for the CP. Notice that we are using the following convention in
Definition 3.2: we denote λ = λ↑(SF0) ∈ Rd, i.e. arranged in non-decreasing order. Thus we recast
the results from [34] using this convention. Also notice that we are assuming that a = a↓ ∈ Rk.

Our analysis of the completed frames F = (F0 , G) depends on F through SF = SF0 + SG . Hence,
the following description of SCa(F0) plays a central role in our approach.

Proposition 3.3. Let (F0 , a) be initial data for the CP. Then

SCa(F0) =
{

S ∈ Md(C)
+ : S ≥ SF0 and a ≺ λ(S − SF0)

}

. �

Let µ ∈ (Rd
≥0)

↓ be such that a ≺ µ, and let

Ca(F0 , µ)
def
= {F = (F0 , G) ∈ Ca(F0) : λ(SG) = µ} ⊆ Ca(F0) .

By Proposition 3.3 we get the following partition:

Ca(F0) =
⊔

µ∈Γd(a)

Ca(F0 , µ) where Γd(a)
def
= {µ ∈ (Rd

≥0)
↓ : a ≺ µ} . (5)

Building on Lidskii’s inequality (see [4, III.4]) we obtained the following result:

Theorem 3.4. Consider the previous notations and fix µ = µ↓ ∈ Γd(a). Then,

1. The set Λ(Ca(F0 , µ))
def
= {λ(SF ) : F ∈ Ca(F0 , µ)} is convex.

2. Let ν
def
= λ↑(SF0) + µ↓. Then ν↓ is a ≺-minimizer in Λ(Ca(F0 , µ)).

3. If F = (F0 , G) ∈ Ca(F0 , µ) is such that λ(SF ) = ν↓ then SF0 and SG commute. �

Remark 3.5. Consider the previous notations and fix µ = µ↓ ∈ Γd(a). Let f ∈ Convs(R≥0) and
let Pf be the convex potential induced by f . By the results described in Section 2.3 and Theorem
3.4 we see that, if λ = λ↑(SF0) then

F ∈ argmin{Pf (F
′) : F ′ ∈ Ca(F0 , µ)} ⇐⇒ λ(SF ) = (λ+ µ)↓ = (λ↑ + µ↓ )↓ . (6)

That is, if we consider the partition of Ca(F0) described in Eq. (5), then in each slice Ca(F0 , µ)
the minimizers of the potential Pf are characterized by the spectral condition (6). This shows that
in order to search for global minimizers of Pf on Ca(F0) we can restrict our attention to the set

Cop
a
(F0)

def
=
{

F = (F0 , G) ∈ Ca(F0) : λ(SF ) =
(

λ↑(SF0) + λ↓(SG)
)↓ }

. (7)

Indeed, Eqs. (5) and (6) show that if F is a minimizer of Pf in Ca(F0) then F ∈ Cop
a (F0). Since

the potential Pf (F) depends on F through the eigenvalues of SF we introduce the sets

S(Cop
a
(F0))

def
= {SF : F ∈ Cop

a
(F0)} and Λ(Cop

a
(F0) )

def
= {λ(SF ) : F ∈ Cop

a
(F0)} . (8)

Finally, for any λ ∈ Rd
≥0 , in what follows we shall also consider the set

Λop
a
(λ)

def
= {λ↑ + µ : µ ∈ Γd(a)} = {λ↑ + µ↓ : µ ∈ Rd

≥0 and a ≺ µ} . (9)

△

Theorem 3.6. Let (F0 , a) be initial data for the CP. Denote by λ = λ↑(SF0). Then
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1. The set Λop
a (λ) is compact and convex.

2. The spectral picture Λ(Cop
a (F0) ) = {ν ↓ : ν ∈ Λop

a (λ)}.

3. If F = (F0 , G) ∈ Cop
a (F0), with λ↓(SG) = µ, then there exists {vi : i ∈ Id} an ONB of

eigenvectors for SF0 , λ such that

SG =
∑

i∈Id

µi · vi ⊗ vi and SF = SF0 + SG =
∑

i∈Id

(λi + µi) vi ⊗ vi . �

For every f ∈ Conv(R≥0) we consider the convex map

F : Rd
≥0 → R given by F (γ) = tr f(γ) =

∑

i∈Id

f(γi) , for γ ∈ Rd
≥0 . (10)

Theorem 3.7. Let (F0 , a) be initial data for the CP and let f ∈ Convs(R≥0). Then there exists
a vector µf (λ , a) = µ = µ↓ ∈ Γd(a) such that:

1. F = (F0 , G) ∈ Ca(F0) is a global minimizer of Pf ⇐⇒ F ∈ Cop
a (F0) and λ(SG) = µ.

2. If we let λ = λ↑(SF0) then µ is uniquely determined by the conditions

µ ∈ Γd(a) and F (λ+ µ) = min
γ∈Γd(a)

F (λ+ γ) = min
ν∈Λop

a
(λ)

F (ν) . (11)

Hence, if we let νf (λ , a)
def
= λ+µf (λ , a) then ∃ ! argmin {F (x) : x ∈ Λop

a (λ)} = νf (λ , a).

Theorem 3.8. Let (F0 , a) be initial data for the CP . Let f ∈ Convs(R≥0) and assume that
F = (F0 , G) is a global minimizer of Pf on Cop

a (F0). Then, there exists a partition {Ji}i∈Ip of Ik
and c1 > . . . > cp > 0 such that

1. The subfamilies Gi = {fj}j∈Ji (for i ∈ Ip ) are mutually orthogonal, i.e. SG = ⊕i∈IpSGi
.

2. The frame operators SGi
and SF0 commute, for every i ∈ Ip .

3. We have that SF fj = ci fj , for every j ∈ Ji and every i ∈ Ip .

The statement is still valid if we assume that F is just a local minimizer, but if we also assume as
a hypothesis that F satisfies item 2 (for example if SF0 = 0). �

3.3 The feasible case of the CP

In this section we recall the results from [33] that we shall need in the sequel. Throughout this
section we fix the initial data (F0,a) for the CP. Denote by S0 = SF0 , λ = λ↑(S0) and t = tr λ+tr a.
In [33] we introduced the following set

Ut(S0 , m) = {S0 +B : B ∈ Md(C)
+ , rkB ≤ d−m , tr (S0 +B) = t } ⊆ Md(C)

+ ,

where m = d − k. In [33, Theorem 3.12] it is shown that there exist ≺-minimizers in Ut(S0 , m).
Indeed, there exists µ(λ , a) ∈ (Rd

≥0)
↓ - that can be effectively computed by a fast algorithm -

such that, if ν(λ , a)
def
= λ + µ(λ , a) ∈ Rd

>0 then S ∈ Ut(S0 , m) is a ≺-minimizer if and only if
λ(S) = ν(λ , a)↓.

Notice that by construction ν(λ , a) is not a necessarily ordered vector (nor decreasing, nor increas-
ing); yet, in terms of the terminology from [33], we have that νλ ,m(t) = ν(λ , a)↓. Thus, we have
reversed the order of the vector µ(λ , a) - accordingly with reversing the order of λ = λ↑(SF0) - and

9



we have changed the description of the vector ν(λ , a) - while preserving all of their majorization
properties - with respect to [33]. Nevertheless, we point out that the ordering of the entries of the
vector ν(λ , a) presented here plays a crucial role in simplifying the exposition of the results herein,
as it guaranties that µ(λ , a) = ν(λ , a)− λ.

The following definition and remark show the relevance of the notions introduced above for the
computation of the spectral structure of solutions for the optimal completion problem.

Definition 3.9. Let (F0 , a) be initial data for the CP with λ = λ↑(SF0). We say that the pair
(λ , a) is feasible if µ(λ , a) satisfies that a ≺ µ(λ , a). △

Remark 3.10. Let (F0 , a) be initial data for the CP with λ = λ↑(SF0). Assume that the pair
(λ , a) is feasible and denote µ = µ(λ , a). In this case (see [33]) for any S which is a ≺-minimizer
in Ut(S0 , m) - where m = d − k - it holds that λ(S − S0) = µ and hence, by Proposition 3.3, we
conclude that S ∈ SCa(F0). Moreover, Proposition 3.3 also shows that SCa(F0) ⊆ Ut(S0 , m). Then
S is also a ≺-minimizer in SCa(F0). Therefore, as a consequence of the results in Section 2.3, any
completion F = (F0,G) ∈ Ca(F0) such that SF = S is a minimizer of Pf for every f ∈ Conv(R≥0).

On the other hand, as a consequence of the geometrical structure of S = SF as above (see [33, 34]),
we conclude that there exists c > 0 such that SF gi = c gi for every i ∈ Ik . That is, in this case the
structure of the completing sequence G given in Theorem 3.8 is trivial: the partition of Ik has only
one member and there exists a unique constant c = c1 . △

It is worth pointing out that it is easy to construct examples of initial data (F0 , a) for the CP
such that the pair (λ,a) is not feasible (see [33]), so that comments in Remark 3.10 do not apply
in these cases.

Remark 3.11. Let (F0 , a) be initial data for the CP with k ≥ d (so that m = d − k ≤ 0), let
λ = λ↑(SF0) and let t = tr a+ tr λ. In [33] we shown that there are two cases:

1. Since λ = λ↑ then λd = max {λi : i ∈ Id} . If

t

d
=

tr a+ tr λ

d
≥ λd then λ6

t

d
1d = ν(λ , a) . (12)

2. If λd > t
d then there exists s ∈ Id−1 such that

ν(λ , a) = (c1s , λs+1 , . . . , λd) with λs ≤ c < λs+1 (13)

so that λ6 ν(λ , a) = ν(λ , a)↑, and in this case the index s also satisfies that

c =
1

s

[

tr a+

s
∑

i=1

λi

]

so that tr ν(λ , a) = t = tr λ+ tr a .

In what follows we obtain an explicit description of the vector ν(λ , a) in case d ≤ k (so that m ≤ 0)
and 1

d [ tr a+ tr λ ] < λd . Explicitly, we compute the parameters s and c of Eq. (13) in a way that
is key for the developments of Section 4. Our present techniques differ substantially from those
introduced in [33]. We begin by showing that the vector ν(λ , a) above is unique. Then, we show
that the computation of ν(λ , a) for m ∈ Id−1 can be reduced to the case when m = 0. First we
need to introduce some notations: △

Definition 3.12. Let (F0 , a) be initial data for the CP. Assume that d ≤ k. We denote by

λ = λ↑(SF0) and hi = λi + ai for every i ∈ Id .

10



Given j , r ∈ Id ∪ {0} such that j < r, by Qj , r we denote the final averages:

Qj , r =
1

r − j

[

r
∑

i=j+1

hi +

k
∑

i=r+1

ai

]

=
1

r − j

[

k
∑

i=j+1

ai +

r
∑

i=j+1

λi

]

. (14)

We shall abbreviate Qr = Q0 , r . △

Lemma 3.13. Let (F0 , a) be initial data for the CP with k ≥ d. Let r ∈ Id . Then

1. If r < d and Qr < λr+1 then Qr < Qj , for every j such that r < j ≤ d.

2. If r < d and Qr ≤ λr+1 then Qr ≤ Qj , for every j such that r < j ≤ d.

3. If λr ≤ Qr then Qr ≤ Qj , for every j such that 1 ≤ j < r.

Proof. Denote by c = Qr for a fixed r < d. Recall that λ = λ↑. If j > r then

c < λr+1 =⇒ Qj =
1

j

(

tr a+
r
∑

i=1

λi +

j
∑

i=r+1

λi

)

>
1

j
( r c+ (j − r) c ) = c .

The proof of item 2 is identical. On the other side, if j < r then

λr ≤ c =⇒ Qj =
1

j



 tr a+

r
∑

i=1

λi −
r
∑

i=j+1

λi



 ≥
1

j
( r c− (r − j) c ) = c . �

Proposition 3.14. Let (F0 , a) be initial data for the CP with k ≥ d (so that m ≤ 0) and assume
that 1

d [ tr a+ tr λ ] < λd. Then

1. There exists a unique index s ∈ Id such that λs ≤ Qs < λs+1 , and in this case

s = max {w ∈ Id−1 : Qw = min
j∈Id

Qj } and ν(λ , a) = (Qs 1s , λs+1 , . . . , λd) (15)

2. If another index r ∈ Id−1 satisfies that λr ≤ Qr ≤ λr+1 , then

(a) Qr = min
j∈Id

Qj = Qs and r ≤ s.

(b) If r < s, then Qr = λr+1 = λs and also ν(λ , a) = (Qr 1r , λr+1 , . . . , λd).

3. Given ρ = (c1r , λr+1 , . . . , λd) (or ρ = c1d) such that λ6 ρ = ρ↑ and tr ρ = tr ν(λ , a)
then ρ = ν(λ , a).

Proof. The existence of an index s such as in item 1 is guaranteed by the properties of ν(λ , a)
stated in [33]. Nevertheless, it is easy to see that the index s described in Eq. (15) satisfies that
λs ≤ Qs < λs+1 . The formula given in Eq. (15), which shows the uniqueness of ν(λ , a), is a
direct consequence of Lemma 3.13. Assume that λr ≤ Qr ≤ λr+1 . Then Qr = min

j∈Id
Qj = Qs and

r ≤ s by Lemma 3.13. If r < s, then Qs =
1
s (r Qr +

∑s
i=r+1 λi) = Qr . This clearly implies all the

equalities of item (b). Finally, observe that item 2 =⇒ item 3. �

Remark 3.15. Let (F0 , a) be initial data for the CP with m = d− k > 0. Then if

λ̃ = (λ1 , . . . , λk) ∈ (Rk)↑ then ν(λ , a) = (ν( λ̃ , a) , λk+1 , . . . , λd) , (16)

and ν( λ̃ , a) is constructed as in Proposition 3.14.

The proof is direct by observing that, extracting the entries λk+1 , . . . , λd of the vector ν(λ , a)
as described in [33, Def. 4.13], the vector that one obtains (with the reverse order) satisfies the
conditions of item 3 of Proposition 3.14 relative to the pair ( λ̃ , a). △
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The following result is in a sense a converse to Remark 3.10. It establishes that if there exists
f ∈ Convs(R≥0) and a minimizer F = (F0,G) of Pf in Ca(F0) such that the structure of the
completing sequence G as described in Theorem 3.8 is trivial, the the underlying pair (λ , a) is
feasible. Recall the notation νf (λ , a) given in Theorem 3.7.

Lemma 3.16. Let (F0 , a) be initial data for the CP , k ≥ d, and let F = (F0 , G) ∈ Cop
a (F0) be a

minimum for Pf on Ca(F0) for a f ∈ Convs(R≥0). Suppose that, for some c > 0,

W = R(SG) 6= H and SF

∣

∣

W
∈ L(W ) = c IW .

Let λ = λ↑(SF0), µ = λ↓(SG) and s
def
= dim W = max{i ∈ Id : µi 6= 0}. Then

λs < c ≤ λs+1 so that (λ , a) is feasible and νf (λ , a) = ν(λ , a) .

The same final conclusion trivially holds if s = dim W = d and SF = c I.

Proof. Suppose that s < d. By hypothesis νf (λ , a) = λ↑ + µ↓ =
(

c1s , λs+1 , . . . , λd

)

and it
satisfies that λ(SF ) = νf (λ , a)

↓. Since a ≺ µ = µ↓ then tr µ = tr a >
∑s

i=1 ai , because s < d ≤ k.
Suppose now that c > λs+1 . For small t > 0 consider the vector

γ(t) =
(

c1s−1 , (c− t) , λs+1 + t , λs+2 , . . . , λd

)

∈ Rd with tr γ(t) = tr SF .

Let µ(t) = γ(t)− λ. For every t we have that tr µ(t) = tr µ. On the other hand, if

t <
µs

2
=⇒ µ(t) = (µ1 , . . . , µs−1 , µs − t , t , 01d−s−1) = µ(t)↓ ∈ (Rd

≥0)
↓ .

It is easy to see that if also t <
∑k

i=s+1 ai then still a ≺ µ(t). So there exists F ′ ∈ Cop
a (F0)

such that λ(SF ′) = γ(t)↓. Notice that, since (c − t , λs+1 + t) ≺ (c , λs+1) strictly, then Pf (F
′) =

tr f(γ(t) ) < tr f(νf(λ , a) ) = Pf (F), a contradiction. Hence c ≤ λs+1 .

The condition λs < c follows from the fact that c − λs = µs > 0. These facts show that λ =
λ↑ 6 νf (λ , a) = νf (λ , a)

↑ =⇒ νf (λ , a) = ν(λ , a) (by item 3 of Proposition 3.14). In particular,
a ≺ λ(SG) = µ = ν(λ , a)− λ = µ(λ , a) so that (λ , a) is feasible. �

4 Uniqueness and characterization of the minimum

In this section we shall state the main results of th paper. For the sake of clarity of the exposition,
we postpone the more technical proofs until Section 5.

4.1 (Fixed data, notations and terminolgy). Let (F0 , a) be initial data for the CP. Until Theorem
4.8, we shall assume that k ≥ d, so that m = d− k ≤ 0. Recall that

Cop
a
(F0)

def
=
{

F = (F0 , G) ∈ Ca(F0) : λ(SF ) =
(

λ↑(SF0) + λ↓(SG)
)↓ }

.

Fix f ∈ Convs(R≥0) and a minimizer F = (F0 , G) ∈ Ca(F0) be for Pf on Ca(F0).

1. By Theorem 3.7, we know that F ∈ Cop
a (F0) and, if we denote by λ = λ↑(SF0), then λ↓(SG) =

µf (λ , a) = νf (λ , a) − λ. By Theorem 3.6 there exists {vi : i ∈ Id} an ONB of eigenvectors
for SF0 , λ such that

SG =
∑

i∈Id

µi · vi ⊗ vi and SF = SF0 + SG =
∑

i∈Id

(λi + µi) vi ⊗ vi . (17)

2. Let sF = max {i ∈ Id : µi 6= 0} = rkSG . Denote by W = R(SG), which reduces SF .
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3. Let S = SF

∣

∣

W
∈ L(W ) and σ(S) = {c1 , . . . , cp} (where c1 > c2 > · · · > cp > 0).

4. Let Kj = {i ∈ IsF : λi + µi = cj} and Jj = {i ∈ Ik : S gi = cj gi}. By Theorem 3.8,

IsF =
⊔

j∈Ip

Kj and Ik =
⊔

j∈Ip

Jj .

Observe that sF , λ = λ↑(SF0) and the sets Kj completely describe the vector µ = λ(SG).

5. Since R(SG) = span{gi : i ∈ Ik} = W = ⊕i∈Ip ker (S − ci IW ) then for every j ∈ Ip ,

Wj
def
= span{gi : i ∈ Jj} = ker (S − cj IW ) = span{vi : i ∈ Kj} , (18)

because gi ∈ ker (S − cj IW ) for every i ∈ Jj . Note that, by Theorem 3.8, each Wj reduces
both SF0 and SG .

6. If p = 1 then J1 = Ik and S = c1 IW . Hence the minimum F satisfies the hypothesis of
Lemma 3.16, so that the pair (λ , a) is feasible.

7. We denote by hi = λi + ai for every i ∈ Id . Given j , r ∈ Id such that j ≤ r, let

Pj , r =
1

r − j + 1

r
∑

i=j

hi =
1

r − j + 1

r
∑

i=j

λi + ai ,

be the initial averages. We abbreviate P1 , r = Pr . △

Remark 4.2 (A reduction procedure). Consider the data, notations and terminology fixed in 4.1.
For any j ∈ Ip−1 denote by

Ij = Id \
⋃

i≤j

Ki , Lj = Ik \
⋃

i≤j

Ji , λ(j) = (λi)i∈Ij , Gj = (gi)i∈Lj
, a(j) = (ai)i∈Lj

and take some sequence F
(j)
0 in Hj =

[
⊕

i≤j Wi

]⊥
such that S

F
(j)
0

= S0|Hj
(notice that, by

construction, Hj reduces S0).

Then, it is straightforward to show that Fj = (F
(j)
0 , Gj) is a (global) minimizer of Pf on Caj

(F
(j)
0 )

in Hj , i.e. an optimal completion for the reduced problem. Indeed, recall that the minimality is
computed in terms of the map F defined in Eq. (10), which works independently in each entry of
λ(SF ) = νf (λ , a)

↓.

The importance of the previous remarks lies in the fact that they provide a powerful reduction
method to compute the structure of the sets Gi , Ki and Ji for i ∈ Ip as well as the set of constants
c1 > . . . > cp > 0. Indeed, assume that we are able to describe the sets G1 , K1 , J1 and the constant
c1 in some structural sense, using the fact that these sets are extremal (e.g. these sets are built on
c1 > cj for 2 ≤ j ≤ p).

Then, in principle, we could apply these structural arguments to find G2 , K2 , J2 and the constant
c2 , using the fact that these are now extremal sets of F1 , which is a Pf minimizer of the reduced

CP for (F
(1)
0 ,a(1)). On the other hand, the minimality of the final reduction Fp−1 produces a

pair (λ(p−1) , a(p−1)) which must be feasible by item 6 of 4.1, because it has an unique constant
cp associated to the unique set Kp . As we shall see, this strategy can be implemented to obtain
(inductively) a precise description of the sets above. △

Remark 4.3. Let (F0 , a) be initial data for the CP with d ≤ k, λ = λ↑(SF0) and a = a↓. Fix
f ∈ Convs(R≥0) and let F = (F0 , G) ∈ Cop

a (F0) be a global minimum for Pf on Cop
a (F0). In section

5.1 we shall prove the following properties (conjectured in [34]) of the sets Jj and Kj defined in
item 4. of 4.1 describing µf (λ , a) and νf (λ , a):
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1. Each set Jj and Kj consists of consecutive indexes, for j ∈ Ip .

2. The sets Kj and Jj have the same number of elements, for j ∈ Ip−1 .

3. Moreover, J1 < . . . < Jp (i.e. if l ∈ Ji and h ∈ Jj with i < j ⇒ l < h) and K1 < . . . < Kp.
In particular, by items 1 and 2 above, Kj = Jj for j ∈ Ip−1 .

△

We state the properties of the sets Jj and Kj, j ∈ Ip described in Remark 4.3 in the following:

Theorem 4.4. Let (F0 , a) be initial data for the CP with d ≤ k. With the notations of Remark
4.3, assume that λ = λ↑(SF0), µ = µ↓ = µf (λ , a) and a = a↓. Then

1. There exist 0 = s0 < s1 < s2 < · · · < sp−1 < sp = sF = max{j ∈ Id : µj 6= 0} such that

Kj = Jj = {sj−1 + 1 , . . . , sj} , , for j ∈ Ip−1 ,

Kp = {sp−1 + 1 , . . . , sp} , Jp = {sp−1 + 1 , . . . , k} .

2. The vector νf (λ , a) =
(

c1 1s1 , . . . , cp 1sp−sp−1 , λsp+1 , . . . , λd

)

, where

cr =
1

sr − sr−1

sr
∑

i=sr−1+1

hi = Psr−1+1 , sr for r ∈ Ip−1 ,

or also cr = λj + µj for every j ∈ Kr = Jr for r ∈ Ip−1 .

3. The constant cp is the one defined by the feasible final part i.e., cp = Qsp−1 , sp and the indexes
sp−1 and sp are determined by the last block (recall Lemma 3.16).

Proof. See Section 5.2. �

Let (F0 , a) be initial data for the CP. Assume that νf (λ , a) =
(

c1 1s1 , . . . , λs1+1 , . . . , λd

)

i.e.
with p = 1, in the notations of Theorem 4.4. Then, by Lemma 3.16, the pair (λ , a) is feasible and
νf (λ , a) = ν(λ , a).

In what follows we shall need the following notion, that allow us to show feasibility in the more
general case in which, in the notations of Theorem 4.4, p > 1.

Definition 4.5. Let (F0 , a) be initial data for the CP. Let λ = λ↑(SF0) ∈ (Rd
>0)

↑. Suppose that
k ≥ d. Given s ∈ Id−1 denote by

λs = (λs+1 , . . . , λd) ∈ Rd−s and as = (as+1 , . . . , ak) ∈ Rk−s ,

the truncations of the original vectors λ and a. We say that the index s is feasible if the pair
(λs , as) is feasible for the CP. Note that (d− s)− (k − s) = d− k = m ≤ 0. Therefore

νs
def
= ν(λs , as)

(13)
=
(

c1r−s , λr+1 , . . . , λd

)

where c = Qs , r

for the unique r > s such that λr ≤ c < λr+1 (or νs = Qs , d 1d−s if λd ≤ Qs , d). This means that
λs6 νs ∈ (Rd−s

>0
)↑. △

By Remark 4.2 and Lemma 3.16 we know that, with the notations of 4.1, the index sp−1 associated
to the minimum ν = νf (λ , a) is feasible - in the sense of Definition 4.5 - because the last block of
ν is constructed with the final feasible parts of λ and a, and νsp−1 =

(

cp 1sp−sp−1 , λsp+1 , . . . , λd

)

.

Proposition 4.6. Let (F0 , a) be initial data for the CP. With the notations of Theorem 4.4, the
global minimum νf (λ , a) satisfies that
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1. The index sp−1 (where the feasible part begins) is determined by

sp−1 = min { s ∈ Id : s is feasible } .

2. The following recursive method allow to describe the vector νf (λ , a) as in Theorem 4.4:

(a) The index s1 = max
{

j ≤ sp−1 : P1 , j = max
i≤sp−1

P1 , i

}

, and c1 = P1 , s1 .

(b) If the index sj is already computed and sj < sp−1 , then

sj+1 = max
{

sj < r ≤ sp−1 : Psj+1 , j = max
sj<i≤sp−1

Psj+1 , i

}

and cj+1 = Psj+1 , sj+1 .

Proof. See Propositions 5.14 and 5.11. �

The following are the main results of the paper. In order to state them, we introduce the spectral
picture of the completions with prescribed norms, given by

Λ(Ca(F0) )
def
= {λ(SF ) : F ∈ Ca(F0)} .

Theorem 4.7. Let (F0 , a) be initial data for the CP with m = d − k ≤ 0. Then the vector
ν = νf (λ , a) is the same for every f ∈ Convs(R≥0). Therefore,

ν↓ ∈ Λ(Ca(F0) ) and ν↓ ≺ γ for every γ ∈ Λ(Ca(F0) ) . (19)

Proof. By Proposition 4.6, the minima ν = νf (λ , a) are completely characterized by the data
(λ , a) without interference of the map f . Therefore, given any γ ∈ Λ(Ca(F0)),

tr f(ν) ≤ tr f(γ) for every f ∈ Convs(R≥0) =⇒ ν ≺ γ . �

The following result shows that the structure of optimal completions in Ca(F0) in casem = d−k > 0
can be obtained from the case in which m = 0.

Theorem 4.8. Let (F0 , a) be initial data for the CP with m = d− k > 0. If we let

λ′ = (λ1 , . . . , λk) ∈ (Rk
≥0)

↑ then νf (λ , a) = (νf (λ
′ , a) , λk+1 , . . . , λd) ,

where νf (λ
′ , a) is constructed as in Proposition 4.6 (since d ′ = k, by construction of λ′ ∈ (Rd ′

≥0)
↑).

In this case the vector νf (λ , a) is the same for every f ∈ Convs(R≥0) and also satisfies Eq. (19).

Proof. Since k = d−m and a ∈ Rk we deduce that any δ = δ↓ ∈ Rd
≥0 such that a ≺ δ must have

δk+1 = . . . = δd = 0. It is easy to see that this fact implies that

Λop
a
(λ) = {λ↑ + δ↓ : δ ∈ Rd

≥0 and a ≺ δ} = {(γ , λk+1 , . . . , λd) : γ ∈ Λop
a
(λ′)} (20)

We know that νf (λ , a)− λ = µ = µ↓ and that a ≺ µ =⇒ µk+1 = . . . = µd = 0. Recall the map
F : Rd

≥0 → R defined in Eq. (10) for each f ∈ Convs(R≥0). Therefore

νf (λ , a) ∈ Λop
a
(λ) and νf (λ , a) = µ↓ + λ↑ =⇒ νf (λ , a) = (ρ , λk+1 , . . . , λd) , (21)

for some ρ ∈ Λop
a (λ′). Then F (νf (λ , a) ) = F (ρ) + F (λk+1 , . . . , λd). By Eq. (11),

F (νf (λ , a) )
(11)
= min

ν∈Λop
a (λ)

F (ν)
(20)
=

[

min
γ∈Λop

a (λ′)
F (γ)

]

+ F (λk+1 , . . . , λd) .

Using Eq. (11) again we deduce that ρ = νf (λ
′ , a). Since νf (λ

′ , a) is constructed as in Proposition
4.6, then it is the same vector for every strictly convex map f and the same happens with νf (λ , a),
so that νf (λ , a)

↓ is a minimum for majorization on Λ(Ca(F0) ). �

Remark 4.9. The construction of the minimum νf (λ , a) given by Proposition 4.6 is algorithmic,
an it can be easily implemented in Mathlab. It only depends on - an already available, see [33] -
routine for checking feasibility, which is fast and efficient. △
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5 Proofs of some technical results.

In this section we present detailed proofs of several statements in section 4. All these results assume
that the initial data (F0 , a) for the CP satisfies that k ≥ d. As already explained, the general case
can be reduced to this situation.

5.1 Description of the sets Ki and Ji .

5.1. We begin by recalling the notations of 4.1: Let (F0 , a) be initial data for the CP, with k ≥ d.
Fix a convex map f ∈ Convs(R≥0). We consider the following objects:

1. Let F = (F0 , G) ∈ Cop
a (F0) be a global minimum for Pf on Cop

a (F0) (or a local minimum

if F0 = ∅). If λ = λ↑(SF0) and µ
def
= λ↓(SG), then there exists {vi : i ∈ Id} an ONB of

eigenvectors for SF0 , λ such that

SG =
∑

i∈Id

µi · vi ⊗ vi and SF = SF0 + SG =
∑

i∈Id

(λi + µi) vi ⊗ vi .

2. Let sF = max{i ∈ Id : µi 6= 0} = rkSG . Denote by W = R(SG), which reduces SF .

3. Let S = SF

∣

∣

W
∈ L(W ) and σ(S) = {c1 , . . . , cp} (where c1 > c2 > · · · > cp).

4. Let Kj = {i ∈ Is : λi + µi = cj} and Jj = {i ∈ Ik : S gi = cj gi}. Then

IsF =
D
⋃

j∈Ip

Kj and Ik =
D
⋃

k∈Ip

Jk .

We remark that, if F0 = ∅, these facts are still valid for local minima by Theorem 3.8. The next
three Propositions give a complete proof of Theorem 4.4. The first of them justifies the convention
that λ = λ↑(SF0). △

Proposition 5.2. Let (F0 , a) be initial data for the CP with λ = λ↑(SF0 ), and consider the
notations of 5.1. If p > 1, then

i ∈ K1 =⇒ i < j ( =⇒ λi ≤ λj ) for every j ∈
⋃

r>1
Kr = IsF \K1 .

Inductively, by means of Remark 4.2, we deduce that all sets Kj consist on consecutive indexes,
and that Ki < Kj (in terms of their elements) if i < j.

Proof. Suppose that there are i ∈ K1 and j ∈ Kr (for some r > 1) such that j < i. Then λj ≤ λi

and µi ≤ µj . For t > 0 very small, let µi(t) = µi − t > 0 and µj(t) = µj + t. Consider the vector
µ(t) obtained by changing in µ the entries µi by µi(t) and µj by µj(t). Observe that not necessarily
µ(t) = µ(t)↓, but we are indeed sure that c1 > cr .

Nevertheless, by Remark 2.3, (µi , µj) ≺ (µi(t) , µj(t) ) =⇒ a ≺ µ ≺ µ(t). Therefore there exists
F ′ = (F0 , G

′) ∈ Ca(F0) such that, using the ONB of Eq. (17),

SG′ =
∑

h∈Id

µh(t) · vh ⊗ vh and SF ′ = SF0 + SG′ =
∑

h∈Id

(λh + µh(t) ) vh ⊗ vh .

Denote by V = span{vi , vj}, which reduces both SF and SF ′ . Also SF ′ |V ⊥ = SF |V ⊥ . Considering
the restrictions to V as operators in L(V ) ∼= M2(C) we get that

λ(SF ′ |V ) = (λi + µi(t) , λj + µj(t) ) = (c1 − t , cr + t) ≺ (c1 , cr) = λ(SF |V ) strictly ,
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for t small enough in such a way that c1 − t > cr + t, so that (c1 − t , cr + t) = (c1 − t , cr + t)↓.
Then the map F of Eq. (10), considered both on R2

≥0 and Rd
≥0 , satisfies that

F
(

λ(SF ′ |V )
)

< F
(

λ(SF |V )
)

=⇒ Pf (F
′) = F

(

λ(SF ′)
)

< F (λ(SF ) ) = Pf (F) ,

a contradiction. The inductive argument follows from Remark 4.2. �

5.3. In the following two statements we assume that, for some f ∈ Convs(R≥0), the sequence
F = (F0 , G) ∈ Cop

a (F0) is a global minimum for Pf , or it is a local minimum if SF0 = 0 and λ = 0.
In both cases 5.1 applies. △

Proposition 5.4. Let (F0 , a) be initial data for the CP, and let F = (F0 , G) ∈ Cop
a (F0) as in 5.1

and 5.3. Suppose that p > 1. Given h ∈ Ji and l ∈ Jr then

i < r =⇒ ah − al ≥ ci − cr > 0 .

In particular, the sets Ji consist of consecutive indexes, and J1 < J2 < . . . < Jp (in terms of their
elements). �

Proof. Let us assume that i < r ∈ Ip , h ∈ Ji and l ∈ Jr , but l < h (even less: that al ≥ ah ). Then

gl ⊗ gl ≤ SG ≤ SF and SF gl = cr gl =⇒ ah = ‖gh‖
2 ≤ ‖gl‖

2 = al ≤ cr < ci .

We also know that 〈gl , gh〉 = 0. Denote by wh = gh
‖gh‖

= a
−1/2
h gh and wl =

gl
‖gl‖

= a
−1/2
l gl . Let

gh(t) = cos(t) gh + sin(t) ‖gh‖ wl and gl(t) = cos(γt) gl + sin(γt) ‖gl‖ wh for t ∈ R

for some convenient γ > 0 that we shall find later. Let Fγ(t) be the sequence obtained by changing
in F the vectors gh by gh(t) and gl by gl(t), for every t ∈ R. Notice that ‖gh(t)‖

2 = ah and
‖gl(t)‖

2 = al for every t ∈ R, so that all the sequences Fγ(t) ∈ Ca(F0).

Let W = span{wh , wl}, a subspace which reduces SF and SFγ(t) . Note that gh(t), gl(t) ∈ W . In
the matrix representation with respect to this basis of W we get that

gh ⊗ gh =

[

ah 0
0 0

]

wh

wl
, gh(t)⊗ gh(t) = ah

[

cos2(t) cos(t) sin(t)
cos(t) sin(t) sin2(t)

]

wh

wl
,

gl ⊗ gl =

[

0 0
0 al

]

wh

wl
and gl(t)⊗ gl(t) = al

[

sin2(γ t) cos(t) sin(t)
cos(t) sin(t) cos2(γ t)

]

wh

wl

If we denote by S(t) = SFγ(t) , we get that

S(t) = SF − gh ⊗ gh − gl ⊗ gl + gh(t)⊗ gh(t) + gl(t)⊗ gl(t) .

Therefore S(t)|W⊥ = SF |W⊥ . On the other hand, SF |W =

[

ci 0
0 cr

]

. Then

S(t)|W =

[

ci + ah (cos
2(t)− 1) + al sin

2(γt) ah cos(t) sin(t) + al cos(γt) sin(γt)
ah cos(t) sin(t) + al cos(γt) sin(γt) cr + ah sin2(t) + a2l (cos

2(γt)− 1)

]

def
= Aγ(t) .

Note that tr Aγ(t) = ci+cr for every t ∈ R. Therefore λ(Aγ(t) ) ≺ (ci , cr) strictly ⇐⇒ ‖Aγ(t)‖
2
2
<

c2i + c2r . Hence we consider the map mγ : R → R given by

mγ(t) = ‖Aγ(t)‖
2
2
= tr (Aγ(t)

2) for every t ∈ R .

Note that S(0) = SF =⇒ mγ(0) = c2i +c2r . We shall see that, for a convenient choice of γ, it holds
that m′

γ(0) = 0 but m′′
γ(0) < 0. This will contradict the (local) minimality of F , because mγ would
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have in this case a maximum at t = 0, so that λ(Aγ(t) ) ≺ (ci , cr) strictly
(4)
=⇒ λ(SFγ(t)) ≺ λ(SF )

strictly =⇒ Pf (Fγ(t) ) < Pf (F) for every t near 0.

Indeed, we first compute the derivatives of the entries aij of Aγ(t) :

a′11 = −ah sin(2t) + γ al sin(2γt)
a′12 = ah cos(2t) + γ al cos(2γt)
a′22 = ah sin(2t)− γ al sin(2γt)

and
a′′11 = 2 [−ah cos(2t) + γ2 al cos(2γt)]
a′′22 = 2 [ah cos(2t)− γ2al cos(2γt)]

.

So a′11(0) = 0 , a′22(0) = 0 and a12(0) = 0. Then, for i , j ∈ I2 we have that

(a2ij)
′(0) = 2 aij(0) a

′
ij(0) = 0 and (a2ij)

′′(0) = 2
(

(a′ij)
2(0) + aij(0) a

′′
ij(0)

)

.

Therefore (a211)
′′(0) = 4ci(−ah+γ2 al), (a

2
12)

′′(0) = 2 (ah+γ al)
2 and (a222)

′′(0) = −4cr (−ah+γ2 al) .
We conclude that m′

γ(0) = 0 (for every γ ∈ R) and that

m′′
γ(0) = 4

[

ci(−ah + γ2 al) + (ah + γ al)
2 − cr (−ah + γ2 al)

]

,

which is quadratic polynomial on γ with discriminant (if we drop the factor 4) given by

D = ah al

[

ah al −
(

al + (ci − cr)) (ah − (ci − cr)
)

]

.

As we are assuming that al ≥ ah then D > 0, because

(

al + (ci − cr)) (ah − (ci − cr)
)

= al ah − (ci − cr)(al − ah)− (ci − cr)
2 < al ah .

Hence there exists γ ∈ R such that m′′
γ(0) < 0. Observe that as long as 0 < (ci − cr)(al − ah) +

(ci − cr)
2 ( ⇐⇒ ah − al < ci − cr) we arrive at the same contradiction. �

The following result is inspired on some ideas from [1].

Proposition 5.5. Let (F0 , a) be initial data for the CP, and let F = (F0 , G) ∈ Cop
a (F0) as in 5.1

and 5.3. For every j < p, the subsequence {gi}i∈Jj of G is linearly independent.

Proof. Suppose that there exists j ∈ Ip−1 such that {gi}i∈Jj is linearly dependent. Hence there
exists coefficients zl ∈ C, l ∈ Jj (not all zero) such that |zl| ≤ 1/2 and

∑

l∈Jj

zl al gl = 0 . (22)

Let Ij ⊆ Jj be given by Ij = {l ∈ Jj : zl 6= 0} and let h ∈ Cd such that ‖h‖ = 1 and SFh = cp h.
For t ∈ (−1, 1) let F(t) = (F0,G(t)) where G(t) = {gi(t)}i∈Ik is given by

gl(t) =

{

(1− t2 |zl|
2)1/2gl + t zl alh if l ∈ Ij

gl if l ∈ Ik \ Ij .

Fix l ∈ Ij . Let Re(A) =
A+A∗

2 denote the real part of each A ∈ L(H). Then

gl(t)⊗ gl(t) = (1− t2 |zl|
2) gl ⊗ gl + t2 |zl|

2 a2l h⊗ h+ 2 (1 − t2 |zl|
2)1/2 t Re(h⊗ al zl gl)

Let S(t) denote the frame operator of F(t) and notice that S(0) = SF . Note that

S(t) = SF + t2
∑

l∈Ij

|zl|
2
(

−gl ⊗ gl + a2l h⊗ h
)

+R(t)
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where R(t) = 2
∑

l∈Ij

(1− t2 |zl|
2)1/2 t Re(h⊗ al zl gl). Then R(t) is a smooth function such that

R(0) = 0 , R′(0) =
∑

l∈Ij

Re(h⊗ al zl gl) = Re(h⊗
∑

l∈Ij

al zl gl) = 0 ,

and such that R′′(0) = 0. Therefore lim
t→0

t−2 R(t) = 0. We now consider

W = span
(

{gl : l ∈ Ij} ∪ {h}
)

= span
{

gl : l ∈ Ij
}

⊥ C · h .

Then dimW = s+ 1, for s = dim span{gl : l ∈ Ij} ≥ 1. By construction, the subspace W reduces
SF and S(t) for t ∈ R, in such a way that S(t)|W⊥ = SF |W⊥ for t ∈ R. On the other hand

S(t)|W = SF |W + t2
∑

l∈Ij

|zl|
2
(

−gl ⊗ gl + a2l h⊗ h
)

+R(t) = A(t) +R(t) ∈ L(W ) , (23)

where we use the fact that the ranges of the selfadjoint operators in the second and third term in
the formula above clearly lie in W . Then λ

(

SF |W
)

=
(

cj 1s , cp
)

∈ (Rs+1
>0 )↓ and

λ
(

∑

l∈Ij
|zl|

2gl ⊗ gl

)

= (γ1 , . . . , γs , 0) ∈ (Rs+1
≥0 )↓ with γs > 0 ,

where we have used the definition of s and the fact that |zl| > 0 for l ∈ Ij . Hence, for sufficiently
small t, the spectrum of the operator A(t) ∈ L(W ) defined in (23) is

λ
(

A(t)
)

=
(

cj − t2 γs , . . . , cj − t2 γ1 , cp + t2
∑

l∈Ij
a2l |zl|

2
)

∈ (Rs+1
≥0 )↓ ,

where we have used the fact that 〈gl , h〉 = 0 for every l ∈ Ij . Let us now consider

λ
(

R(t)
)

=
(

δ1(t) , . . . , δs+1(t)
)

∈ (Rs+1
≥0 )↓ for t ∈ R .

Recall that in this case lim
t→0

t−2δj(t) = 0 for 1 ≤ j ≤ s+1. Using Weyl’s inequality on Eq. (23), we

now see that λ
(

S(t)|W
)

≺ λ
(

A(t)
)

+ λ
(

R(t)
) def

= ρ(t) ∈ (Rs+1
≥0 )↓. We know that

ρ(t) =
(

cj − t2 γs + δ1(t) , . . . , cj − t2 γ1 + δs(t) , cp + t2
∑

l∈Ij
a2l |zl|

2 + δs+1(t)
)

=
(

cj − t2 (γs −
δ1(t)
t2

) , . . . , cj − t2 (γ1 −
δs(t)
t2

) , cp + t2 (
∑

l∈Ij
a2l |zl|

2 + δs+1(t)
t2

)
)

.

A direct test shows that, for small t, this ρ(t) ≺ λ(SF |W ) =
(

cj 1s , cp
)

strictly. Then, since f is
strictly convex, for every sufficiently small t we have that

Pf

(

F(t)
)

≤ tr f
(

λ(SF |W⊥)
)

+ tr f
(

ρ(t)
)

< tr f
(

λ(SF |W⊥)
)

+ tr f
(

λ(SF |W )
)

= Pf (F) .

This last fact contradicts the assumption that F is a local minimizer of Pf in Cop
a (F0). �

Remark 5.6. Proposition 5.5 allows to show that in case F0 = ∅ then local and global minimizers
of a convex potential Pf , induced by f ∈ Convs(R≥0), on Ca(F0) - endowed with the product
topology - coincide, as conjectured in [30].

Recall that a local minimizer F is a juxtaposition of tight frame sequences {Fi}i∈Ip which generate
pairwise orthogonal subspaces of H. Notice that by [34, Lemma 4.9] F is a frame for H. Moreover,
by Proposition 5.4, it is constructed using a partition of a with consecutive indexes.

Now by inspection of the proof of Proposition 5.5 we see that only one of such frame sequences can
be a linearly dependent set: that with the smallest tight constant cp. This forces that the (ordered)
spectrum ν of a local minimizer must be either ν = c1d or

ν = (a1 , a2 , . . . , ar , c , · · · , c) , where ar > c ≥ ar+1 ,

19



and c is the constant of the unique tight subframe constructed with a linear dependent sequence of
vectors with norms given by {ai}

k
i=r+1 (notice that this forces c ≥ ar+1). But it is not difficult to

see that this vector can be constructed in a unique way, that is, there is only one r such that

ar+1 ≤ c =
1

d

(

tr(a)−
r
∑

i=1

ai

)

< ar .

That is, the spectrum of local minimizers is unique and therefore local and global minimizers of Pf

coincide, for every potential Pf as above. △

5.2 Several proofs.

Let (F0 , a) be initial data for the CP with λ = λ↑(SF0), a = a↓ and d ≤ k. Recall that we denote
by hi = λi + ai for every i ∈ Id and, given j , r ∈ Id such that j ≤ r, we denote by

Pj , r = 1
r−j+1

r
∑

i=j
hi =

1
r−j+1

r
∑

i=j
λi + ai .

We shall abbreviate P1 , r = Pr .

5.7 (Proof of Theorem 4.4). We rewrite its statement: Let (F0 , a) be initial data for the CP
with d ≥ k. Let F = (F0 , G) ∈ Cop

a (F0) be a global minimum for Pf on Cop
a (F0). Using the

notations of 4.1, assume that λ = λ↑(SF0), µ = µ↓ = µf (λ , a) and a = a↓. Then

1. There exist indexes 0 = s0 < s1 < · · · < sp−1 < sp = sF = max{j ∈ Id : µj 6= 0} such that

Kj = Jj = {sj−1 + 1 , . . . , sj} , , for j ∈ Ip−1 ,

Kp = {sp−1 + 1 , . . . , sp} , Jp = {sp−1 + 1 , . . . , k} .
(24)

2. The vector νf (λ , a) =
(

c1 1s1 , . . . , cp 1sp−sp−1 , λsp+1 , . . . , λd

)

, where

cr =
1

sr − sr−1

sr
∑

i=sr−1+1

hi = Psr−1+1 , sr for r ∈ Ip−1 , (25)

or also cr = λj + µj for every j ∈ Kr = Jr for r ∈ Ip−1 .

3. The constant cp is the one defined by the feasible final part i.e., cp = Qsp−1 , sp of (14) and
the indexes sp−1 and sp are determined by the last block, which is feasible.

Proof. Recall from Eq. (18) that for every j ∈ Ip−1

Wj
def
= ker (S − cj IW ) = span{vi : i ∈ Kj} = span{gi : i ∈ Jj}

By Proposition 5.5 |Jj | = dimWj = |Kj | for j < p. Using now Propositions 5.2 and 5.4, we deduce
that there exist indexes 0 = s0 < s1 < s2 < · · · < sp−1 < sp = sF = max{j ∈ Id : µj 6= 0} such
that the sets Kj and Jj satisfy Eq. (24). Using Eq. (18) again,

SG|Wj
=
∑

i∈Jj
gi ⊗ gi =⇒ tr SG |Wj

=
∑

i∈Kj
µi =

∑

i∈Jj
ai . (26)

Therefore (sj − sj−1) cj = trS|Wj
= tr SF0 |Wi

+ tr SG |Wi
=
∑

i∈Kj
hi , for every j < p. Then the

vector νf (λ , a) =
(

c1 1s1 , . . . , cp 1sp−sp−1 , λsp+1 , . . . , λd

)

, where the constants cr are given by
Eq. (25) for r < p. Item 3 follows from Remark 4.2 and Lemma 3.16. �
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Lemma 5.8. Let (F0 , a) be initial data for the CP with k ≥ d. Given m ∈ Id ,

(aj)j∈Im ≺ (Pm − λj)j∈Im ⇐⇒ Pm ≥ Pi for every i ∈ Im ⇐⇒ P1 , m = max
i∈Im

{P1 , i} .

Proof. Straightforward. �

Remark 5.9. Let (F0 , a) be initial data for the CP with k ≥ d and recall the description of a
minimum νf (λ , a) given in Theorem 4.4. As in Lemma 5.8 (or by an inductive argument using
Remark 4.2) we can assure that for every r ≤ p− 1, the constants

cr = Psr−1+1 , sr ≥ Psr−1+1 , j for every j such that sr−1 + 1 ≤ j ≤ sr . (27)

It uses that (aj)
sr
j=sr−1+1 ≺ (µj)

sr
j=sr−1+1 = (cr − λj)

sr
j=sr−1+1 , a consequence of Eq. (26). △

Lemma 5.10. Let (F0 , a) be initial data for the CP. With the notations of Theorem 4.4, the global
minimum νf (λ , a), its constants cj and the indexes sj (for j ∈ Ip) satisfy the following properties:

1. Suppose that p > 1. For every j ∈ Ip−1 such that j > 1, the constant cj satisfies that

cj = Psj−1+1 , sj =
1

sj − sj−1

sj
∑

i=sj−1+1

hi <
1

sj

sj
∑

i=1

hi = P1 , sj . (28)

2. Fix j ∈ Ip−1 such that j > 1. Then

P1 , t < P1 , sj−1 for every sj−1 < t ≤ sp−1 . (29)

3. In particular the averages P1 , sj =
1

sj

sj
∑

i=1

hi <
1

sj−1

sj−1
∑

i=1

hi = P1 , sj−1 for 2 ≤ j ≤ p− 1.

Proof. The inequality of item 1 follows since

∑sj
i=1 hi =

∑s1
i=1 hi +

∑s2
i=s1+1 hi + . . .+

∑sj
i=sj−1+1 hi

= s1 c1 + (s2 − s1) c2 + . . .+ (sj − sj−1) cj > sj cj .

Now we prove the inequality of Eq. (29): Given an index t such that sj−1 < t ≤ sj ,

t P1 , t = sj−1 P1 , sj−1 +
∑t

i=sj−1+1 hi

= sj−1 P1 , sj−1 + (t− sj−1)
1

(t−sj−1)

∑t
i=sj−1+1 hi

(27)

≤ sj−1 P1 , sj−1 + (t− sj−1) cj

< sj−1 P1 , sj−1 + (t− sj−1) cj−1

≤ sj−1 P1 , sj−1 + (t− sj−1)P1 , sj−1 = t P1 , sj−1 ,

where we used the fact that cj−1 ≤ P1 , sj−1 for 1 ≤ j − 1 ≤ p − 1, which follows from item 1. In
particular we have proved item 3, and this also proves that Eq. (29) holds for sj < t ≤ sp−1 . �

Proposition 5.11. Let (F0 , a) be initial data for the CP. With the notations of Theorem 4.4, the
global minimum ν = νf (λ , a), its constants cj and the indexes sj (for j ∈ Ip) satisfy the following
properties: Suppose we know the index sp−1 , and that p > 1. Then we have a recursive method to
reconstruct ν:
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1. The index s1 = max
{

j ≤ sp−1 : P1 , j = max
i≤sp−1

P1 , i

}

, and c1 = P1 , s1 .

2. If we already compute the index sj and sj < sp−1 , then

sj+1 = max
{

sj < r ≤ sp−1 : Psj+1 , r = max
sj<i≤sp−1

Psj+1 , i

}

and cj+1 = Psj+1 , sj+1 .

Proof. The formula P1 , s1 = max
i≤sp−1

P1 , i follows from Lemma 5.8 and Eq. (29) of Lemma 5.10,

which also implies that s1 must be the greater index (before sp−1) satisfying this property.

The iterative program works by applying the last fact to the successive truncations of ν which are
still minima in their neighborhood, by Remark 4.2. �

Recall that hi = λi + ai and that, for 0 ≤ j < r ≤ d, we denoted by

Qj , r = 1
r−j

[

∑r
i=j+1 hi +

∑k
i=r+1 ai

]

= 1
r−j

[

∑k
i=j+1 ai +

∑r
i=j+1 λi

]

, (30)

and we abbreviate Q1 , r = Qr . Recall also the notion of feasible indexes given in Definition 4.5:
Let (F0 , a) be initial data for the CP with λ = λ↑(SF0) and k ≥ d. Given s ∈ Id−1 denote by
λs = (λs+1 , . . . , λd) ∈ Rd−s and as = (as+1 , . . . , ak), the truncations of the original vectors λ
and a. Recall that the index s is feasible if the pair (λs , as) is feasible for the CP. In any case we
denote by

νs = ν(λs , as) =
(

c1r−s , λr+1 , . . . , λd

)

where c = Qs , r

for the unique r > s such that λr ≤ c < λr+1 . This means that λs6 νs ∈ (Rd−s
>0

)↑ and that
tr νs = tr λs + tr as .

Lemma 5.12. Let (F0 , a) be initial data for the CP. Fix an index s ∈ Id−1 ∪ {0} . Then

1. The index r associated to νs as in the previous notations is given by

r = max {w ∈ Id : w > s and Qs ,w = min
j>s

Qs , j } .

In other words, r is the unique index which satisfies: Given j > s,

Qs , r < Qs , j if j > r and Qs , r ≤ Qs , j if j < r . (31)

2. Given an index l ∈ Id−1 ,

l > s and Qs , l < λ l+1 =⇒ l ≥ r , (32)

where r is the index associated to νs of item 1.

Proof. Item 1 follows from Proposition 3.14 applied to λs and as.

Item 2 : Assume that l < l + 1 ≤ r. Then Qs , l < λ l+1 ≤ λr ≤ Qs , r . In this case

tr λs + tr as
(30)
= (l − s)Qs , l +

d
∑

i=l+1

λi

= (l − s)Qs , l +
∑

l+1≤i≤r

λi +
d
∑

i=r+1
λi

< (r − s)Qs , r +
d
∑

i=r+1
λi

(30)
= tr λs + tr as ,

a contradiction. Hence l ≥ r. �
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Proposition 5.13. Let (F0 , a) be initial data for the CP which is not feasible, with k ≥ d. Let

s∗ = min { s ∈ Id : s is feasible } .

Let ν∗ be constructed using the recursive method of Proposition 5.11, by using s∗ instead of sp−1

(which can always be done). Then if we get the constants c1 > . . . > cq−1 , and we define cq as the
feasibility constant of λs∗ and as

∗

, then cq−1 > cq .

Proof. For simplicity of the notations, by working with the pair (λsq−2 , asq−2), we can assume that
q = 2. Denote by s1 = s∗ < s2 and c1 , c2 the indexes and constants given by:

c1 =
1

s1

s1
∑

i=1

hi = P1 , s1 and c2 = Qs1 , s2 =
1

s2 − s1

(

s2
∑

i=s1+1

hi +
k
∑

i=s2+1

ai

)

, (33)

and we must show that c1 > c2 . Recall that hi = λi + ai . We can assume that:

• By Proposition 5.11, c1 ≥
1
p

p
∑

i=1
hi = P1 , p for every p ∈ Is1 .

• c2 ≥
1

p−s1

p
∑

i=s1+1
hi = Ps1+1 , p for every s1 + 1 ≤ p ≤ s2 .

• λs2 ≤ c2 < λs2+1 ,

where the second item follows by the feasibility of s∗ and the last item says that c2 is the feasible
constant for the second block.

Suppose that c1 ≤ c2 and we will arrive to a contradiction by showing that, in such case, the pair
(λ , a) would be feasible (that is, s∗ = 0 or sq−2). In order to do that, let

t ∈ Id and b
def
= Qt =

1
t

(

∑t
i=1 hi +

∑k
i=t+1 ai

)

be the unique constant such that λt ≤ b < λt+1 , which appears in ν(λ , a). Then

c
def
= Qs2 = 1

s2

(

s2
∑

i=1
hi +

k
∑

i=s2+1
ai

)

= 1
s2
(s1 c1 + (s2 − s1) c2) ≤ c2 < λs2+1 .

By Eq. (32) we can deduce that t ≤ s2 . Moreover, by item 1 of Lemma 5.12 we know that

b = Qt = 1
t

(

t
∑

i=1
hi +

k
∑

i=t+1
ai

)

≤ 1
p

(

p
∑

i=1
hi +

k
∑

i=p+1
ai

)

= Qp for every p ∈ Id . (34)

In particular, b ≤ c ≤ c2 . On the other side, c1 ≤ b. Indeed, if ν = ν(λ , a) then

λ6 ν∗ and t = tr ν∗ = tr ν =⇒ ν ≺ ν∗ =⇒ b = ν1 ≥ ν∗1 = c1 ,

because c1 ≤ c2 =⇒ ν∗ = (ν∗)↑ and since ν = ν↑ is the ≺-minimum of the set

{λ↑(S) : SF0 ≤ S and tr S = t} = {ρ = ρ↑ : λ6 ρ and tr ρ = t} ,

by the remarks at the beginning of Section 3.3 and Proposition 3.14.

To show the feasibility, by Lemma 5.8 we must show that b ≥ P1 , p for every p ∈ It . First, if we
are in the case t ≤ s1 , this is clear since b ≥ c1 ≥ P1 , p for every p ≤ s1 . Finally, suppose that
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t ≥ s1 + 1. As before, b ≥ c1 implies b ≥ P1 , p for every p ≤ s1 . On the other hand, if s1 < p ≤ t
then Lemma 5.12 applied to νs1 (whose “r” is s2 ) assures that

c2 < Qs1 , t =⇒ (t− s1) c2 ≤
t
∑

i=s1+1
hi +

k
∑

i=t+1
ai

(33)
= t b− s1 c1 .

Since p ≤ t and b ≤ c2 , this implies that (p− s1) c2 ≤ p b− s1 c1 . Therefore

pP1 , p = s1 c1 + (p− s1)Ps1+1 , p ≤ s1 c1 + (p − s1) c2 ≤ p b . �

Proposition 5.14. Let (F0 , a) be initial data for the CP. With the notations of Theorem 4.4, the
global minimum νf (λ , a) satisfies that

sp−1 = min { s ∈ Id : s is feasible } .

Proof. Denote by s∗ the minimum of the statement. Since sp−1 is feasible (recall the remark after
Definition 4.5), then s∗ ≤ sp−1 . On the other hand, let us construct the vector ν∗ of Proposition
5.13, using the iterative method of Proposition 5.11 with respect to the index s = s∗ , and the
solution for the feasible pair (λs∗ , as

∗

) after s∗ . Write ν∗ = (ν∗1 , . . . , ν
∗
s , c1r−s , λr+1 , . . . , λd),

where c is the constant of the feasible part of ν∗. Observe that Proposition 5.13 assures that
c < min{ν∗i : 1 ≤ i ≤ s}.

Using this fact and Proposition 5.11 it is easy to see that the vector µ = ν∗ − λ↑ satisfies that
µ = µ↓. On the other hand Lemma 5.8 and Remark 5.9 assure that a ≺ µ (using the majorization
in each block and the fact that a = a↓). Then µ ∈ Γd(a) and ν∗ ∈ Λop

a (λ), the set defined in Eq.
(9).

Moreover, in each step of the construction of the minimum ν = νf (λ , a) we have to get the same
index sj = sj(ν

∗) of ν∗ or there exists a step where the maximum which determines sj (for νf (λ , a))
satisfies that sj > s∗ (in the eventual case in which sp−1 > s∗).

In both cases, we get that ν∗i ≤ νi for every index 1 ≤ i ≤ s∗ . Consider the subvector of ν∗

given by ρ = (ν∗1 , . . . , ν
∗
s , λr+1 , . . . , λd) ∈ Rs+d−r, and the respective part of νf (λ , a) given by

ξ = (ν1 , . . . , νs , νr+1 , . . . νd). Since tr ν∗ = tr ν, the previous remarks show that

ρ6 ξ =⇒ ρ ≺w ξ =⇒ (ρ , c1r−s) ≺ (ξ , νs+1 , . . . , νr) ,

where the final majorization follows using Lemma 4.6 of [33], which can be used since the constant
c < min{ν∗i : 1 ≤ i ≤ s} by Proposition 5.13 (and because c < λr+1). Since majorization is
invariant under rearrangements, we deduce that ν∗ ≺ ν.

Finally, using Theorem 3.7 we know that ν = νf (λ , a) is the unique minimum for the map tr f(·)
in the set Λop

a (λ). This implies that ν∗ = ν, and therefore sp−1 = s∗ . �
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