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Optimal frequency band selection using blind and targeted features for 

spectral coherence-based bearing diagnostics: A comparative study 

Abstract 

Identifying a spectral frequency band with abundant fault in formation from spectral coherence is 

essential for improved envelope spectrum-based bearing diagnosis . Both blind features and targeted 

features have been employed to distinguish informative spectral frequency band of spectral coherence. 

However, how to select appropriate feature to correctly discriminate the optimal frequency band of 

spectral coherence in different scenarios is problematic. In this study, a new targeted feature is 

presented to quantify the signal-to-noise ratio in narrow frequency bands of spectral coherence, and 

further a method based on the proposed feature is developed to  distinguish an optimal spectral 

frequency band of spectral coherence fo r bearing d iagnostics. The efficiency of the developed method, 

typical blind feature-based methods and typical targeted feature-based methods in identify ing the 

defect-sensitive frequency band of spectral coherence and bearing fault diagnosis is validated and 

compared using simulated signals with different interference noises and bearing experimental signals . 

The advantages and limitations of typical blind and targeted feature-based methods in different 

scenarios are summarized  to guide the application. The results demonstrate that the developed targeted 

feature can efficiently evaluate bearing failure informat ion in the cyclic frequency domain, and the 

presented approach can accurately discriminate the failure-related spectral frequency band of spectral 

coherence and detect different bearing faults compared with the methods based on the state-of-the-art 

features. 

Keywords : Improved envelope spectrum; sparsity measures; targeted features; spectral coherence; 

bearing diagnostics 

1. Introduction 

Modern mechanical systems widely adopt rolling bearings to support rotating shafts or rotors to 

reduce frict ion. Harsh service conditions , such as high speed, large load, and multip le interferences, 

make ro lling bearings one of the parts that are prone to malfunction in rotating machinery systems [1–

3]. Therefore, bearing fault  diagnostics and prognostics are critical to ensure the safe operation of 

mechanical systems and have attracted increasing attention in recent years [4]. 

Squared Envelope Spectrum (SES) analysis conducted on the band-pass filtering signal with rich 

fault information is a commonly used signal processing technique for bearing fa ilu re diagnostics. The 

central issue of envelope analysis technique is to distinguish an informative spectral frequency band 

(ISFB) to recover the repeated transient impulses caused by localized bearing defects. The 

representative methods are the fast Kurtogram [5] and the Protrugram [6]. The former uses a filter bank 

in the form of a 1/3-binary t ree to decompose the entire spectral frequency band into sub-bands with 

different bandwidths and center frequencies and takes the kurtosis of narrow-band filtered signal 

(characterizing impulsiveness) as the criterion for selecting ISFB, while the latter adopts the kurtosis of 

the envelope spectrum of the filtered signal in a  narrow band split by a sliding window along the 

frequency axis as a feature (characterizing cyclostationarity) to identify ISFB. Later, Antoni [7] used 

negentropy (NE) to incorporate the cyclostationarity and impulsiveness of bearing fault signals into 

Infogram to discriminate ISFB. Tse and Wang [8] employed the ratio of L2 norm to L1 norm (L2/L1)  

to distinguish the ISFB for bearing fault detection. The effectiveness of similar features, including  
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Nomenclature  

BPFI Ball Pass Frequency of Inner Race 

BPFO Ball Pass Frequency of Outer Race 

DF Diagnostic Feature 

EES Enhanced Envelope Spectrum 

FDSNR Frequency Domain Signal-to-Noise Ratio 

GI Gini Index 

HI Hoyer Index 

IES Improved Envelope Spectrum 

IESFOgram Improved Envelope Spectrum via Feature Optimization-gram 

ISFB Informative Spectral Frequency Band 

ICS2 Indicator of Second-order Cyclostationarity 

Kurt Kurtosis 

L2/L1 Ratio of L2 norm to L1 norm 

NE Negentropy 

RCC Ratio of Cyclic Content 

RSI Reciprocal of Smoothness Index 

SC Spectral Correlation 

SCoh Spectral Coherence 

SD Spectral Density 

SES Squared Envelope Spectrum 

SNR Signal-to-Noise Ratio 

 

Hoyer index (HI) [9], the reciprocal of s moothness index (RSI) [10], Gin i index (GI) [11], stability 

index and conditional variance statistic [12], in detecting and quantifying fault informat ion contained in 

narrowband signals has been investigated in [13–15]. These features do not require prior knowledge of 

mechanical fau lts and can be called blind features. In the last few years, increasing attention has been 

shifted to the cyclostationarity of bearing fault symptoms, and some band selection tools  have been 

developed by establishing the indicators of characterizing cyclostationarity, including indicator of 

second-order cyclostationarity (ICS2) [16], the rat io of cyclic content (RCC) [17], cyclic harmonic 

ratio [18], distcsgram [19] and the log-cycligram [20]. These features require prior knowledge from the 

fault characteristic frequency or signal distribution hypothesis  and can be called the targeted features. 

The bearing fault signals have been demonstrated to be second-order cyclostationary, and the 

well-established analytical tools are Spectral Correlation (SC) as well as its normalized form, namely  

Spectral Coherence (SCoh) [21,22]. The SC and SCoh are dual-frequency representations and can 

simultaneously reveal the resonance frequency bands and characteristic frequencies induced by bearing 

defects. The Enhanced Envelope Spectrum (EES) obtained by the integration of the SCoh over the 

entire spectral frequency range has shown more effective performance in revealing the fault-related 

cyclostationary features than traditional SES [23]. Since EES carries the information contained in the 

entire spectral frequency band, complex interference noise can easily d istort EES, making it d ifficult  to 

distinguish characteristic frequencies relevant to bearing defects. Improved Envelope Spectrum (IES) 

[21,23] obtained by integrating the SCoh over an ISFB is an effective solution to reduce complex 

interference noise and enhance fault-related cyclic components. Thus, how to determine a spectral 

frequency band containing diagnostic information from SCoh to generate IES is the key to accurately 
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identifying bearing faults. 

A blind approach was developed to determine the ISFBs for the IES-based bearing fau lt diagnosis 

in [24]. This method employs the L2/L1 norm of the IES obtained by the integration of SCoh over a  

narrow spectral frequency range as the band selection criterion. Similarly, the kurtosis enhanced 

spectral entropy was proposed to determine the ISFBs from the entire spectral frequency range of SCoh 

for constructing fault-sensitive IESs in [25]. However, these methods primarily count on visual 

inspection rather than adaptive mechanisms to identify ISFBs. Mauricio et  al. [26,27] proposed an 

adaptive method to select an ISFB for the IES-based rotating machinery diagnostics , namely Improved 

Envelope Spectrum via Feature Optimization-gram (IESFOgram). In this method, the entire spectral 

frequency band is divided into a 1/3-b inary tree form to generate a group of narrow bands with 

different bandwidths and center frequencies, and then a targeted feature estimated from the IES 

obtained by integrating the SCoh over the div ided band is optimized to determine a fault-sensitive 

ISFB. The IESFOgram has been applied  to the gearbox bearing diagnostics under electromagnetic 

interferences [26,28–31] and time-varying operating conditions  [27,32]. Similarly, a signal-to-noise 

ratio (SNR) measure was proposed by Schmidt et al. [33] to identify an ISFB of SCoh for gearbox fault  

diagnosis. These methods mainly rely on the sensitivity of blind or targeted features to fault 

components to identify ISFB, which  greatly expand and enrich the application of SCoh in bearing fault  

identification. However, how to select appropriate criteria to correct ly discriminate the ISFB to 

generate fault-sensitive IES in different application scenarios is problematic . Thus, it is very important 

to systematically investigate and compare the performances of different features in identify ing ISFB to 

guide the applications of SCoh in bearing fault diagnosis. 

To effect ively evaluate the fault  informat ion contained in  the narrow bands of SCoh, a novel 

targeted feature defined in the cyclic frequency domain is presented in this study. Further, the 

performance of the proposed feature and state-of-the-art features in identifying ISFB of SCoh and 

detecting bearing faults is validated and compared using s imulated and experimental signals. To sum 

up, the contributions and innovations of this study mainly include: 

(1) A novel feature indicator aimed at measuring the SNR in the cyclic frequency domain is 

proposed to evaluate the bearing fault informat ion. Further, a method combining the 1/3-binary tree 

frequency band division technology and the proposed feature is developed to identify  the optimal ISFB 

of SCoh for bearing fault diagnosis. 

(2) Simulat ion analysis and experimental analysis are conducted to testify and compare the 

efficiency of the presented approach and the methods based on typical b lind and targeted features  in  

selecting ISFB of SCoh and bearing diagnostics, and the advantages and limitations of typical blind 

and targeted feature-based methods in different application scenarios are summarized. 

(3) The performance of the presented approach and the methods based on typical blind and 

targeted features are qualitatively and quantitatively compared, and the results indicate that the 

presented approach can more efficiently distinguish a failure -related frequency band of SCoh and 

detect bearing faults under different interference noises in contrast to the methods based on typical 

blind and targeted features. 

The remnants of this article are  arranged as follows. Section 2 reviews the essential theories of the 

SCoh, IES and IESFOgram. In Sect ion 3, typical blind and targeted features that disclose the 

cyclostationarity of bearing failure  symptoms are discussed and the developed targeted feature is 

introduced. In Section 4, the comparison analysis of fault detection performance of the proposed 

method and typical blind and targeted feature-based methods is conducted on different simulated 
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signals. Section 5 presents the fault detection results of the proposed method and typical blind and 

targeted feature-based methods on different bearing experimental signals. In Sect ion 6, the important 

conclusions are summarized. 

2. Theoretical background 

2.1. Spectral Coherence and Improved Envelope Spectrum 

Let   nx t  be a bearing v ibration signal, , 0,1, , 1n st n F n N   , where 
sF  and N  are 

the sampling rate and length, respectively. Assume that the bearing vibration signal  nx t  is  

second-order cyclostationary, its instantaneous autocorrelation function is defined by [23]: 

      *,x n m n n mR t E x t x t                                            (1) 

where E   indicates the ensemble mean operator,   the complex conjugate, and 
m sm F  . The 

SC is ruled as the two-dimensional discrete Fourier transform of  ,x n mR t   [23]: 
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Some estimat ion algorithms of the SC have been developed for practical applicat ions [23,34–36]. 

Among them, the fast SC algorithm [23] achieves a significant reduction in computational burden and 

is therefore employed to calculate the SC in this work. The normalized form of the SC, namely the 

SCoh, is often used to enhance weak cyclostationary components , as follows [22]: 
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Integrating the SCoh along the spectral frequency axis, a one-dimensional spectrum quantity, 

namely the EES, can be constructed as [23]: 
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f df
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                                             (4) 

The EES has shown better performance than the SES in bearing diagnostics [23]. However, since 

EES carries the informat ion contained in the entire spectral frequency band, complex interference noise 

can easily cause distortion of EES, making it d ifficult to distinguish the defect-relevant frequencies. 

Thus, the IES generated from SCoh in an ISFB is recommended for bearing fault diagnosis [21,23]: 
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where 1f  and 2f  denote the starting and ending frequencies of the selected spectral frequency band, 

respectively. 

The band selection has a crucial influence on the fault detection performance because the 

characteristic frequency of interest can hardly be detected from the IES if the spectral frequency band 

is incorrectly selected. Thus, how to identify a spectral frequency band containing diagnostic 

information from SCoh to generate IES is the key to accurately detecting bearing faults. 

2.2. Improved Envelope Spectrum via Feature Optimization-gram 

IESFOgram [26] is a representative method to select the ISFB of the SCoh for constructing 

diagnostic IES. It  splits the entire spectral frequency band of the SCoh into a 1/3-b inary tree fo rm, like 
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the fast Kurtogram method [5], to create a group of candidate sub-bands with different central 

frequencies and bandwidths, as displayed in Fig. 1. A total of 2k  narrow bands with equal bandwidths 

can be obtained at the k th ( 0,1,1.6,2,2.6,3,k   ) level. For the ith ( 1,2,3, , 2ki  ) narrow band at 

the k th level, the center frequency and its bandwidth are, respectively, expressed as follows: 

 1 1

, 2 2k

k i sf F i                                                     (6) 

12k

k sf F                                                           (7) 

The starting frequency 
1f  and ending frequency 

2f  of this narrow band can be defined as: 
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Then, the IES generated from this spectral frequency band can be formulated as: 
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A feature indicator is devised to assess the failure-relevant informat ion contained in these 

candidate IESs and the spectral frequency band with the largest feature indicator is identified as an 

optimal ISFB to generate diagnostic IES. For v isual observation, the feature indicators of d ifferent 

frequency bands can be drawn into a two-dimensional color map, called IESFOgram. Please refer to 

[26] for the detailed introduction of the IESFOgram. 

 

 

Fig. 1. Spectral frequency band division in the form of 1/3-binary tree. 

3. Blind and targeted features for frequency band selection 

This section first briefly  discusses the typical blind features and targeted features that disclose the 

cyclostationarity of bearing failure symptoms . Their performance in  identify ing the ISFB of SCoh is 

investigated in this  paper. Then, a novel targeted feature dedicated to evaluating the SNR in the cyclic 

frequency domain is proposed to distinguish an ISFB of SCoh for fault diagnosis. 

3.1. Blind features for frequency band selection 

Sparsity measures are typical blind features that characterize bearing fau lt information in the 

frequency domain or time domain and are widely employed as frequency band selection criteria in  
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envelope analysis, mainly includ ing Kurt [5,6], NE [7], L2/L1 norm [8], HI [14], RSI [10,13] and GI 

[11]. Among these blind features, only the L2/L1 norm has been used to identify the ISFBs of SCoh to 

construct fault-sensitive IESs [24], while the performance of other blind features in SCoh-based 

bearing fault diagnosis has not been studied and verified. Therefore, they are introduced into the 

identification of the ISFB of SCoh in this paper, and their performance in bearing fault diagnosis is 

systematically verified and compared. 

Assuming that  ,IESk i n  is the discrete form of IES generated in the ith narrow band of the k th 

level, where 1,2, ,n L  and L  is the total number of discrete cyclic frequencies, the typical blind 

features (i.e., sparsity measures) for frequency band selection are formulated as follows. 

Blind feature 1: Kurtosis 
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where symbol   denotes the mean operator. 

Blind feature 2: Negentropy 
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Blind feature 3: Ratio of L2 norm to L1 norm 
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where symbols 
1
  and 

2
  are the L1 and L2 norms, respectively. 

Blind feature 4: Hoyer index 
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Blind feature 5: Reciprocal of smoothness index 
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Blind feature 6: Gini index 
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where  ,IESr

k i n  is the ascending sequence of the amplitudes of  ,IESk i n , i.e ., 

     , , ,IES 1 IES 2 IESr r r

k i k i k i L   . 

3.2. Targeted features for frequency band selection 

The targeted features are usually constructed from the amplitude of the specified characteristic 

frequency and its several harmonics and are applied to quantify the cyclostationary components 

relevant to the specified defect in the frequency domain. Some targeted features have recently been 

developed to select the ISFB of SCoh to generate diagnostic IES, main ly includ ing the Ind [26], 
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diagnostic feature (DF) [27], spectral density (SD) [26] and SNR measure [33]. However, d ifferent 

band division strategies are used to decompose the spectral frequency band of SCoh. In addition, the 

RCC [17] and ICS2 [16] are two representative indicators for measuring the targeted cyclostationary 

components in the frequency domain. In this study, they are introduced into the identificat ion of the 

ISFB of SCoh, and their performance in bearing fault d iagnosis is verified  and compared with  other 

targeted features. 

The typical targeted features for frequency band selection are defined as follows. 

Targeted feature 1: Ind (the summation of the amplitude of a specified characteristic frequency 

and its several harmonics) [26] 
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                                           (16) 

where H  represents the number of the considered harmonics, 
hA  denotes a series of cyclic 

frequencies in a small band around the hth harmonic of the detected characteristic frequency. 

Targeted feature 2: Diagnostic feature [27] 
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where 
hB  denotes a series of cyclic frequencies in a small band around the hth harmonic of the 

detected frequency component and is slightly wider than the tolerance band 
hA ;  hnum B  represents 

the number of cyclic frequencies in the tolerance band 
hB . 

Targeted feature 3: Spectral density (the product of the amplitude of a specified characteristic 

frequency and its several harmonics) [26] 
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Targeted feature 4: Signal-to-noise ratio measure [33] 

  
  

2

,

, 1 2

,

max IES

SNR
IES

h

h

k iH n A

k i h

k i
n B

n

median n







                                       (19) 

where  median   denote the median operator and is employed to estimate the noise intensity. 

Targeted feature 5: Ratio of cyclic content [17] 
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Targeted feature 6: Indicator of second-order cyclostationarity [16] 

  
 

2

,1

, 2

,

max IES

ICS2
IES 0

h

H

k ih n A

k i

k i

n
 




                                        (21) 

3.3. Proposed targeted feature for frequency band selection 

In this section, a novel targeted feature named frequency domain signal-to-noise rat io (FDSNR) is 

devised to evaluate the failure  informat ion in  the cyclic frequency domain. FDSNR is defined as the 

ratio of the average energy of the fault-related components to the average energy of the noise 

components, as shown in Eq. (22). 

Targeted feature 7: Frequency domain signal-to-noise ratio 
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Compared with Ind and SD, FDSNR considers normalization to overcome the influence of 

interference components, and compared with RCC and ICS2, FDSNR is more robust to interference 

components. Taking FDSNR as the fault information measure, an enhanced method is developed in this 

article to distinguish an optimal spectral frequency band of SCoh for constructing diagnostic IES. A 

schematic diagram of the proposed methodology for bearing diagnostics is shown in Fig. 2. The main  

procedure of the proposed methodology is described as follows: 

Step 1: Acquire bearing vibration acceleration signals from the monitored rotating machinery. 

Step 2 : Estimate the SCoh of bearing vibration accelerat ion data following the fast SC numerical 

algorithm [23] by setting the appropriate window length and maximum observed cyclic frequency. 

Step 3: Divide the full spectral frequency band of the SCoh into a group of narrow bands using a 

1/3-b inary t ree d ivision technology. Then, construct a series of candidate IESs by integrating the SCoh 

over different spectral frequency bands and calculate their FDSNR values to evaluate the fault 

information contained in the narrow bands. 

Step 4 : Identify the IES with the largest FDSNR value as the optimal demodulated spectrum and 

employ it to perform bearing defect diagnostics. 

 

 

Fig. 2. Schematic diagram of the developed methodology for bearing defect diagnostics. 

4. Comparison on simulated bearing failure data 

In this section, the frequency band selection and fault detection performance of typical blind 
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features, typical targeted features and FDSNR, as the fault  information  measure of IESFOgram, is 

validated and compared on simulated bearing failure datasets with diverse interference noises. 

4.1. Simulation model of bearing failure data 

The simulated signals are generated from a bearing fault numerical model. According to the signal 

model in [19], the numerical model is formulated as: 

       BF m m GWN INTm
x t A O t mT x t B x t                          (23) 

The first item simulates the typical impulse signal induced by a spalling on bearing inner race, 

where T  is the nominal value o f impulse period, 
m  denotes the tiny fluctuation of the occurrence 

time of the mth fault impulse due to roller sliding and is generated from a unifo rm d istribution 

 ,2 100U T T , 
mA  indicates the amplitude of mth fault impulse and is specified as 

  1 cos 2 2m rA f t  , and 
rf  represents the rotation frequency of the shaft.  O t  simulates 

transient impulse characterized by the damping ratio   and resonant frequency 
nf , and can be 

formulated as [19]: 

   2 2

0sin 2 1nf t

nO t e f t
   

                                    (24) 

where 
0  represents the initial phase. Table 1 presents the specific parameters of the fault simulat ion 

component of bearing inner race. 

The second item  GWNx t  indicates the background noise component from the operating 

environment. In this article, the Gaussian white noise is used as the background noise and is added to 

the bearing fault signal to generate an SNR of –10 dB. The third item  INTB x t  denotes the typical 

non-Gaussian interference noise, such as the impulsive cyclostationary noise caused by the damage of 

other rotating components and random impulsive noise caused by external shocks, scaled by coefficient 

B to simulate different noise levels. Suppose the sampling duration and sampling rate are 3 s and 51.2 

kHz, respectively. In this study, simulation analysis and experimental analysis are conducted in the 

MATLAB R2016b environment. The typical interference noises utilized in simulation analysis  are 

introduced as follows: 

 Gaussian white noise: generated from the AWGN function in MATLAB platform. 

 Impulsive cyclostationary noise: generated from the same model as the impulsive fault  

component in Eq. (23), but is assigned a characteristic frequency of 40 Hz and a constant 

amplitude of 0.5. The resonance frequency, damping rat io, and in itial phase are specified  as 10 

kHz, 0.02, and 0°, respectively. 

 Random impulsive noise: generated from the same model as the impulsive fault component in Eq. 

(23), but its amplitude and occurrence time are obtained from a Gaussian distribution  1.5,1N

and a uniform distribution  0,3U , respectively. The resonance frequency, damping rat io, and 

initial phase are set to 10 kHz, 0.02, and 0°, respectively. 

Fig. 3 displays the waveforms of the different components of bearing vibrat ion signal. Note that 

only the signal waveform of 0.5 s is depicted to facilitate the observation. 

 

Table 1. Specific parameters of the fault simulation component of bearing inner race. 

Parameter rf  (Hz) nf  (Hz)   
0  (°) T  (s) 

Value 10 5800 0.02 0 1/97 
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Fig. 3. Components of bearing vibration signals: (a) impulsive fault component, (b) impulsive cyclostationary 

noise, (c) random impulsive noise, and (d) Gaussian white noise. 

4.2. Results on simulated bearing fault signals 

The band selection and fault detection performance of the IESFOgram using typical blind features 

(Kurt, NE, L2/L1, HI, RSI and GI), typical targeted features (Ind, DF, SD, SNR, RCC, and ICS2) and 

FDSNR is validated and compared on the simulated bearing fault signals generated in Sections 4.1. The 

spectral frequency bands selected by each method under different noise levels are plotted as a 

two-dimensional map fo r comparison. In addition, the FDSNR value of the resulting IES is employed 

to quantitatively assess the fault detection effects of the IESFOgram using diverse features under 

different noise levels. 

To estimate the SCoh and generate the IESFOgram, the input parameters should be selected 

reasonably. The key parameters of the fast SC estimator [23] include the window length 
wN  and the 

maximum observed cyclic frequency 
max . To  accurately identify bearing faults, the maximum 

observed cyclic frequency 
max  should be greater than 3 times the detected characteristic frequency. 

In this section, max  is specified as 350 Hz to cover three harmonics of the detected characteristic 

frequency. The window length wN  governs the spectral frequency resolution. To facilitate the division 

of the entire spectral frequency band into a 1/3-binary  tree form, the window length is designated as 

13 2K

wN    in  this study, where K  is the decomposition level as shown in Fig. 1.  The window 

length wN  should be much smaller than the signal length while ensuring the proper spectral 

frequency resolution [23,34]. The decomposition level K  is set as 5 in this section, therefore the 

window length wN  is specified as 192 sampling points. Additionally, to estimate the targeted features, 

the detected characteristic fault frequency and its first two  harmonic  components are considered in  this 

study, i.e., 3H  , and the tolerance bands hA  and hB  respectively contain 3 and 5 spectral lines on 

both sides of the harmonic of nominal fault characteristic frequency. 

4.2.1. Results on bearing fault signals with different Gaussian white noise levels 

In this case, the generated bearing defect signals are only  polluted by the Gaussian white noise, 

and other interference sources are ignored. The intensity of the added Gaussian white noise is regulated 

with SNR from –30 to 0 dB in 1 dB increments. 

The IESFOgram using typical blind features, typical targeted features and FDSNR are employed 

to each bearing fault  simulat ion signature, and the spectral frequency bands selected under diverse 

Gaussian white noise levels are respectively presented in Figs. 4, 5 and 6(a). Fig. 4 d isplays the band 
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selection results of the blind feature-based methods. When the noise intensity is greater than –10 dB or 

–9 dB, all b lind feature-based methods basically select the entire spectral frequency band of the SCoh; 

as the SNR decreases, they select a narrow spectral frequency band around the bearing resonant 

frequency; however, when the noise intensity is lower than the cut-off noise level (about –18 dB for the 

Kurt, NE, L2/L1 and HI, –16 dB for the RSI, and –17 dB for the GI), they cannot accurately 

distinguish the resonant frequency band of the simulated bearing fa ilure component. For the targeted 

feature-based methods and the presented approach, when the noise intensity is greater than the cut-off 

noise level (about –19 dB for the Ind, DF, SD, SNR, ICS2 and FDSNR, and –21 dB for the RCC), all 

targeted feature-based methods and the proposed method select a narrow spectral frequency band 

around the bearing resonant frequency; when the noise intensity is lower than the cut-off noise level, 

the spectral frequency bands selected are far from the resonant frequency of the simulated bearing 

failure component. Fig. 6(b) d isplays the resulting IESs of the presented approach for processing the 

simulation signals with diverse Gaussian white noise levels. The fault characteristic frequencies 97 Hz, 

194 Hz and 291 Hz can be clearly detected from the generated IES when the noise intensity is higher 

than –19 dB. Fig. 7 shows the FDSNR obtained by IESFOgram with different features under different 

Gaussian white noise levels. The FDSNR achieved by the proposed approach is basically the same as 

the FDSNR of the targeted feature-based methods and is  greater than the FDSNR of the blind 

feature-based methods. These results indicate that the band selection and fault detection effect of the 

developed approach is similar to that of the targeted feature-based methods and is better than that of the 

blind feature-based methods under the interference of Gaussian white noise. 

 

 

Fig. 4. Spectral frequency bands selected by IESFOgram with blind features under different Gaussian white noise 

levels. 
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Fig. 5. Spectral frequency bands selected by IESFOgram with targeted features under different Gaussian white 

noise levels. 

 

 

Fig. 6. Results of IESFOgram using FDSNR under different Gaussian white noise levels: (a) selected spectral 

frequency bands, and (b) generated improved envelope spectra (white = 0, black = 1). 

 

 

Fig. 7. FDSNR obtained by IESFOgram with different features under different Gaussian white noise levels: (a) 

blind features and (b) targeted features. 
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4.2.2. Results on bearing fault signals with different impulsive cyclostationary noise  levels 

In this case, the white Gaussian noise with an SNR of –10 dB and the impulsive cyclostationary 

noise are added to contaminate the bearing fault component. The coefficient B  in  Eq. (23) was adjusted 

from 0.2 to 8 in 0.2 increments . 

Figs. 8, 9 and 10(a) display the frequency band selection results of the IESFOgram using typical 

blind features, typical targeted features and FDSNR, respectively. The blind feature-based methods can 

discriminate the resonant frequency band of the bearing defect component only when the amplitude of 

the impulsive cyclostationary noise is less than the cut-off amplitude level (about 1.4 for the Kurt, and 

1 for the NE, L2/L1, HI, RSI and GI). Note that although the entire spectral frequency band is selected 

by the Kurt-based method when the noise amplitude is less than 1 and is selected by the RSI and 

GI-based methods when the noise amplitude is higher than 4.2, the generated IESs are dominated  by 

the characteristic frequency and its first several harmonic components of the bearing defect simulat ion 

component and impulsive cyclostationary noise, respectively. In contrast, the targeted feature-based 

methods and the proposed method exh ibit better resistance to impulsive cyclostationary noise. As the 

amplitude of the impulsive cyclostationary noise increases from 0.2 to 8, the selected spectral 

frequency band stabilizes around the resonance frequency of the bearing defect simulation signal, and 

the interested characteristic frequencies 97 Hz, 194 Hz and 291 Hz can be clearly  distinguished from 

the resulting IESs, as exhib ited in Fig. 10(b). In Fig. 11, the FDSNR of the proposed method is 

consistent with that of the targeted feature-based methods and is greater than the FDSNRs of the blind 

feature-based approaches. These results disclose that the presented approach and the targeted 

feature-based approaches have similar ability to resist the impulsive cyclostationary noise and are more 

robust than the blind feature-based methods. 

 

Fig. 8. Spectral frequency bands selected by IESFOgram with blind features under different impulsive 

cyclostationary noise levels. (blue dashed line indicates the resonance frequency of impulsive cyclostationary 
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noise). 

 

Fig. 9. Spectral frequency bands selected by IESFOgram with targeted features under different impulsive 

cyclostationary noise levels. (blue dashed line indicates the resonance frequency of impulsive cyclostationary 

noise). 

 

Fig. 10. Results of IESFOgram using FDSNR under different impulsive cyclostationary noise levels: (a) selected 

spectral frequency bands (blue dashed line indicates the resonance frequency of impulsive cyclostationary noise), 

and (b) generated improved envelope spectra (white = 0, black = 1). 

 

Fig. 11. FDSNR obtained by IESFOgram with different features under different impulsive cyclostationary noise 

levels: (a) blind features and (b) targeted features. 



15 

 

4.2.3. Results on bearing fault signals with different random impulsive noise levels 

In this case, the white Gaussian noise with an  SNR of –10 dB and the random impulsive noise are 

added to contaminate the bearing fault component. The coefficient B in Eq. (23) was adjusted from 

0.25 to 12 in 0.25 increments. 

Figs. 12, 13 and 14(a) d isplay the frequency band selection results of the IESFOgram using typical 

blind features, typical targeted features and FDSNR, respectively. For the blind feature-based methods, 

as the amplitude of random impulsive noise increases from 0.25 to the cut -off amplitude level (about 

10 for the Kurt, 9.25 for the NE, 8.75 for the L2/L1 and HI, 6.75 fo r the RSI, and 8.25 for the GI ), the 

spectral frequency bands selected are main ly concentrated around the bearing resonance frequency; 

however, when the amplitude is  larger than the cut-off amplitude level, the spectral frequency bands 

selected are unstable. For the targeted feature-based methods, the DF, SNR, RCC and FDSNR-based 

methods deliver stronger resistance to random impulse noise in comparison with the Ind, SD and 

ICS2-based methods, judging from the cut-off amplitude levels of these targeted features (about 2 for 

the Ind, SD and ICS2, 9.75 fo r the DF and SNR, 10.75 for the RCC, and 11 for the FDSNR). As 

described in Fig. 14(b), the interested characteristic frequencies 97 Hz, 194 Hz and 291 Hz can be 

clearly identified from the resulting IES when the amplitude of the random impulsive noise is lower 

than 11. Fig. 15 displays the FDSNR of IESFOgram using blind and targeted features under different  

random impulsive noise levels. It can be d iscovered that the FDSNR of the developed approach is 

similar to the FDSNRs of the DF, SNR and RCC-based methods and is larger than that of the blind 

feature-based methods and the Ind, SD and ICS2-based methods. These results demonstrate that the 

band selection and fault detection capability of the presented approach and the DF, SNR and 

RCC-based methods are superior to that of the blind feature-based methods and the Ind, SD and 

ICS2-based methods in the presence of strong random impulses. 

 

Fig. 12. Spectral frequency bands selected by IESFOgram with blind features under different random impulsive 
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noise levels. (blue dashed line indicates the resonance frequency of random impulsive noise). 

 

 

Fig. 13. Spectral frequency bands selected by IESFOgram with targeted features under different random impulsive 

noise levels. (blue dashed line indicates the resonance frequency of random impulsive noise). 

 

Fig. 14. Results of IESFOgram using FDSNR under different random impulsive noise levels: (a) selected spectral 

frequency bands (blue dashed line indicates the resonance frequency of random impulsive noise), and (b) 

generated improved envelope spectra (white = 0, black = 1). 

 

Fig. 15. FDSNR obtained by IESFOgram with different features under different random impulsive noise levels: (a) 

blind features and (b) targeted features. 
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4.3. Summary of comparison results on simulated signals 

The frequency band selection and performance analysis results of the blind feature-based methods, 

the targeted feature-based methods and the proposed method on simulated bearing fault signals show 

that: 

 The blind features focus on global information and the methods based on them tend to select a  

relatively wide ISFB of the SCoh, while the targeted features focus on local informat ion and the 

methods based on them tend to select a relatively narrow ISFB. 

 The NE, L2/L1 and HI-based methods exhibit  similar band selection and defect identificat ion 

performance under the interference o f Gaussian white noise, random impulse noise and impulsive 

cyclostationary noise, and are slightly better than the RSI and GI-based methods. Compared with 

other blind feature-based methods, the Kurt-based method is susceptible to impulsive 

cyclostationary noise and random impulsive noise. 

 The proposed method and the targeted feature-based methods deliver similar band selection and 

fault detection performance under the interference of impulsive cyclostationary noise and 

Gaussian white noise and outperform the blind feature-based approaches. Under the interference 

of random impulse noise, the effect of the Ind, SD and ICS2-based methods is inferior to that of 

the proposed method and the DF, SNR and RCC-based methods due to no or inappropriate 

normalization. 

 The fault  detection performance of the proposed method and the DF, SNR and RCC-based 

methods is superior to that of the blind feature-based methods and the Ind, SD and ICS2-based 

methods under the presence of Gaussian noise and typical non-Gaussian noises. 

5. Comparison on bearing experimental signals 

In this section, the band selection and fault detection performance of the IESFOgram using typical 

blind features, typical targeted features and FDSNR is validated and compared on  three bearing 

experimental signals. The results (gram and IES) of the IESFOgram using state-of-the-art features and 

FDSNR for the bearing experimental signals are presented for comparison. The maximum observed 

cyclic frequency of the SCoh is set to cover the detected bearing characteristic frequency and its first 

two harmonic components. The decomposition level of the spectral frequency band is set to 6, and the 

window length utilized to estimate the SCoh of bearing vibration signal is 384 samples. 

5.1. Planetary bearing outer race defect detection 

The first bearing experimental data [37] was acquired from a planetary gearbox test rig of the 

University of New South Wales (UNSW), Australia. The tested gearbox mainly contains a parallel gear 

system, in which a spur gear integrated with the p lanet carrier is driven by a pin ion gear, as depicted in  

Fig. 16(a). A localized defect was implanted into the outer race of a p lanetary bearing (IKO model NAF 

122812), as displayed in Fig. 16(b). An accelerat ion sensor mounted above the stationary ring gear was 

used for the acquisition of vibration  signals at a sampling rate  of 150 kHz. During data acquisition, the 

input shaft of planetary gearbox rotated at a constant speed of about 324 r/min. The ball pass frequency 

of outer race (BFPO) of the planetary bearing is about 66.42 Hz, with a modulation frequency of 14.36 

Hz. A detailed introduction of the experiment can be found in [20]. 

Fig. 17 (a) and (b) depict respectively the measured vibration acceleration data and its magnitude 

spectrum. From the SES of the vibration signal presented in Fig. 17(c), the spectral peaks at BPFO of 

the planetary bearing and its harmonics (marked with red dot line) cannot be detected. Set the 
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maximum cyclic frequency of observation to 300 Hz. The SCoh and EES are respectively exhibited in  

Fig. 17(d) and (e). Because of the complex interference noises, the BPFO of the planetary bearing and 

its harmonics still cannot be identified. 

The IESFOgram method using blind features and targeted features is employed to deal with the 

vibration signature exhibited in Fig. 17(a), and the corresponding results (gram and IES) are displayed 

in Figs. 18 and 19, respectively. The resulting IESs depicted in Fig. 18 exh ibit high impulsiveness due 

to the dominated spectral peaks at the modulation frequency component and its harmonic  components, 

while the spectral lines at the characteristic frequencies induced by the bearing defect cannot be 

observed. These results suggest that the blind feature-based methods fail to distinguish the resonance 

frequency band induced by the planetary bearing defect. For the targeted feature-based methods, the 

spectral peaks at the BPFO and its first two harmonic components can be distinguished in the IESs 

displayed in Fig. 19(b), (d ) and (e), indicating that only  the DF, SNR and  RCC-based methods 

successfully recognize  the defect-triggered resonance frequency band. The failure of the Ind, SD, and 

ICS2-based methods to correctly determine the ISFB may be caused by the non-normalization or 

inappropriate normalization of these targeted features. 

 

 

Fig. 16. (a) Diagram of the UNSW planetary gearbox test rig and (b) planetary bearing with seeded fault [20]. 

 

 

Fig. 17. Results of planetary gearbox bearing defect signature: (a) signal waveform, (b) magnitude spectrum, (c) 

SES, (d) SCoh, and (e) EES. 
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Fig. 18. Results (gram and IES) of IESFOgram based on blind features for the planetary gearbox bearing defect 

signature: (a) Kurt, (b) NE, (c) L2/L1, (d) HI, (e) RSI, and (f) GI. 

 

Fig. 19. Results (gram and IES) of IESFOgram based on targeted features for the planetary gearbox bearing defect 

signature: (a) Ind, (b) DF, (c) SD, (d) SNR, (e) RCC, and (f) ICS2. 
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5.2. Rolling bearing outer race defect detection 

The second experimental data [38] was collected from the bearing test rig of the University of 

Electronic Science and Technology of China (UESTC). The test rig is main ly composed of the motor 

and speed controller, support bearing, loading disc and test bearing, as displayed in Fig. 20. A local 

defect was implanted into the outer race of the test bearing. In this experiment, the spindle rotated at a 

constant speed of 600 r/min (10 Hz), and the acceleration sensors were bedded in the pedestal of the 

faulty bearing to record the vibration signature using a sampling rate of 51.2 kHz. In this case, the 

BPFO of the faulty bearing is about 35.7 Hz. 

Fig. 21 (a) and (b) d isplay respectively the collected bearing vibration acceleration signature and 

its magnitude spectrum. The SES depicted in Fig. 21(c) cannot accurately distinguish the bearing outer 

race damage. Set the maximum cyclic frequency of observation to 150 Hz. It can be observed from the 

SCoh presented in Fig. 21(d) that the resonance frequency bands associated with bearing outer race 

fault are main ly located around 5 kHz and 14 kHz. In the EES shown in Fig. 21(e), the spectral line at 

the BPFO (marked with red dot line) can be identified, but the spectral peaks at its harmonic  

components are not visible. 

The IESFOgram method using blind features and targeted features is utilized to deal with the same 

bearing vibration signature, and the obtained results (gram and IES) are demonstrated in Figs. 22 and 

23, respectively. The ISFB selected by the Kurt -based method is centered at 4 kHz, while the ISFBs 

selected by other blind feature-based methods are around 14 kHz. The spectral line at the BPFO can be 

observed in the generated IESs, but the result in Fig. 22(a) is not equal to that in Fig. 22(b)-(f). It shows 

that the other five blind feature-based methods more accurately d istinguish the resonant frequency band 

of bearing defect signature than the Kurt-based method. For the targeted feature-based methods, only 

the DF and SNR-based methods distinguish the resonance frequency bands of bearing outer race defect,  

with the center frequencies of 5.4 kHz and 14 kHz, respectively. The generated IESs clearly exh ibit  the 

spectral line at the BPFO, as depicted in Fig. 23(b) and (d ). The other four targeted feature-based 

methods select a spectral frequency band centered at 800 Hz, and the resulting IESs cannot reveal the 

outer race defect of the tested bearing. 

 

 

Fig. 20. UESTC bearing test rig [20]. 
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Fig. 21. Results of rolling bearing outer race defect signature: (a) signal waveform, (b) magnitude spectrum, (c) 

SES, (d) SCoh, and (e) EES. 

 

 

Fig. 22. Results (gram and IES) of IESFOgram based on blind features for the rolling bearing outer race defect 

signature: (a) Kurt, (b) NE, (c) L2/L1, (d) HI, (e) RSI, and (f) GI. 
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Fig. 23. Results (gram and IES) of IESFOgram based on targeted features for the rolling bearing outer race defect 

signature: (a) Ind, (b) DF, (c) SD, (d) SNR, (e) RCC, and (f) ICS2. 

5.3. Rolling bearing inner race defect detection 

The third experimental data [39] was also obtained from the UESTC bearing test rig displayed in 

Fig. 20. In this case, a local damage is implanted into the inner race surface of the test bearing. The 

sampling frequency remained unchanged, i.e., 51.2 kHz, but the spindle rotated at 3600 rpm (60 Hz). 

The ball pass frequency of inner race (BPFI) of the faulty bearing is 325.8 Hz. 

The acquired vibration signature of the inner race defect bearing and its magnitude spectrum are 

respectively demonstrated in Fig. 24(a) and (b). Because of the strong disturbance noises, only the first 

and third harmonics of the BPFI can be d iscriminated in the SES exh ib ited in Fig. 24(c). Specify the 

maximum cyclic frequency of observation as 1200 Hz. The resonance frequency bands of the inner 

race fault  bearing cannot be directly  identified in the SCoh d isplayed in Fig. 24(d). In the EES depicted 

in Fig. 24(e), although the spectral peaks at the BPFI and its first two harmonic components can be 

discerned, they are not dominant because of the disturbance of the spectral lines at the sidebands. 

Figs. 25 and 26 display the results (gram and IES) of the IESFOgram method using typical blind 

features and targeted features for dealing with the bearing inner race defect signature, respectively. The 

ISFBs selected by the blind feature-based methods are relatively wide, leading to more harmonic 

interferences and sidebands in the generated IESs even though the spectral lines at the fault-related 

frequencies can be observed, as shown in Fig. 25. The fau lt detection performance of the Kurt -based 

method is inferior to that of the other five blind feature-based methods, judging from the amplitudes at 

the BPFI and its harmonics in the IESs . The ISFBs selected by the targeted feature-based methods are 

centered around 5.8 kHz, 6.6 kHz and 7 kHz, respectively, and the spectral peaks at the BPFI and its 

first two harmonic components can be easily discerned in the resulting IESs, as displayed in Fig. 26. 
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Fig. 24. Results of rolling bearing inner race defect signature: (a) signal waveform, (b) magnitude spectrum, (c) 

SES, (d) SCoh, and (e) EES. 

 

 

Fig. 25. Results (gram and IES) of IESFOgram based on blind features for the rolling bearing inner race defect 

signature: (a) Kurt, (b) NE, (c) L2/L1, (d) HI, (e) RSI, and (f) GI. 
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Fig. 26. Results (gram and IES) of IESFOgram based on targeted features for the rolling bearing inner race defect 

signature: (a) Ind, (b) DF, (c) SD, (d) SNR, (e) RCC, and (f) ICS2. 

5.4. Results of proposed method on bearing experimental signals 

For comparison, Fig. 27 displays the results (gram and IES) o f the developed approach for 

processing the bearing experimental signals analyzed in the previous three subsections. Fig. 27(a) 

indicates that the presented approach selects the same ISFB as the SNR and RCC-based methods and 

effectively detects the outer race failure  of the planetary bearing. When processing the rolling bearing 

outer race defect signal in Fig. 21(a), the proposed method selects a spectral frequency band with a 

bandwidth of 400 Hz and a central frequency of 13000 Hz, and the spectral lines at the BPFO and its 

harmonic  components can be distinguished in the resulting IES, as demonstrated in Fig. 27 (b). In the 

experiment of bearing inner race defect detection, the spectral frequency band confirmed  by the 

proposed method is consistent with that of the RCC and ISC2-based methods, and the inner race failure  

of the tested rolling bearing is demonstrated, as presented in Fig. 27(c). These experimental results 

prove that the presented approach effectively identifies the spectral frequency bands related to bearing 

faults and detects different bearing faults. 
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Fig. 27. Results (gram and IES) of IESFOgram based on FDSNR for different bearing experimental datasets: (a) 

planetary bearing outer race defect, (b) rolling bearing outer race defect, and (c) rolling bearing inner race defect. 

5.5. Summary of comparison results on bearing experimental signals 

The band selection and diagnosis results of IESFOgram using blind features, targeted features and 

FDSNR on three bearing fault cases are summarized in Tab le 2. The “Yes”, “Partial” and “No” 

represent the successful diagnosis, partially successful diagnosis and unsuccessful diagnosis, 

respectively. Fig. 28 displays the FDSNR obtained by the blind feature-based methods, the targeted 

feature-based methods and the proposed method for processing three bearing experimental signals. The 

qualitative and quantitative results of the bearing experimental signals show that: 

 The blind feature-based methods tend to select a relatively wide ISFB of the SCoh, while the 

targeted feature-based methods that are dedicated to disclosing the fault-related frequencies tend 

to construct IES over a relatively narrow ISFB. 

 The Kurt-based method is susceptible to strong harmonic components in the signal. The NE-based 

method exhib its better performance than other blind feature-based methods in detecting different 

bearing faults. Therefore, the NE-based method is an alternative method when the characteristic 

frequency of bearing faults is unknown. 

 Due to no or inappropriate normalizat ion, the Ind, SD and ICS2-based approaches are vulnerable 

to high-intensity random impulse noise in the signal. Only the presented approach and the DF and 

SNR-based methods have detected three bearing faults, and the fault detection effect of the 

presented approach delivers an advantage over that of the DF and SNR-based methods. Therefore, 

the developed approach is preferentially recommended for bearing failure detection. 

 

Table 2. Summary of band selection and diagnosis results of IESFOgram using different features on 

three bearing experimental cases. 

Experiment case Section 5.1 Section 5.2 Section 5.3 

Blind 

feature-based 

methods 

Kurt (62500,25000) No (4000,533) Partial (14400,3200) Partial 

NE (62500,25000) No (14400,3200) Yes (9600,6400) Yes 

L2/L1 (62500,25000) No (14400,3200) Yes (12800,8533) Yes 

HI (62500,25000) No (14400,3200) Yes (12800,8533) Yes 

RSI (3125,6250) No (13333,1067) Yes (16000,6400) Yes 

GI (6250,12500) No (14400,3200) Yes (12800,8533) Yes 

Targeted Ind (15820,1172) No (800,533) No (6667,533) Yes 
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feature-based 

methods 

DF (45117,1172) Yes (5400,400) Yes (5800,400) Yes 

SD (15820,1172) No (800,533) No (6600,400) Yes 

SNR (47656,1563) Yes (14000,800) Yes (5800,400) Yes 

RCC (47656,1563) Yes (800,533) No (7000,400) Yes 

ICS2 (15820,1172) No (800,533) No (7000,400) Yes 

FDSNR (47656,1563) Yes (13000,400) Yes (7000,400) Yes 

Note: (CF, BW) denotes the selected ISFB, CF = center frequency (Hz) and BW = bandwidth (Hz). 

 

 

Fig. 28. FDSNR obtained by IESFOgram using different features for different bearing experimental datasets: (a) 

planetary bearing outer race defect, (b) rolling bearing outer race defect, and (c) rolling bearing inner race defect. 

6. Conclusions 

In this article, a novel targeted feature is presented to evaluate bearing failu re informat ion in the 

cyclic frequency domain, and a novel method based on the proposed feature is developed to distinguish 

an optimal spectral frequency band of spectral coherence for constructing diagnostic improved 

envelope spectrum. The efficiency of the developed approach is testified using the simulated and 

experimental signals , and is compared with the typical blind feature-based methods and targeted 

feature-based methods. The results indicate the following conclusions: 

(1) The blind feature-based methods have certain resistance to Gaussian white noise and random 

impulse noise but are susceptible to impulsive cyclostationary noise and discrete harmonics. The 

negentropy-based method exh ibits better performance than other blind feature-based methods in 

detecting different bearing fau lts and therefore it  can be regarded as an alternative method when the 

fault characteristic frequency is unknown. 

(2) The band selection accuracy and fau lt detection ability  of the p resented approach and the 

diagnostic feature and signal-to-noise ratio-based methods are superior to that of the blind 

feature-based methods and other targeted feature-based methods under the presence of Gaussian noise 

and typical non-Gaussian noises, especially the proposed approach. Hence, the developed approach is 

preferentially recommended for bearing failure detection. 

In further research, the proposed method can be employed to fault d iagnosis of other rotating 

machinery and variable speed conditions, and the proposed feature can be applied to fault informat ion 

evaluation in other d iagnosis methods . On the other hand, since the developed approach requires the 

interested fault characteristic frequency as an input parameter,  the development of a feature indicator 

that is less dependent on fault knowledge and robust to interference noises is also part of further work. 
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