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Abstract— In this paper we study a class of dual spacecraft
formations for imaging applications. After motivating the
problem, we discuss the general goals of an imaging formation.
We then specialize the discussion to a class of dual spacecraft
formations and introduce the geometric constraints imposed
on the formation. The first main contribution of this paper
is that we combine two ideas introduced separately in the
literature and propose a maneuver that offers improved
imaging performance. We then formulate an optimal control
problem to minimize fuel consumption and further maximize
image quality by minimizing the relative speed, which is
proportional to the signal-to-noise ratio of the reconstructed
image. We use the Maximum Principle to derive the necessary
optimality conditions and show that they are also sufficient and
that the resulting control law is unique. Finally, we apply a
continuation method to solve for the unique optimal trajectory.

I. INTRODUCTION

The present paper addresses a class of dual spacecraft
sparse aperture interferometers. Such formations have been
discussed previously in the literature. See for example [1].
This class of formations is chiefly motivated by NASA’s
Origins mission [2]. The formation is composed of two
spacecraft (see Figure (1).) Both collect incoming light
but only one, called the combiner spacecraft, combines the
two collected beams and performs the interference process.
While the combiner is fixed in space, the collector is
proposed to evolve on a virtual paraboloid, whose axis of
symmetry coincides with the common formation line of
sight, in three dimensional space. The paraboloid results
in improved focusing properties for the constellation [1].

Moreover, in [3], the authors treat a planar dual-
spacecraft formation where the collector evolves along a
linear spiral relative to the fixed combiner. Such a spiral
maneuver results in complete coverage of a desired region
in the frequency (u-v) domain called the resolution disk
DR, which will be defined in Section (II). Combining these
two constraints such that the collector spacecraft evolves on
a spiral embedded on the paraboloid should result in both
improved focusing properties as well as improved signal
content (the effect of covering the u-v plane using a spiral
maneuver).
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Fig. 1. The basic interferometer.

A third important consideration to take into account is
signal-to-noise ratio (SNR) of the reconstructed image. It
is desired that all frequencies in DR be sampled while
maximizing SNR. SNR can be controlled by controlling the
relative speed (projected on the observation plane, which is
perpendicular to the line of sight) between the spacecraft
in the formation [4], [5]. As the projected relative speed
between the spacecraft pair is minimized, the achievable
SNR is maximized. Intuitively, as a spacecraft moves more
slowly, it spends more time in the neighborhood of a relative
position state in space. This leads to more photon collection
from that neighborhood, resulting in a stronger signal.

The above provides a guideline for the formulation of
an optimal control problem. The problem we consider
is slightly different than the τ -elastic variational or the
dynamic coverage problems considered in [5], [6], [7] in
that it is a restricted version of these problems to handle the
dual-spacecraft formation described above. The spacecraft
are modeled as point particles. With the combiner spacecraft
fixed at the focus of the paraboloid, the collector is con-
strained to move along a spiral embedded on a paraboloid,
which is a one dimensional manifold. Hence, the system
possesses only a single degree of freedom, which is the
motion on the one dimensional manifold. SNR is taken into
account by attempting to minimize a cost functional that is
a weighted sum of the projected relative speed and fuel. The
goal is to solve for the time parametrization of the control
vector that minimizes the cost functional and reconstruct
the time history of the collector spacecraft’s traversal of the
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spiral curve embedded on the manifold.
Here is how the paper is organized. In Section (II), we

briefly describe the various aspects of image reconstruction.
In Section (III), we give a general description of the model
and define the various variables. With this done, we are in a
position to define the optimal control problem and derive the
necessary optimality conditions. These necessary conditions
are shown to also be sufficient by proving that the problem
is strictly convex. Strict convexity guarantees that a solution
of the optimality conditions is in fact unique. This is done
in Section (IV). In Section (V), we apply a continuation
method to solve the necessary and sufficient conditions and
verify that, indeed, they are solutions by showing that the
Hamiltonian is constant along the trajectory. This furnishes
the unique optimal trajectory. We conclude with some final
remarks on future work in Section (VI).

II. IMAGING AND THE COVERAGE PROBLEM

In this section we review the various aspects of multi-
spacecraft imaging. The discussion is for a generic for-
mation of any number of spacecraft. In later sections, we
specialize the discussion to dual spacecraft interferometry.
Consider a formation of N spacecraft. Let qi denote the
coordinates of the ith spacecraft, i ∈ I = {1, . . . , N}. For
later development, assume that qi belongs to some one-
or two-dimensional continuously differentiable manifold M
embedded in R

3. Also let pi = (xi, yi, zi) denote the
position of the ith spacecraft in R

3. In general, we have
pi = (xi, yi, zi) = f(qi), (2.1)

where f : M → R
3 is a continuously differentiable

mapping.
Let O = R

2 be the observation plane (see Figure (1).
The observation plane is a plane perpendicular to the line
of sight (which we assume to be along the z-direction in R

3)
and whose origin coincides with the point (0, 0, 0) (that is,
the origin of R

3). Assume that the maximum displacement
along the line of sight of any spacecraft in the formation is
bounded above by ε. That is to say zi < ε. Let z̄ denote the
range from the observation plane to the target to be imaged.
One can show that if ε � z̄, then any inter-spacecraft off-
set along the line of sight between the spacecraft in the
formation does not affect the quality of the reconstructed
image [4]. Since the goal in the Origins program is to
reconstruct images of extra-solar objects, the assumption
that ε � z̄ is valid.

Hence, in extra-solar interferometric imaging, we are
interested in the relative position dynamics as projected onto
the observation plane O. We are therefore interested in the
projected relative trajectories:

p̃ij(t) = P (qj(t) − qi(t)) , (2.2)
where p̃ij : [0, T ] → O are curves on O and P is
the mapping that projects relative trajectories on M onto
the observation plane O. Note that P = Pxy ◦ f , where
Pxy : R

3 → R
2 is a projection mapping with matrix

representation [
1 0 0
0 1 0

]
. (2.3)

In multi-aperture interferometry, there are two main
imaging goals. The first is simply referred to as frequency
domain (or u-v plane) coverage. Here, we only state the
coverage goal and refer the reader to [4] for a more detailed
discussion. We are interested in having the resolution disc
as defined by the set DR =

{
(u, v) :

√
u2 + v2 ≤ 1/θr

}
completely covered by some ball of radius rp centered
at λp̃ij(t), for some t ∈ [0, T ], i and j, where θr is
the angular resolution and λ is the wavelength of the
electromagnetic signal of interest. An image is said to
be successfully completed if a maneuver M satisfies the
following condition.

Definition II.1. (Successful Imaging Maneuver) An imag-
ing maneuver M is said to be successful if, for each
(u, v) ∈ DR, there exists a time t ∈ [0, T ] and some
i, j = 1, . . . , N such that (u, v) ∈ B̄rp (λp̃ij(t)), where
B̄x(y) is a closed ball in R

2 of radius x centered at y. rp

is proportional to the size of the telescope’s airy disc.

The second objective is that all frequencies in DR must be
sampled while maximizing the signal-to-noise ratio (SNR).
SNR can be controlled by controlling the relative speeds
between the spacecraft in the formation [4]. As the projected
relative speed, denoted by ‖ṗij‖, between a spacecraft
pair is minimized, SNR is maximized. Intuitively, as a
spacecraft moves more slowly, it has more time spent in
the neighborhood of a relative position state in space. This
leads to more photon collection at that state, which results
in a stronger signal.

III. A CLASS OF DUAL-SPACECRAFT

INTERFEROMETERS

In this section we state the two constraints imposed on
the collector spacecraft and derive the equations of motion
of the collector spacecraft in terms of a single coordinate.

A. The Paraboloid Virtual Surface

The combiner spacecraft carries the ability to delay any
wavefront it receives in its own aperture by an amount
equal to twice the distance to the center of the paraboloid,
thus simulating the delay for a ray that passes through
the focus and reflects back to it. The collector spacecraft
flies anywhere along the paraboloidal surface, carrying a
mirror that reflects a second segment of the wavefront to
the combiner at the focus, which then interferometrically
combines the light from the two received apertures to
synthesize a baseline equal to the perpendicular separation
of the two spacecraft. In brief, the main reason for a
paraboloid surface choice for the collector spacecraft is
that a plane wavefront reflecting off a paraboloidal surface
will come to a common focus. In cartesian coordinates a
paraboloidal surface is given by:

z =
1
2

(
ρ2

β2
− β2

)
, (3.1)
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where ρ =
√

x2 + y2 and β is a parameter that controls the
depth of the paraboloid. Note that vertex of the paraboloid
is located at the point (0, 0,−β2/2).

B. The Spiral Maneuver

In the x-y plane, the projected position may be given
in terms of polar coordinates (ρ, θ). One way to ensure full
coverage of the resolution disc DR is to initialize the second
spacecraft such that at t = 0 we have (ρ = 1

θp
, θ = 0), make

it follow a linear spiral as a function of θ, and to impose the
terminal condition that at t = T we have ρ = (m+1)

2θp
, θ =

(m−1)π
2 ), where T is the terminal maneuver time. The

number m is an integer that is equal to the number of pixels
in the reconstructed image and θp is a parameter such that
θp = mθr. This motion implies that the two coverage balls
B̄rp

(p̃12) and B̄rp
(p̃21) are initialized such that they lie

outside the central (fixed) ball B̄rp (p̃00) = B̄rp (0, 0) and
move spirally outwards till they lie outside the resolution
disc DR. Thus ρ and θ must satisfy

ρ(θ) = k (π + θ) , θ ∈
[
0,

(m − 1)π
2

]
, (3.2)

where k = λ
πθp

. Note that in general we take θ ∈ [0,∞)
and not restrict it to the set [0, 2π).

Figure (2) shows an example of a trajectory in the
physical and u-v planes for an object that is located at
z̄ = 15pc (1pc= 3.085× 1013km), with a field of view that
is L̄ = 12, 760km wide, with m = 17 pixels and, thus, a
pixel size of L = 750.6km (i.e. the constellation is capable
of detecting any object whose size is greater than L.) These
values correspond to applications such as JPL’s Terrestrial
Planet Finder (TPF, [8]) and they could also be adjusted for
Earth imaging applications. For more details on the spiral
maneuver, we refer the reader to the papers [9] and [3]
and references therein. As shown in Figure (2), the spiral
maneuver is capable of entirely covering the resolution disc
DR, which results in a successful maneuver.

C. Equations of Motion

Since we have a single spacecraft to control, the number
of spacecraft N = 1. Enforcing the constraints (3.1) and
(3.2) one finds that the position of the collector spacecraft
in terms of the angular position θ is given by:

p(θ) = (x, y, z) =
(

(k(π + θ) cos θ, k(π + θ) sin θ,

1
2

(
k2

β2
(π + θ)2 − β2

) )
. (3.3)

We will use the arc length q traversed along the spiral as the
single global coordinate on the one-dimensional manifold
M . The arc length q is obtained as a function of θ using
the definition of the arc length of a curve in space:

q(θ) = h(θ) =
∫ θ

0

∥∥∥∥∂p(θ′)
∂θ′

∥∥∥∥dθ′,

where
∂p
∂θ

= [k cos θ − k (π + θ) sin θ] ex (3.4)

+ [k sin θ + k (π + θ) cos θ] ey +
[
k2 (π + θ)

β2

]
ez,

where ex, ey and ez denote unit vectors in the x, y and
z directions, respectively. By the geometry of the problem
described in previous paragraphs, it is easy to see that the
function h is both one-to-one and onto. Hence, given a value
for q, one can uniquely solve for θ using

θ = h−1(q). (3.5)
Although one can obtain h(θ) explicitly in terms of θ (we
omit it here due to space restrictions), there does not seem
to be an analytic expression for h−1.
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Fig. 2. Motion in the physical (in meters, left) and wave number
(dimensionless, right) planes

Let et and en denote the unit vectors tangent and normal
unit vectors at a point q(t) ∈ M , respectively. If we let v =
vet = q̇et denote the velocity of the collector spacecraft,
a = atet + anen its acceleration and u = utet + unen the
thrust vector applied to the collector, then the equations of
motion are written in path-variable form as (see [10]):

q̇ = v, v̇ = ut, (3.6)
where we assume a unit mass for the collector spacecraft.
Note that the normal component of the control vector is
constrained to satisfy:

un = an =
v2

R(θ)
, (3.7)

where R(θ) is the radius of curvature of M expressed in
terms of the polar angle location θ. R is given by 1

R =∥∥∥det

dq

∥∥∥ = ‖(det/dθ) · (dθ/dq)‖. In terms of θ, we find that1

1
R(θ)

=

r(θ)
[
k2(π + θ)2 + β4

(
1 + (π + θ)2

)]
√

β4 (2 + (π + θ)2)2 + k2 (1 + (π + θ)2 (3 + (π + θ)2))
.

In computing the curvature, we have used:

dq = r(θ)dθ =
∥∥∥∥∂h

∂θ

∥∥∥∥dθ, (3.8)

where

r(θ) = k

√
1 +

(
1 +

k2

β4

)
(π + θ)2. (3.9)

IV. NECESSARY AND SUFFICIENT OPTIMALITY

CONDITIONS

In this section we formulate an optimal control problem
and use the Maximum Principle to derive the necessary
conditions. We then show that the problem is convex and
that the necessary optimality conditions are also sufficient.

1All symbolic computations were verified in Mathematica.
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With the two constraints imposed on the collector space-
craft, we have achieved a successful maneuver (by virtue
of the spiral constraint) and improved focusing properties
(by virtue of the paraboloid constraint.) The only degree of
freedom remaining is the time parametrization of q(t). This
is determined by solving an optimal control problem that
results in the time parametrization that minimizes the speed
and fuel expenditure of the collector spacecraft, which are
the last two important criteria in the motion path planning
problem for the dual-spacecraft interferometer.

The goal is to minimize the cost functional:

J =
∫ T

0

1
2
〈u,u〉 +

τ2

2
〈ṽ, ṽ〉dt (4.1)

subject to the dynamics (3.6) and the boundary conditions:
q(0) = 0, v(0) = v0, q(T ) = qT , v(T ) = vT , (4.2)

where qT = h
(
θ = (m−1)π

2

)
. In Equation (4.1), ṽ = ˙̃p is

the projected velocity of the collector on the x-y plane and
u = utet +unen is the total thrust vector. 〈·, ·〉 denotes the
Euclidean inner product defined on R

3.

To compute ṽ in terms of q and q̇, we first need to obtain
an expression for θ̇ in terms of q and q̇. Differentiating
Equation (3.4), we obtain

q̇ = r(θ)θ̇, (4.3)
where r(θ) is given by Equation (3.9). Using this and
Equations (3.3) and (3.5), we have:

ṽ = ẋex + ẏey = Px(θ, v)ex + Py(θ, v)ey, (4.4)
where

Px(θ, v) =
v

r(θ)

[
k cos (θ) − k (π + θ) sin (θ)

]

Py(θ, v) =
v

r(θ)

[
k sin (θ) + k (π + θ) cos (θ)

]
.

In fact, one can show that 〈ṽ, ṽ〉 = k2v2

r2(θ)

[
1 + (π + θ)2

]
.

Hence the cost is given by:
1
2
u2

t +
v4

2R2(θ)
+

τ2

2
k2v2

r2(θ)
(
1 + (π + θ)2

)
. (4.5)

We now apply the Maximum Principle to derive the
necessary conditions. First define the pre-Hamiltonian:

Ĥ(θ, v, ut, p1, p2) = −1
2
u2

t −
v4

2R2(θ)
(4.6)

−τ2

2
k2v2

r2(θ)
(
1 + (π + θ)2

)
+ p1v + p2ut,

where p1 and p2 are the momentum variables. From the
necessary condition ∂Ĥ

∂ut
= 0, we find that ut = p2.

Substituting this into (4.6), we get the Hamiltonian function:

H(θ, v, p1, p2) = p1v +
1
2
p2
2 −

v4

2R2(θ)

−τ2

2
k2v2

r2(θ)
(
1 + (π + θ)2

)
. (4.7)

The necessary conditions are given by:

q̇ =
∂H

∂p1
= v ⇔ θ̇ =

v

r(θ)

v̇ =
∂H

∂p2
= p2

ṗ1 = −∂H

∂q
= − 1

r(θ)

[
v4

R3(θ)
∂R

∂θ
(4.8)

−τ2k2v2

r2(θ)
(π + θ) +

τ2k2v2

r3(θ)
∂r

∂θ

[
1 + (π + θ)2

] ]

ṗ2 = −∂H

∂v
= −p1 +

2v3

R2(θ)
+

τ2k2v

r2(θ)
[
1 + (π + θ)2

]
.

We have used the fact that ∂q/∂θ = r(θ) and used the
chain rule in computing the derivative of r(θ) and R(θ)
with respect to q. We also used q̇ = v = r(θ)θ̇ to obtain
the necessary conditions in terms of (θ, v, p1, p2) (as given
by the second equation on the first line,) which is more
convenient to use in the computations in the next section
since all equations are in terms of θ and not q.

We now show that the necessary conditions are also
sufficient and that there exists a unique solution to the
problem. This is done by showing that we have a strictly
convex optimal control problem. First, we need the follow-
ing standard result.

Lemma IV.1. Let f(x) = h(g(x)) : R → R, where g :
R → R is concave and h : R → R is convex and non-
increasing. Then f(x) is convex.

Proof Note that f ′′(x) = h′′(g′)2 + h′g′′, where the prime
indicates the derivative with respect to the argument. Since
g is concave, g′′ ≤ 0 for all x in R. Since h is convex,
h′′ ≥ 0 and since it is non-increasing, h′ ≤ 0 for all x ∈ R.
This shows that f ′′(x) ≥ 0 for all x ∈ R. Hence, f(x) is
convex for all x ∈ R. �

Strict convexity is obtained if h is strictly convex and
strictly decreasing (h′′(x) > 0 and h′(x) < 0 ∀ x ∈ R) and
g(x) is strictly concave (g′′(x) < 0 ∀ x ∈ R.)

Since the dynamics (3.6) are linear and the variables q,
v and ut are all unconstrained (that is, q, v, ut ∈ R) and,
hence, belong to trivially convex sets, we only need to show
that the cost function in Equation (4.1) is strictly convex
in q, v and ut to guarantee sufficiency of the necessary
conditions and uniqueness of the solution. Since the cost
(4.5) is quadratic in ut, it is strictly convex in ut. It is also
strictly convex in v since it is a sum of a quadratic and a
fourth power of v (both are strictly convex and the sum of
two strictly convex functions is also strictly convex).

What remains to show is that the cost (4.5) is convex
in q. This is done by showing that h1(θ) = 1/R2(θ) and
h2(θ) = (1+(π+θ)2)/r2(θ) are convex and non-increasing
in θ and that θ = h−1(q) is concave in q. Since the sum of
two convex functions is also convex, then the q-dependent
terms of the cost (4.5) is convex. First, note that:

h′
1(θ) = − χ1(θ)

k2 [k2(π + θ)2 + β4(1 + (π + θ)2)]4
< 0

h′′
1(θ) =

χ2(θ)
k2 [k2(π + θ)2 + β4(1 + (π + θ)2)]5

> 0

for all θ ∈ [0, (m − 1)π/2] where

χ1(θ) = 2β8(π + θ)
[
β8(2 + (π + θ)2)(4 + (π + θ)2)

+ k4(3 + (π + θ)2(6 + (π + θ)2))

+ 2β4k2(6 + (π + θ)2(6 + (π + θ)2))
]

> 0,

2408



χ2(θ) = 2β8

[
3k6(π + θ)2(7 + (π + θ)2(10 + (π + θ)2))

+ β12(−8 + (π + θ)2(2 + (π + θ)2)(19 + 3(π + θ)2))

+ β8k2(−12 + (π + θ)2(104 + (π + θ)2(80 + 9(π + θ)2)))

+ β4k4(−3 + (π + θ)2(87 + (π + θ)2(85 + 9(π + θ)2)))
]

> 0
for all θ ∈ [0, (m− 1)π/2]. Hence, h1(θ) is strictly convex
and is strictly decreasing for all θ ∈ [0, (m − 1)π/2]. For
h1, first write it explicitly in θ:

h2(θ) =
1 + (π + θ)2

k2
[
1 +

(
1 + k2

β4

)
(π + θ)2

] .

The derivatives of h2 are given by:

h′
2(θ) = − 2β4(π + θ)

[k2(π + θ)2 + β4(1 + (π + θ)2)]2
< 0

h′′
2(θ) =

2β4
[
3k2(π + θ)2 + β4(−1 + 3(π + θ)2)

]
[k2(π + θ)2 + β4(1 + (π + θ)2)]3

> 0

for all θ ∈ [0, (m− 1)π/2]. Hence, h2(θ) is strictly convex
and is strictly decreasing for all θ ∈ [0, (m−1)π/2]. Finally,
using Equation (3.8), we have

dθ

dq
=

1
r(θ)

,
d2θ

dq2
= − 1

r2(θ)
dr

dθ

dθ

dq
.

Since, dθ/dq = 1/r and
dr

dθ
=

k2

r(θ)

(
1 +

k2

β4

)
(π + θ)

then we have
d2θ

dq2
= − k2

r4(θ)

(
1 +

k2

β4

)
(π + θ),

which is strictly negative for all θ ∈ [0, (m − 1)π/2]. This
shows that θ = h−1(q) is a strictly concave function of q
for all value of θ in the desired range.

The above arguments show that we have a strictly convex
problem since we have a strictly convex cost function and
linear dynamics and since the space of candidate trajectories
(q(t), v(t), ut(t)) ∈ R

3, which is trivially convex, for all
t ∈ [0, T ]. Based on the Corollary on page 214 and Theorem
10 on page 216 in [11], this gives the following result.

Theorem IV.1. The necessary conditions (4.9) are also
sufficient and have a unique global optimal solution.

V. NUMERICAL SOLUTION

In this section we numerically obtain the unique solution
to the necessary and sufficient conditions given by Equa-
tions (4.9). We use MATLAB’s bvp4c.m function, the two-
point boundary value problem solver. This uses a simple
shooting method that requires an initial guess for the time
parameterized states: q(t) (or θ(t)), v(t), p1(t) and p2(t).
Since an initial guess is hard to obtain, we use continuation
method (homotopy) to solve the problem (see Chapter 7 in
[12]). This is done as follows.

We now derive the necessary conditions for the modified
cost functional. The goal is to minimize the cost functional:

Jε =
∫ T

0

1
2
u2

t +
ε

2

[
v4

R2(θ)
+

τ2k2v2

r2(θ)
(
1 + (π + θ)2

)]
dt.

(5.1)

For this cost function, the Hamiltonian is given by:

Hε(θ, v, p1, p2, ε) = p1v +
1
2
p2
2 −

ε

2

[
v4

R2(θ)
τ2k2v2

r2(θ)
(
1 + (π + θ)2

) ]
.(5.2)

The necessary conditions are given by:
q̇ = v

v̇ = p2

ṗ1 = − ε

r(θ)

[
v4

R3(θ)
∂R

∂θ
(5.3)

−τ2k2v2

r2(θ)
(π + θ) +

τ2k2v2

r3(θ)
∂r

∂θ

[
1 + (π + θ)2

] ]

ṗ2 = −p1 + ε

[
2v3

R2(θ)
+

τ2k2v

r2(θ)
(
1 + (π + θ)2

) ]
.

Note that these are still sufficient and that the solution is
unique for each ε ∈ [0, 1]. For ε = 0 we have:

q̇ = v, v̇ = p2, ṗ1 = 0, ṗ2 = −p1,
which now form a set of linear differential equations. One
can easily solve these differential equations to obtain:

q(t) = v0t − t3

6
p0
1 +

t2

2
p0
2

v(t) = v0 − t2

2
p0
1 + tp0

2 (5.4)

p1(t) = p0
1

p2(t) = −tp0
1 + p0

2,
where p0

1 and p0
2 are constants given by:

p0
1 = − 6

T 2
(vT + v0) +

12
T 3

qT

p0
2 =

6
T 2

qT − 2
T

vT − 4
T

v0

and where qT , v0 and vT are the boundary conditions.
In a continuation method, one uses the solution to the

problem with ε = ε0 = 0 (that is, Equations (5.4)) as the
initial guess for ε1 = δ, where δ is a sufficiently small
parameter. Assuming that the problem with ε = ε1 = δ has
been successfully solved, one then uses this solution as the
initial guess for the next step with, say, ε = ε2 = 2δ. This
is repeated until ε = εj = jδ is sufficiently close to ε = 1.
At this point, we are able to solve the two point boundary
value problem (5.3) with ε = 1, which corresponds to the
original problem (4.9) we are seeking to solve.

Consider the optimal control problem with τ = 10, β =
10, T = 1000 seconds, q0 = 0, qT = 5.26× 105 km, vT =
v0 = 0 m/s and using the same values used to generate
Figure (2) which give k = 1.154 × 104. The continuation
method is applied starting with the explicit solution (5.4)
(corresponding to ε = 0) with a step size of δ = 0.01.
The result is shown in Figure (3). In the figure, we plot the
solution with ε = 0, ε = 0.33, ε = 0.50, ε = 0.67 and
ε = 1.0, which corresponds to the desired solution to our
problem. To show that, indeed, the solution is continuous
in ε, q(t) and v(t) are plotted in on the right in Figure (3)
for t ≤ 100.01 seconds. One can now see that the solution
varies smoothly as a function of ε.

As a final check on the numerical solutions shown in
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Figure (3), the Hamiltonian Hε must be constant along
the motion for every value of ε. Evaluating Hε for the
different values of ε, we get Hε=0(t) = 4.982 × 106

(with 0% deviation from the mean value since this is the
exact solution), Hε=0.33(t) = 3.74×108 (0.22% deviation),
Hε=0.5(t) = 5.57 × 108 (0.23% deviation), Hε=0.67(t) =
7.40 × 108 (0.25% deviation) and Hε=1(t) = 1.09 × 109

(0.26% deviation) on average for all values of time t ∈
[0, 1000]. The small perturbations in the values of the
Hamiltonian is attributed to numerical errors involved in
the computation, where we note that as ε is increased, the
% error increases. The Hamiltonian is plotted in Figure (4).
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Fig. 3. q(t), v(t) and ‖u(t)‖ for ε = 0 (exact solution), ε = 0.33,
ε = 0.50, ε = 0.67 and ε = 1.00, which is the desired solution for the
optimal control problem: for t ∈ [0, T ] (left) and t ≤ 1.401s (right.)

VI. CONCLUSION

In this paper, we introduced the main elements of
formation flying for imaging applications, including the
coverage problem. We then specialized the discussion to
a two spacecraft formation introduced previously in the
literature. The first main contribution of this paper is that we
combined two ideas introduced separately in the literature
and proposed a maneuver that guarantees full coverage of
the u-v plane (the spiral) and improved focusing proper-
ties (the paraboloid). The geometry of the problem was
described and the governing dynamic equations derived. We
then formulated an optimal control problem that aims to

minimize a cost functional composed of a weighted sum of
fuel expenditure and the projected relative speed. This cost
function is chosen to both reduce mission fuel costs and
improve image quality by increasing SNR.

The necessary conditions were derived and were shown
to be sufficient and to have a unique solution. We used
a continuation procedure to solve the resulting two point
boundary value problem for the unique solution. Current
work will use the image quality performance index used in
[3] to evaluate the performance of the solution found in the
present paper and compare the results with those obtained
previously in [3].
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