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Abstract

A deadlock-free fully adaptive routing algorithm for 2D
meshes which is optimal in the number of virtual chan-
nels required and in the number of restrictions placed on
the use of these virtual channels is presented. The routing
algorithm imposes less than half as many routing restric-
tions as any previous fully adaptive routing algorithm. It is
also proved that, ignoring symmetry, this routing algorithm
is the only fully adaptive routing algorithm that achieves
both of these goals. The implementation of the routing al-
gorithm requires relatively simple router control logic. The
new algorithm is extended, in a straightforward manner, to
arbitrary dimension meshes. It needs only 4 ��� 2 virtual
channels, the minimum number for an � -dimensional mesh.
All previous algorithms require an exponential number of
virtual channels in the dimension of the mesh.

Keywords: wormhole routing, mesh architectures, routing
algorithms, deadlock freedom, optimality.

1 Introduction

Wormhole routing [6] has become the switching tech-
nique of choice in modern distributed-memory multipro-
cessors such as the Intel Paragon, the Symult 2010, the
MIT J-machine, the Caltech MOSAIC and the nCUBE-2.
Implementations of wormhole routing typically divide each
message into packets, which are then divided into flits. The
header flits of a packet contain the routing information and
the data flits of the packet follow the header flits through the
network in a pipelined fashion. All channels in the path are
reserved from the time the header flits acquire the channel
until the last data flit in the packet has traversed the chan-
nel. The pipelining of the flits makes the message latency
largely insensitive to the distance between the source and
destination, so there is lower message latency when there
is little or no channel contention. Each channel has enough
storage to buffer only a few flits, so wormhole routing re-
quires significantly less hardware for buffering than packet

switching does. These two factors make wormhole routing
an attractive switching technique for distributed-memory
multiprocessors.

The most significant problems with wormhole routing
are message latency and contention that can occur with even
moderate network traffic. Since all the channel queues in
the path from the source to the destination are held from
the time they are acquired until the entire message has been
transmitted (which is after the entire path has been estab-
lished except for very short messages which fit in the in-
termediate channel buffers), performance degradation due
to contention can be severe and message latency can be
unacceptably high. A message that requires several chan-
nels can block many messages while being transmitted.
These blocked messages can in turn block other messages,
which further increases the message latency. The prob-
lems of latency and contention could be partially overcome
by providing additional physical channels between nodes
in the network. This is an expensive solution, however.
A more cost-effective method is to allow multiple virtual
channels to share the same physical channel [4]. Each vir-
tual channel has a separate buffer, with multiple messages
multiplexed over the same physical channel. Both latency
and contention can be further reduced by utilizing the mul-
tiple paths between the source and destination. However,
because channels are held until the message has been trans-
mitted, a routing algorithm with no restrictions on the use
of virtual or physical channels can result in deadlock [6].

The simplest routingalgorithms are deterministic (obliv-
ious) and define a single path between the source and des-
tination. A message must wait for each busy channel in
the path to become available. On the other hand, adap-
tive routing algorithms support multiple paths between the
source and destination. Adaptive routing algorithms are ei-
ther minimal or non-minimal. Minimal routing algorithms
allow only shortest paths to be chosen, while non-minimal
routing algorithms also allow longer paths. Adaptive rout-
ing algorithms, whether minimal or non-minimal, can be
further differentiated by the number of shortest paths al-
lowed. Adaptive routing algorithms that do not allow all



Table 1: Overview of Adaptive Routing Algorithms for Meshes

Author(s)
Fully VCs for

CommentsAdaptive? 2D Mesh

Chien & Kim [2] Yes 6
Partially Adaptive for
Higher Dimensions

Dally [3] Yes 6 2D Mesh Only
Dally & Aoki [5] Yes � 2D Mesh with ��� � nodes
Glass & Ni [8] Yes 6 2D Mesh Only

Glass & Ni [9] No 4
Roughly Half the

Adaptiveness of Fully Adaptive
Jesshope, Miller

Yes 8
Number of Virtual

& Yantchev [10] Channels is Exponential
Linder & Harden [11] Yes 6 in Dimension of Mesh

messages to use any shortest path are called partially adap-
tive. Adaptive routing algorithms that do allow all messages
to use any shortest path are called fully adaptive. While all
fully adaptive routing algorithms allow a message to use
any physical channel that is part of a shortest path, differ-
ent restrictions are placed on the choice of virtual channels
on that physical channel, so not all fully adaptive routing
algorithms are equivalent. Some fully adaptive routing al-
gorithms allow more adaptiveness than others by placing
fewer restrictions on the choice of virtual channels.

Separate buffers are needed for each virtual channel.
Furthermore, routing algorithms that require more virtual
channels need additional router control logic and are usu-
ally more complex. The multiplexing and scheduling of
the virtual channels on the physical channel is also more
complicated. In addition, router latency and cycle time
increase with the number of virtual channels [1], so fewer
virtual channels is better. Decreasing the number of virtual
channels needed for a given adaptiveness is accomplished
by using a less restrictive routing algorithm. Conversely,
a less restrictive routing algorithm has better performance
relative to other routing algorithms when the same number
of virtual channels is used.

2 Previous Work

Adaptive routing algorithms have been developed for
mesh, torus and hypercube topologies. Torus and hyper-
cube topologies can be characterized as

�
-ary � -cubes,

where
�

is the radix and � is the dimension. For exam-
ple, an 8D hypercube is a 2-ary 8-cube and a 16 � 16
torus is a 16-ary 2-cube. An � -dimensional mesh is similar
to a torus, except a mesh does not have any wrap-around
channels. Routing algorithms for only mesh topologies are
reviewed here, because wormhole routing has been used

primarily on low-dimension meshes and the focus of this
paper is on mesh topologies.

Many adaptive routing algorithms for meshes have been
proposed [2, 3, 5, 8, 9, 10, 11]. Table 1 summarizes the
main features of each algorithm. In the Table, VCs is used
for number of bidirectional virtual channels per router.

Designing deadlock-free routing algorithms for worm-
hole routing was simplified by a proof that an acyclic chan-
nel dependency graph guarantees deadlock freedom [6].
Each node in the channel dependency graph is a virtual
channel. A directed edge from one virtual channel to an-
other means that a message could use the second virtual
channel immediately after the first. Since the graph is
acyclic, deadlock freedom can be proved by assigning a
numbering to the edges of the graph, ensuring that virtual
channels are used in always increasing or always decreas-
ing order. A channel dependency graph is connected if
there is a path from any source to any destination.

The proof in [6] is a necessary and sufficient condition
for deterministic routing algorithms which can be charac-
terized as functions of the form � : �����	�
� , where the
incoming channel, belonging to the set of channels � , and
the destination, belonging to the set of nodes � , define an
outgoing channel on which to route the message. Acyclic-
ity of the channel dependency graph has also been used as
a basis for developing adaptive routing algorithms defined
by relations of the form � : ���������� , where a set of
channels, rather than a single channel, is defined on which
the message can be routed. Requiring an acyclic channel
dependency graph is overly restrictive for routing algo-
rithms defined by relations of the form � : ����	����� ,
where the current node, rather than the incoming channel,
and the destination define the set of channels on which the
message can be routed [7]. Cycles may exist in the chan-
nel dependency graph if some subset of channels defines a



connected subgraph with an acyclic extended channel de-
pendency graph. An extended channel dependency graph
is a dependency graph which arises from direct and indirect
dependencies. Each edge in the channel dependency sub-
graph defines a direct dependency. An indirect dependency
is a dependency between two channels in the connected
subgraph that exists only because of the intermediate use
of channels not in the subgraph.

A method of analyzing routing algorithms based on the
permitted and prohibited turns from one virtual channel
to another is presented in [9]. The dependencies between
virtual channels are characterized as turns. The set of pos-
sible turns are defined by the topology and are given here
for meshes. The turns can be 90 � turns (i.e., a traversal
from a virtual channel in one direction to a virtual chan-
nel in any orthogonal direction), 0 � turns (i.e., a traversal
from one virtual channel to another virtual channel in the
same direction) and 180 � turns (i.e., a traversal from one
virtual channel to a virtual channel in the opposite direc-
tion). Clearly, 180 � turns are not used for minimal routing.
The turn model groups the turns into cycles and breaks all
cycles by prohibiting some turns. This is equivalent to re-
moving edges from the channel dependency graph. It is
then necessary to show that cycles cannot be created from
the remaining turns. This is done by providing a numbering
of the edges in the channel dependency graph.

For the 2D mesh, the algorithms proposed in [2, 3, 11]
all produce an equivalent fully adaptive minimal algorithm
called double-y. This routing algorithm requires two virtual
channels in each Y direction and one virtual channel in
each X direction. This set of virtual channels has a total of
sixteen 90 � turns and four 0 � turns. Double-y allows eight
of the sixteen 90 � turns and prohibits all 0 � turns.

Double-y was improved upon in [8] by use of the turn
model. It was shown that double-y, while being fully
adaptive, still places unneeded restrictions on the routing.
The Maximally Fully Adaptive (mad-y) routing algorithm,
which makes better use of the virtual channels and hence
improves adaptiveness, was proposed. In addition, it was
shown that a fully adaptive routing algorithm with fewer
virtual channels could not be produced, based on the as-
sumption that a cycle is a necessary and sufficient condi-
tion for deadlock with adaptive routing algorithms. Thus
it was argued that mad-y is the best possible fully adaptive
wormhole routing algorithm for 2D meshes. Any reduction
in virtual channels or routing restrictions results in an algo-
rithm that is either not fully adaptive or not deadlock-free.
In the next section it is shown that the proposed algorithm
is more adaptive than mad-y.

The following conventions are used throughout the pa-
per. Channels are assumed to be bidirectional. All chan-
nels, whether physical or virtual, are referred to as virtual

channels. N, S, E and W are used to indicate the appropri-
ate direction, with N–W used to indicate a turn from North
to West, for example. The symbol

� ����� denotes virtual
channel � in the � direction. For example,

� � 1 � is virtual
channel one in the North direction. The channel number
is omitted when there is a single virtual channel in that
direction. When the term routing algorithm is used in the
rest of the paper, it refers to a fully adaptive deadlock-free
wormhole routing algorithm for meshes.

3 Optimal Minimal Routing

The requirement that the channel dependency graph be
acyclic forces unnecessary restrictions on the routing al-
gorithm. Since mad-y has this requirement, it is not the
least restrictive routing algorithm for 2D meshes. A new
routing algorithm, the Optimal Fully Adaptive routing al-
gorithm, which has substantially fewer restrictions, is pro-
posed. This new algorithm is first presented for the 2D
mesh and then generalized to � -dimensional meshes.

A block diagram of the router with the extra virtual chan-
nels placed in the North and South directions is shown in
Figure 1(a). The virtual channels in the North and South
directions are differentiated by marking

� � 1 � and
� � 1 �

with a single dash and
� � 2 � and

� � 2 � with a double
dash. This configuration has a total of sixteen 90 � turns
and four 0 � turns. Unrestricted turns are indicated by solid
lines, restricted turns by dashed lines and prohibited turns
by dotted lines. The term permitted turns is used to describe
the combination of restricted and unrestricted turns. The
constraints imposed by the Optimal Fully Adaptive routing
algorithm, referred to as opt-y, can be summarized suc-
cinctly: a message that needs to route further in the West
direction cannot use

� � 1 � or
� � 1 � . Opt-y has the fol-

lowing two sets of constraints (See Figures 1(b) and 1(c)):

	 Two 90 � turns, N–W using
� � 1 � and S–W using� � 1 � , are prohibited.

	 The 0 � turns from
� � 2 � to

� � 1 � and
� � 2 � to

� � 1 �
are allowed only when the message does not need to
route further West.

The following restrictions arise solely from the previous
constraints:

	 The 90 � turns W–N using
� � 1 � and W–S using

� � 1 �
are allowed only when the message does not need to
route further West. These turns are restricted only
because the N–W turn from

� � 1 � and S–W turn
from

� � 1 � are prohibited.

	 The 0 � turns from
� � 1 � to

� � 2 � and
� � 1 � to

� � 2 �
are possible only when the message does not need to



route further West, because
� � 1 � and

� � 1 � are not
used until the message has completed routing West.

	 � � 1 � and
� � 1 � cannot be used by the router at the

source if the message needs to route West.

2D Mesh
Router

+X

-Y

-X

+Y

(a)

(c)

(b)

Figure 1: Optimal Fully Adaptive Routing

Several important properties are proved for opt-y:

	 Opt-y is fully adaptive.

	 Opt-y is deadlock-free.

	 Opt-y requires only the minimum number of virtual
channels.

	 Opt-y places the fewest possible restrictions on the use
of these virtual channels.

	 Opt-y is the only algorithm to satisfy all four of the
previous properties (except for algorithms symmetric
to opt-y).

Theorem 1 Opt-y is fully adaptive.

Proof. Recall that with minimal routing, each routing step
takes the message closer to the destination. If the source
and destination vary in only one dimension, there is a single
minimal path. Opt-y can use this path – the single virtual
channel in the East and West directions or either virtual
channel in the North and South directions. For a destination
that is Northeast (Southeast) of the source, the message can
route adaptively along the North (South) and East virtual
channels. For a destination that is Northwest (Southwest)
of the source, the message can route adaptively along

� � 2 �
(
� � 2 � ) and the West virtual channel. Once the message

has routed completely West, it can use either of the North
(South) virtual channels and switch between them. �

A message can use
� � 1 � or

� � 1 � only when the des-
tination is not West of the current node. Otherwise, it must
choose one of the other virtual channels. This restriction
depends on the current node, not the incoming channel, so
opt-y has the form � : ����� � � � . The result proved
in [7] can now be used to show that opt-y is deadlock-free.

Using the terminology in [7], the routing algorithm is
denoted � and the set of channels used by � is denoted � .
There is some subset of channels, � 1

� � , that defines a
routing algorithm � 1

� � , i.e., � 1 is the routing algorithm
� restricted to using � 1. Since there are cycles in the
channel dependency graph, it is not possible to provide a
numbering of the channels that guarantees the channels are
used in always increasing or always decreasing order. It
is shown in [7] that any routing algorithm of the form � :
�� � � � � is deadlock-free if it satisfies the following
three conditions:

	 The channel dependency graph defined by � 1 for � 1

is connected.

	 The routing algorithm � 1 allows no cycles and is there-
fore deadlock-free.

	 The additional channels ( ��� � 1) of routing algorithm
� do not introduce cycles in the extended channel
dependency graph of � 1.

The idea behind the proof is that cycles are permitted
if messages also have the possibility of switching to an
acyclic path. The set of outgoing channels, � � , always
includes at least one channel in � 1, so a deadlock-free path
is always available. In order for deadlock to be avoided,
header flits cannot enter a virtual channel queue until the
queue is empty. In addition, if all channels in ��� are
busy, the output selection policy must either defer selecting
a channel or choose a busy channel in � 1 � � � . For the
channel dependency graph in Figure 1, � 1 consists of all the
virtual channels except

� � 2 � and
� � 2 � . Consequently,

� 1 uses only the permitted 90 � turns shown in Figure 1(b).

Lemma 1 The channel dependency graph defined by � 1

for � 1 is connected.

Proof. If the source and destination differ in a single di-
mension, the message can use the virtual channel in that
direction to reach the destination. For destinations that are
Northeast (Southeast) of the source, the message can be
routed adaptively North (South) and East. For destinations
that are Northwest (Southwest) of the source, the message
must route completely West and then North (South). �

Lemma 2 The routing algorithm � 1 allows no cycles and
is therefore deadlock-free.

Proof. The proof of this lemma can be found in [9], where
� 1 is described as the West-First routing algorithm. �

Lemma 3 The additional channels of routing algorithm �
do not introduce cycles in the extended channel dependency
graph of � 1.



Proof. The only possibility for a cycle in � 1 is for an
indirect dependency to be introduced by using

� � 2 � or� � 2 � . � 1 is fully adaptive for all messages except mes-
sages whose destination is West of the source. Indirect de-
pendencies that allow a use of the channels different from
� 1 could arise in only two ways: (1) A message uses

� ���
after using

� � 1 � or
� � 1 � . This cannot occur, since the

routing algorithm, � , prohibits the use of
� � 1 � or

� � 1 �
by any message that needs to route further West. (2) A
message using some

� � � later uses another
� � � in a

different row of the mesh. This is possible only because a
message that is routed West can use

� � 2 � or
� � 2 � and

later route West again. However, this indirect dependency
does not cause a deadlock. It is sufficient to show that this
indirect dependency does not create a cycle in the chan-
nel dependency graph for � 1. The channel dependency
graph for � 1 has no dependencies from a channel in the
East, North or South directions to a channel in the West
direction, i.e., the West channels are always used before
any other channel in � 1. The indirect dependencies create
new dependencies only among the West virtual channels,
however, these dependencies do not create a cycle. Since
minimal routing is used, there are no cycles using only the
West virtual channels and hence there are no cycles in the
extended channel dependency graph of � 1. �

Theorem 2 Opt-y is deadlock-free.

Proof. The proof follows immediately by lemmas 1 – 3. �

4 Proofs of Optimality

Opt-y is optimal in two ways: (1) It requires the mini-
mum number of virtual channels per router. (2) It requires
the fewest restrictions on the use of the virtual channels.
Two reasonable and standard assumptions are made when
proving the optimality of opt-y. First, optimality applies
only to the number of virtual channels at the interior nodes
of the mesh. Nodes on the edges of the mesh need to be
connected to other nodes in only two or three directions,
so fewer virtual channels could be used for these routers.
Second, all the nodes use the same routing algorithm.

The optimality proofs are greatly simplified by proving
that all configurations with fewer than six virtual channels
and most configurations with six virtual channels are either
not deadlock-free or not fully adaptive. A version of this
result is proved in [8] under the assumption that only acyclic
routing algorithms are deadlock-free. A stronger result is
proved in this paper, since no assumptions are made about
the fully adaptive routing algorithm.

Note: The following conventions are used for figures
showing deadlock configurations. In each figure, the
routers are represented as circles, with the virtual channels

as edges connecting the routers. The source and destina-
tion routers of message

�
are labeled S

�
and D

�
, respectively.

Virtual channels are labeled M
�

to indicate that message
�

has acquired that channel. Since bidirectional channels are
assumed, arrows are used to indicate in which direction
the message is proceeding. Messages on the left side of a
vertical channel are using

� � 1 and messages on the right
side are using

� � 2. Messages above a horizontal channel
are using

� � 1 and messages below are using
� � 2.

Theorem 3 Deadlock-free fully adaptive wormhole rout-
ing on a 2D mesh requires a second virtual channel in two
opposite directions: North and South or East and West.

Proof. Consider the potential deadlock configuration
shown in Figure 2(a). All four messages are waiting for
a virtual channel in the North or West direction. If there
is only one virtual channel in the North and West direc-
tions, then the routing algorithm is not deadlock-free. This
applies to any fully adaptive routing algorithm. Similarly,
Figure 2(b) shows a deadlock configuration if there is a
single virtual channel in the North and East directions,
Figure 2(c) shows a deadlock configuration if there is a
single virtual channel in the South and West directions and
Figure 2(d) shows a deadlock configuration if there is a
single virtual channel in the South and East directions. At
least two more virtual channels are needed to avoid all four
deadlock cases and the virtual channels must be added in
opposite directions. For example, the top two deadlock
configurations can be avoided by adding a virtual channel
in the North direction and the bottom two deadlock config-
urations can be avoided by adding a virtual channel in the
South direction. �

Lemma 4 At least two 90 � turns must be prohibited to
make the routing algorithm deadlock-free.

Proof. A knot is a set of nodes that forms a cycle and no
node in the set has a path to a node outside the set. A knot
in the channel dependency graph is a sufficient condition
for deadlock. Knots can occur when a set of messages all
route in the clockwise or counter-clockwise directions, so
it is necessary to prevent both of these knots. At least one
90 � turn must be prohibited to prevent each knot, so at least
two 90 � turns must be prohibited. �

By theorem 3, opt-y requires only the minimum number
of virtual channels for deadlock-free fully adaptive rout-
ing. The remainder of this section is used to show that
opt-y has the fewest restrictions of any fully adaptive rout-
ing algorithm with six virtual channels, and that, ignoring
symmetry, all other fully adaptive routing algorithms have
more restrictions than opt-y.

Since at least two 90 � turns must be prohibited by
lemma 4 and opt-y prohibits only two, the only other rout-
ing algorithms that need to be considered are those that
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Figure 2: Potential Deadlock Configurations

prohibit only two 90 � turns. Ignoring symmetry, there are
only three such routing algorithms: North-Last, Negative-
First and West-First [9]. In addition, by theorem 3, only
configurations with a second virtual channel in the North
and South or East and West directions need to be consid-
ered. Therefore, there are six different routing algorithms
to consider. Opt-y, which uses West-First, is deadlock-
free. A deadlock configuration is shown for each of the
five remaining possibilities. Deadlocks arise regardless of
whether or not 0 � turns are permitted. Note: In some of
the examples, deadlock can be avoided by prohibiting ad-
ditional 90 � turns. Such modifications are irrelevant, since
the goal is to minimize the number of restrictions.

Lemma 5 Opt-y is not deadlock-free if the restrictions
shown in Figure 1 are applied to � 1, but the virtual channels
are added in the East and West directions.

Proof. The routing algorithm is fully adaptive only if the
90 � turns N–W and S–W using

� � 2 � are unrestricted. A
deadlock configuration is shown in Figure 3. �

Lemma 6 The North-Last routing algorithm is not
deadlock-free with only six virtual channels and two pro-
hibited 90 � turns.

Proof. The turn model representation of the North-Last
routing algorithm with the second virtual channel in the
East and West directions is shown in Figure 4(a). Only
the 90 � turns are shown, since the 0 � turns are not used
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Figure 3: Deadlock for Opt-y with E and W virtual
channels

for showing deadlock. The deadlock configuration for this
routing algorithm is shown in Figure 4(b). The turn model
representation with the second virtual channel in the North
and South directions is shown in Figure 5(a). The dead-
lock configuration for this routing algorithm is shown in
Figure 5(b). �
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Figure 4: North-Last with E and W virtual channels

Lemma 7 The Negative-First routing algorithm is not
deadlock-free with only six virtual channels and two pro-
hibited 90 � turns.

Proof. The turn model representation of the Negative-First
routing algorithm with the second virtual channel in the
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East and West directions is shown in Figure 6(a). Only
the 90 � turns are shown, since the 0 � turns are not used
for showing deadlock. The deadlock configuration for this
routing algorithm is shown in Figure 6(b). The turn model
representation with the second virtual channel in the North
and South directions is shown in Figure 7(a). The dead-
lock configuration for this routing algorithm is shown in
Figure 7(b). �

The only remaining possibility is to divide the restric-
tions between the virtual channels so that some are applied
to
� � 1 and the remaining to

� � 2. However, a deadlock
configuration is always possible, regardless of which two
90 � turns are prohibited. This leads to theorem 4, which
is proved for symmetric routing algorithms. Symmetry is
preserved if the virtual channels are added in the X di-
mension with a corresponding set of restrictions and/or the
restrictions are applied to

� � 2 instead of
� � 1.

Theorem 4 Ignoring symmetry, opt-y prohibits fewer 90 �
turns than any other fully adaptive deadlock-free routing
algorithm which uses only six virtual channels.

Proof. By lemma 4, at least two 90 � turns must be prohib-
ited. Ignoring symmetry, there are only three such routing

M3

(b) Deadlock Config with
E and W virtual channels
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(a) Turn model rep. of Negative-First
with East and West virtual channels

Figure 6: Negative-First with E and W virtual chan-
nels

algorithms [9]. Opt-y uses one of these. However, by
lemma 5, it is not deadlock-free if the virtual channels are
added in the East and West directions instead of the North
and South directions. The other possibilities, North-Last
and Negative-First, are both not deadlock-free (by lemma 6
and lemma 7, respectively). Since there are no other pos-
sibilities to consider, opt-y is the only deadlock-free fully
adaptive routing algorithm that requires only six virtual
channels and prohibits only two 90 � turns. �

Theorem 5 No routing algorithm using only six virtual
channels per router can have fewer restrictions than those
imposed by opt-y.

Proof. By lemma 4 and theorem 4, it is clear that only
the 0 � turns need to be considered. Opt-y restricts the use
of the 0 � turns from

� � 2 � to
� � 1 � and from

� � 2 � to� � 1 � to messages that do not need to route further West.
Figure 8 gives an example where deadlock occurs when the
restriction on the 0 � turn from

� � 2 � to
� � 1 � is removed.

A similar deadlock configuration can be constructed if the
restriction on the 0 � turn from

� � 2 � to
� � 1 � is removed.

Since the restrictions on the other two 0 � turns are a direct
consequence of the prohibited 90 � turns, opt-y cannot be
made more adaptive. �

5 Comparison

Opt-y is compared with mad-y, the least restrictive of
any previously proposed routing algorithm. Since mad-y
also requires a second virtual channel in both the North and
South directions, the virtual channel requirements are the
same for both routing algorithms.
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Mad-y is shown in Figure 9. Mad-y has the following
two sets of constraints:

	 Four of the sixteen 90 � turns are prohibited.

	 0 � turns from
� � 2 � to

� � 1 � and
� � 2 � to

� � 1 � are
prohibited.

The following three restrictions arise solely from the
previous constraints:

	 0 � turns from
� � 1 � to

� � 2 � and
� � 1 � to

� � 2 �
are allowed only when a message does not need to
route further West and has not already routed East.
The West-bound restriction is because a message can-
not route West from

� � 2 � or
� � 2 � .The East-bound

restriction is because a message never uses
� � 1 � or� � 1 � after routing East.

	 The two 90 � turns N–E using
� � 1 � and S–E using� � 1 � are allowed only when the message has not

routed East. These turns are restricted only because a
message cannot use

� � 1 � or
� � 1 � after

� ��� .

	 The two 90 � turns W–N using
� � 2 � and W–S using� � 2 � are allowed only when the message is not routed

further West. These turns are restricted only because
the turns from

� � 2 � or
� � 2 � to

� � � are prohibited.
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Mad-y allows four more 90 � turns than double-y, but
these turns are restricted so that a message uses them at
most once. Additionally, a message can make at most one
0 � turn, since a message cannot use

� � 1 � or
� � 1 � after

switching to
� � 2 � or

� � 2 � . Finally, a message cannot
make both a restricted 90 � turn and a 0 � turn. A message
that makes a restricted W–N or W–S turn is no longer in� � 1 � or

� � 1 � , so it cannot make a 0 � turn. Similarly,
a message that makes a restricted N–E or S–E turn never
uses

� � 1 � or
� � 1 � again, so it cannot make a 0 � turn.

A message that makes a 0 � turn cannot make a restricted
turn to the East, because the message never uses

� � 1 �
or
� � 1 � again. Similarly, a message can make a 0 � turn

only after routing completely West, so it cannot later make
a restricted turn from the West.

For opt-y, only two 90 � turns are prohibited and only
two 90 � turns are restricted. For mad-y, four 90 � turns are
prohibited and four 90 � turns are restricted. Mad-y also
prohibits half the 0 � turns and restricts the other half. For
opt-y, all the 0 � turns are restricted, so none of the 0 � turns



are prohibited. Therefore, opt-y imposes less than half as
many restrictions as imposed by mad-y.

Opt-y also makes much better use of the restricted turns.
The 0 � turns are restricted to messages that no longer need
to route West, but messages can switch from either virtual
channel to the other. This allows a message to make a 0 �
turn more than once. A message also has the possibility of
making one of the restricted 90 � turns and some 0 � turns.

Not only does opt-y have fewer restrictions, the router
control logic is simpler as well. This is because the routing
relation of mad-y is of the form � : � ��� � ��� , so
the set of outgoing channels from which a message can
choose depends not only on the destination but also on the
incoming channel. Opt-y does not differentiate based on the
incoming channel because the routing relation is of the form
� : � ���	�
� � . This simplifies the hardware required to
choose the outgoing channel on which to route the message,
since the choice is independent of the incoming channel.

6 Generalization

The Optimal Fully Adaptive routing algorithm can be
extended to � -dimensional meshes in a straightforward
manner. Minimal routing is still assumed. The routing
algorithm needs only the minimum number of virtual chan-
nels. It is not proved that the routing algorithm imposes the
fewest restrictions. The routing algorithm is generalized
using the following steps:

	 Assign a channel to each direction of each dimension.

	 Number the dimensions in some order and add a sec-
ond virtual channel to both directions of all dimensions
except the first dimension.

	 Allow a message to route along the second virtual
channel at any time.

	 For each dimension except the last, choose one of the
two directions. Prohibit a message from routing on
the first virtual channel until it has completed routing
in the chosen direction of all lower dimensions.

	 Allow a message to make a 0 � turn between the virtual
channels only after the message has completed routing
in the chosen direction of all lower dimensions.

For example, consider a 4D mesh with dimensions
XYZW and number the dimensions 1, 2, 3 and 4 respec-
tively. The positive and negative directions in the Z dimen-
sion are called Up and Down respectively. The positive
and negative directions in the W dimension are called In
and Out respectively. Let the negative directions in the X,
Y and Z dimensions be the chosen directions. A second

virtual channel is added in both directions of dimensions Y,
Z and W. A message can route adaptively in any dimension
using virtual channel one once it has completed routing in
the chosen direction of all lower dimensions. For example,
a message can use

� � 1 � and
� � 1 � only after it has com-

pleted routing West. Similarly, a message can use
� � 1 �

and
� � 1 � only after it has completed routing West and

South. A message can use
� � 1 � and

� � 1 � only after it
has completed routing West, South and Down. A message
can route, without any restrictions, in the X dimension and
in any direction using virtual channel two.

The Optimal Fully Adaptive routing algorithm is fully
adaptive and deadlock-free for arbitrary dimension meshes.
Furthermore, this algorithm uses only the minimum num-
ber of virtual channels. The proofs, given in [12], are
extensions of the proofs for the 2D mesh.

Limited research has been done on wormhole routing for
higher dimension meshes. For example, mad-y has been de-
fined only for 2D meshes [8]. The partially adaptive routing
algorithm proposed by Glass and Ni in [9], while requiring
no additional virtual channels, allows only about 1

�
2 ��� 1 of

the paths provided by a fully adaptive routing algorithm for
an � -dimensional mesh. Three virtual channels per phys-
ical channel are used by Chien and Kim in [2] to support
partially adaptive routing for arbitrary dimension meshes.
Jesshope, Miller and Yantchev propose a routing algorithm
that is fully adaptive by dividing an � -dimensional mesh
into 2 � regions and using separate virtual channels for each
region [10]. Fully adaptive routing on arbitrary dimension
meshes requires 2 ��� 1 subnetworks with ��� 1 levels per
subnetwork and one virtual channel per level for each router
using the routing algorithm proposed by Linder and Harden
in [11]. Table 2 summarizes the number of virtual channels
per router required by each routing algorithm.

It can be seen from Table 2 that there is a dramatic re-
duction in the number of virtual channels required by the
Optimal Fully Adaptive routing algorithm compared to the
algorithms proposed in [10, 11]. In addition, fully adaptive
routing is possible using about two-thirds the virtual chan-
nels needed for partially adaptive routing using the routing
algorithm proposed in [2]. The only adaptive algorithm
that requires fewer virtual channels is the partially adap-
tive algorithm proposed in [9]. With less than twice as
many virtual channels, the Optimal Fully Adaptive routing
algorithm allows an average of 2 ��� 1 times as many paths.

7 Conclusion

A deadlock-free fully adaptive routing algorithm has
been proposed for wormhole routing on � -dimensional
meshes. It has been proved for the 2D mesh that the routing
algorithm requires the minimum number of virtual chan-
nels and places the fewest restrictions on the use of those



Table 2: Virtual Channels per Router
Deterministic Partially Adaptive Fully Adaptive

Dimension Glass Chien
Jesshope,

Linder &
Optimal

Topology
Order & Ni & Kim

Miller &
Harden

Fully
Yantchev Adaptive

2D Mesh 4 4 6 8 6 6
3D Mesh 6 6 12 24 16 10
4D Mesh 8 8 18 64 40 14
� D Mesh 2 � 2 � 6 � � 6 � 2 � � � � 1 � 2 � � 1 4 � � 2

virtual channels. Ignoring symmetry, opt-y is the only fully
adaptive routing algorithm for 2D meshes that satisfies both
of these properties.

An important open problem currently under investiga-
tion is what constitutes a necessary and sufficient condition
for deadlock freedom in adaptive routing algorithms. De-
signing optimal routing algorithms for arbitrary topologies
would be greatly simplified by a necessary and sufficient
condition for proving routing algorithms are deadlock-free.
The necessary and sufficient condition proved in [6] applies
only to deterministic routing. There is no known necessary
and sufficient condition for adaptive routing relations of the
form � : � ��� �
� � or � : ���� �
� � .

The routing algorithm requires only the minimum num-
ber of virtual channels for an � -dimensional mesh. It has
not been shown that the proposed routing algorithm has the
minimum number of restrictions for arbitrary dimension
meshes. Proving optimality would require the examina-
tion of many possible routing algorithms. A necessary and
sufficient condition for deadlock freedom would greatly fa-
cilitate the proof of this open problem by reducing the cases
that need to be considered.
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