
i
i

“output” — 2022/4/14 — 18:38 — page 1 — #1 i
i

i
i

i
i

Optimal gap-affine alignment in O(s) space
Santiago Marco-Sola 1,2∗, Jordan M. Eizenga 3, Andrea Guarracino 4,
Benedict Paten 3, Erik Garrison 5, Miquel Moreto1,6

1Computer Sciences Department, Barcelona Supercomputing Center, Barcelona, 08034, Spain.
2Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
3Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
4Genomics Research Centre, Human Technopole, Viale Rita Levi-Montalcini 1, Milan, 20157, Italy.
5Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
6Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain.

∗To whom correspondence should be addressed.

Abstract

Motivation: Pairwise sequence alignment remains a fundamental problem in computational biology
and bioinformatics. Recent advances in genomics and sequencing technologies demand for faster and
scalable algorithms that can cope with the ever-increasing sequence lengths. Classical pairwise alignment
algorithms based on dynamic programming are strongly limited by quadratic requirements in time and
memory. The recently proposed wavefront alignment (WFA) algorithm introduced an efficient algorithm
to perform exact alignment in O(ns) time where s is the optimal score and n is the sequence length.
Notwithstanding these bounds, WFA’s O(s2) memory requirements become computationally impractical
for genome-scale alignments, leading to a need for further improvement.
Results: In this paper, we present the bidirectional WFA algorithm (BiWFA), the first gap-affine algorithm
capable of computing optimal alignments in O(s) memory while retaining the WFA’s time complexity
of O(ns). In practice, our implementation never requires more than 183 MB aligning long and noisy
sequences up to 1 Mbp long, while maintaining competitive execution times.
Availability: All code is publicly available at https://github.com/smarco/BiWFA-paper
Contact: santiagomsola@gmail.com

1 Introduction
Pairwise sequence alignment provides a parsimonious transformation of
one string into another. From this transformation, we can understand
the relationship between pairs of sequences. Because similarities
and differences between biosequences (DNA, RNA, protein) relate to
variation in function and evolutionary history of living things, pairwise
sequence alignment algorithms are a core part of many essential
bioinformatics methods in read mapping (Li, 2013; Marco-Sola et al.,
2012), genome assembly (Simpson et al., 2009; Koren et al., 2017), variant
calling (Garrison and Marth, 2012; McKenna et al., 2010; Rodríguez-
Martín et al., 2017), and many others (Durbin et al., 1998; Jones et al.,
2004). Its importance has motivated the research and development of
multiple solutions over the past 50 years.

Classical approaches to derive alignments involved the application
of dynamic programming (DP) techniques. These methods often require
computing a matrix whose dimensions correspond to the lengths of the
query q and target t sequences. Using DP recurrence relations, these
methods compute the optimal alignment score for progressively longer
prefixes of q and t, which correspond to the cells of the DP matrix. Thus,
an optimal alignment can then be read out by tracing the recurrence back
through the matrix.

Selecting a suitable alignment score function is essential to obtain
biologically meaningful alignments, as it determines the characteristics of
optimal alignments. In effect, the alignment score function encodes prior
expectations about the probability of certain kinds of sequence differences.
It has been observed that, in many contexts, insertions and deletions are
non-uniformly distributed; they are infrequent but tend to be adjacent so
that they form extended gaps with a long-tailed length distribution. This
motivated the development of gap-affine models in which the penalty
of starting a new gap is larger than that of extending a gap (Gotoh,
1982). Crucially, gap-affine penalties can be implemented efficiently using
additional DP matrices.

Problematically, the efficiency of classical DP-based methods is
constrained by their quadratic requirements in time and memory with
respect the lengths of the sequence pair. Consequently, multiple variations
have been proposed over the years (Sellers, 1980; Ukkonen, 1985; Navarro,
2001). Notable optimizations include bit-parallel techniques (Myers, 1986,
1999; Loving et al., 2014), data-layout transformations to exploit SIMD
instructions (Rognes and Seeberg, 2000; Farrar, 2007; Wozniak, 1997),
difference encoding of the DP matrix (Suzuki and Kasahara, 2018), among
other methods (Ukkonen, 1985; Zhao et al., 2013). Nonetheless, all
these exact methods retain the quadratic requirements of the original DP
algorithm and therefore struggle to scale when aligning long sequences.

In many cases, when two sequences are homologous, the majority of
possible alignments are largely sub-optimal, having a substantially worse

© The Author 2022. 1

.CC-BY 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.14.488380doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.14.488380
http://creativecommons.org/licenses/by/4.0/

i
i

“output” — 2022/4/14 — 18:38 — page 2 — #2 i
i

i
i

i
i

2 Santiago Marco-Sola et al.

score than the optimal one. For this reason, heuristic methods are usually
employed to find candidate alignment regions when the cost of exact
algorithm becomes impractical. Most notable approaches use adaptive
band methods (Suzuki and Kasahara, 2017) or pruning strategies (e.g., X-
drop (Zhang et al., 2000) and Z-drop (Li, 2018)) to avoid the computation
of alignments extremely unlikely to be optimal. These heuristic methods
have been implemented within many widely-used tools (Altschul et al.,
1990; Li, 2018).

Recently, we proposed the wavefront alignment (WFA) algorithm (Marco-
Sola et al., 2021) to compute the exact alignment between two sequences
using gap-affine penalties. The WFA algorithm reformulates the alignment
problem to compute the longest-possible alignments of increasing score
until the optimal alignment is found. Notably, the WFA algorithm
takes advantage of homologous regions between sequences to accelerate
alignment’s computation. As a result, the WFA algorithm computes
optimal gap-affine alignments in O(ns) time and O(s2) memory, where
n is the sequence length and s the optimal alignment score. Being an
exact algorithm, it provides the same guarantee for optimality as classical
algorithms (Needleman and Wunsch, 1970; Smith and Waterman, 1981;
Gotoh, 1982), but it does away with the quadratic requirements in time.

The WFA algorithm unlocked the path for optimal alignment methods
capable of scaling to long sequences. Nevertheless, the O(s2) memory
requirements quickly become the limiting factor when aligning sufficiently
long or noisy sequences (Eizenga and Paten, 2022). As it happens, WFA’s
memory requirements can be impractical when aligning through large
structural variation or highly divergent genome regions. Given that we use
alignment to understand variation, these are some of the contexts in which
optimal alignment could be most useful, but its memory requirements
makes it prohibitive.

To address this problem, this paper presents the first gap-affine
alignment algorithm to compute the optimal alignment in O(ns) time and
O(s) memory. Our method, the bidirectional WFA (BiWFA), computes
the WFA alignment of two sequences in the forward and reverse direction
until they meet. Using two wavefronts of O(s) memory, we demonstrate
how to find the optimal breakpoint of the alignment at score ∼ s/2 and
proceed recursively to solve the complete alignment in O(ns) time. To
our knowledge, this work improves the lowest known memory bound
to compute gap-affine alignments O(n) (Myers and Miller, 1988) to
O(s), while retaining the time complexity of the original WFA algorithm
O(ns). Furthermore, our experimental results demonstrate that the
BiWFA delivers comparable, or even better, performance than the original
WFA algorithm, outperforming other state-of-the-art tools while using a
minimal amount of memory.

The rest of the paper is structured as follows. Section 2 presents
the definitions, algorithms, and formal proofs supporting the BiWFA.
Section 3 shows the experimental evaluation of our method, comparing it
against other state-of-the-art tools and libraries. Lastly, Section 4 presents
a discussion on the BiWFA method and summarizes the contributions and
impact of this work.

2 Methods

2.1 Wavefront alignment algorithm

Let the query q = q0q1 . . . qn−1 and the text t = t0t1 . . . tm−1

be strings of length n and m, respectively. Likewise, let v[i, j] =

vivi+1 . . . vj denote a substring of any string v from the i-th to the j-
th character. We will use {x, o, e} to denote to the affine-gap penalties. A
mismatch costs x, and a gap of length l costs o + l · e. We assume that
x > 0 and e > 0, and further that all of the score parameters are constants.

Basically, the WFA algorithm computes partial optimal alignments of
increasing score until an alignment with score s reaches coordinate (n,m)

of the DP matrix. In this way, the algorithm determines that s is the minimal
alignment score. Moreover, it can derive the optimal alignment by tracing
back the partial alignments that led to score s at (n,m).

Let Ms,k , Xs,k , Is,k , and Ds,k denote the offset within diagonal
k in the DP-matrix to the farthest-reaching (f.r.) cell that has score s

and ends with a match, mismatch, insertion, or deletion, respectively.
In general, we denote by wavefront the tuple of offsets for a given score
Ws = (Ms,Xs, Is,Ds). We refer to the four elements in this tuple as
its components, and we associate a corresponding sentinel value to specify
each component: c ∈ {M,X, I,D}.

In (Marco-Sola et al., 2021), the authors prove that the f.r. points of
Ws can be computed using previous wavefrontsWs−o−e, Ws−e, and
Ws−x, using Eq. 1 where LCP (v, w) is the length of longest common
prefix between substrings v andw. The base case for this recursion is given
by X0,0 = 0.

Is,k = max{Ms−o−e,k−1 + 1, Is−e,k−1 + 1}

Ds,k = max{Ms−o−e,k+1,Ds−e,k+1}

Xs,k = max{Ms−x,k + 1, Is,k,Ds,k}

Ms,k = Xs,k + LCP (q[Xs,k − k, n− 1], t[Xs,k,m− 1]),

(1)

In order to compute the next wavefront, Eq. 1 shows that it is only
necessary to have access to the previous p = max{x, o+ e} wavefronts.
We refer to p as the scope. Also, note that Xs,k does not need to be
explicitly stored as its values can be inferred usingMs,k , Is,k , andDs,k .

In the worst case, the WFA algorithm requires computing swavefronts
of increasing length, totalling

∑s
i=0(1 + 2i) = O(s2) cells. Moreover,

the LCP must be computed once for each cell. However, within a
diagonal, the total number of offset increments cannot exceed the length of
the sequences. Hence, the WFA requires O(ns) time and O(s2) memory
in the worst case (Marco-Sola et al., 2021). Sinces ≤ pn, theO(ns) factor
of the run time, due to the LCP , dominates over the O(s2) factor in the
worst case. However, in practice, the time is often closer to O(s2 + n).
This is because spurious matches between high-entropy sequences are
short in expectation. Accordingly, the LCP computations often finishes
after performing only a few character comparisons. Except in the case of
the optimal alignment where O(n) comparisons are required.

2.2 Bidirectional wavefront alignment algorithm

The core idea of the BiWFA algorithm is to perform the WFA algorithm
simultaneously in both directions on the strings: from start to end, and
from end to start. Each direction will only retain p wavefronts in memory.
This is insufficient to perform a full traceback. However, when they
“meet” in the middle, we can infer a breakpoint in the alignment that
divides the optimal score roughly in half. Then, we can then apply the
same procedure on the two sides of the breakpoint recursively. We will
show that this results in only a constant-factor slowdown. This technique
has previously been employed to a similar end with the Myers O(ND)

difference algorithm (Myers, 1986).
First, let us define the WFA equations for the forward and reverse

alignment directions. The recursions for the forward direction are
equivalent to those of the standard WFA presented above (Eq. 1).
However, to highlight the distinction, we will denote them by

−→
Ws =

(
−→
I s,
−→
D s,
−→
X s,
−→
Ms). The recursions for the reverse direction are very

similar (Eq. 2), using
←−
X 0,m−n = m as the base case and LCS(v, w)

to denote the length of the longest common suffix of v and w. Note that
the same argument used in Marco-Sola et al. (2021) applies to the reverse
recursions to prove that they are f.r. in the reverse direction.

.CC-BY 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.14.488380doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.14.488380
http://creativecommons.org/licenses/by/4.0/

i
i

“output” — 2022/4/14 — 18:38 — page 3 — #3 i
i

i
i

i
i

Optimal gap-affine alignment in O(s) space 3

Algorithm 1: Compute optimal alignment breakpoint using the
BiWFA algorithm.

Input: q, t strings, c0, cf begin and end components
Output: sb score, kb diagonal, lb offset, and cb component of a

breakpoint in the alignmentA at ∼ s/2 (beingA the
optimal alignment between q and t under {x, o, e}
penalties, starting at component c0 and ending at
component cf).

Function BIWFA_BREAKPOINT(q, t, c0, cf) begin
// Initialise components c0, cf from

−→
M0,

←−
M0

(sf , sr)← (0, 0)

WF_INIT(
−→
M0, c0, 0)

WF_INIT(
←−
M0, cf , 0)

// Best breakpoint so far

WF_EXTEND(
−→
M0, q, t)

WF_EXTEND(
←−
M0, q, t)

(sb, kb, lb, cb)←WF_OVERLAP(
−→
W0,

←−
W0)

while sf + sr − o < sb do
// Compute

−→
Wsf+1 and find overlaps

sf ← sf + 1
−→
Wsf ←WF_NEXT(

−→
W , sf , q, t)

WF_EXTEND(
−→
Msf , q, t)

(s, k, l, c)←WF_OVERLAP(
−→
Wsf ,

←−
Wsr...sr−p)

if s < sb then
(sb, kb, lb, cb)← (s, k, l, c)

// Best breakpoint found?
if sf + sr − o ≥ sb then break ;
// Compute

←−
Wsr+1 and find overlaps

sr ← sr + 1←−
Wsr ←WF_NEXT(

←−
W , sr, q, t)

WF_EXTEND(
←−
Msr , q, t))

(s, k, l, c)←WF_OVERLAP(
←−
Wsr ,

−→
Wsf ...sf−p)

if s < sb then
(sb, kb, lb, cb)← (s, k, l, c)

return (sb, kb, lb, cb)

end

←−
I s,k = min{

←−
Ms−o−e,k+1 − 1,

←−
I s−e,k+1 − 1}

←−
D s,k = min{

←−
Ms−o−e,k−1,

←−
D s−e,k−1}

←−
X s,k = min{

←−
Ms−x,k − 1,

←−
I s,k,

←−
D s,k}

←−
Ms,k =

←−
X s,k − LCS(q[0,

←−
X s,k − k − 1], t[0,

←−
X s,k − 1])

(2)

Algorithm 1 presents the BiWFA algorithm to compute a breakpoint
in the optimal alignment at∼ s/2. Using forward and reverse wavefronts,
the algorithm proceeds by alternatingly computing forward and reverse
alignments (i.e.,

−→
W1,

←−
W1,

−→
W2,

←−
W2, . . .). To this end, the BiWFA

algorithm relies on the operators WF_NEXT() and WF_EXTEND() from
the standard WFA (see Marco-Sola et al. (2021)) to compute successive
wavefronts using Eqs. 1 and 2. The process is halted after their offsets
overlap to compute the position of a breakpoint in the optimal alignment.
This algorithm iterates until it is guaranteed that the optimal breakpoint
has been found. However, there are some technical details involving the
detection of overlaps and the computation of the optimal breakpoint, which
we cover in the below (Sections 2.3 and 2.4).

Algorithm 2: Detect overlaps and compute optimal breakpoint
between forward and reverse wavefronts.

Input:
−→
Wsf last computed wavefront,

←−
Wsr...sr−p last p

wavefronts in the opposite direction
Output: Breakpoint’s sb score, kb diagonal, lb offset, and cb

component of the overlap with least score

Function WF_OVERLAP(
−→
Wsf ,

←−
Wsr...sr−p) begin

(sb, kb, lb, cb)← (∞, none, none, none)

for Diagonals k included in
−→
Wsf do

for s← sr to sr − p do
if
−→
Mk,sf ≥

←−
Mk,sr ∧ sf + s < sb then

(sb, kb, lb, cb)← (s, k,
−→
Mk,sf ,M)

if
−→
I k,sf ≥

←−
I k,sr ∧ sf + s− o < sb then

(sb, kb, lb, cb)← (s, k,
−→
I k,sf , I)

if
−→
Dk,sf ≥

←−
Dk,sr ∧ sf + s− o < sb then

(sb, kb, lb, cb)← (s, k,
−→
Dk,sf , D)

return (sb, kb, lb, cb)

end

2.3 Finding a score-balanced breakpoint in the optimal
alignment

The first technical detail involved in finding an alignment breakpoint
between the two directions is that it is often not possible to split an
alignment into an equally-scoring prefix and suffix. In general, two prefixes
of the optimal alignment that differ by one character can have scores that
differ by as much as p. Accordingly, we will demand a weaker notion of
balance. If sf and sr are the forward and reverse scores respectively, we
will aim to have |sf − sr| ≤ p.

The second technical detail is that the optimal score is not always the
sum of the two scores. This occurs because the forward iteration incurs
the gap open penalty o at the beginning of gaps, but the reverse incurs it at
the end of gaps (or rather, at the beginning in the reverse direction). Thus,
if the two directions meet in a gap, then we have sopt = sf + sr − o

rather than sopt = sf + sr , where sopt is the optimal alignment score.
The final technical detail is that offsets of the two directions may

not precisely meet. WFA proceeds by greedily taking matches in both
directions. This makes it possible for the two directions to shoot past each
other without actually meeting. It turns out that it is sufficient to detect
that such an overshoot has occurred, as will be shown in Section 2.4.

In Algorithm 2, we reconcile these three difficulties. Without loss of
generality, we assume that a forward wavefront

−→
Wsf has been computed

(Algorithm 1), and we want to detect overlaps against the previously
computed reverse wavefronts

←−
Wsr...sr−p. First, if

−→
Wsf belongs to a

score-balanced breakpoint (with |sf − sr| ≤ p), it is sufficient to check

for overlaps against
←−
Wsr and the previous p − 1 reverse wavefronts.

Second, for every diagonal k in wavefront
−→
Wsf , Algorithm 2 checks of

overlaps in all wavefront components. This way, the algorithm keeps track
of the overlap with the minimum score detected so far. Last, note that
overlaps on I andD components account twice for the gap-open score o.
Hence, the score from overlaps at indel components has to be decreased
by o.

2.4 Correctness of the breakpoint detection

The correctness of the Algorithm 1 stems from the following lemma.

.CC-BY 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.14.488380doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.14.488380
http://creativecommons.org/licenses/by/4.0/

i
i

“output” — 2022/4/14 — 18:38 — page 4 — #4 i
i

i
i

i
i

4 Santiago Marco-Sola et al.

Algorithm 3: BiWFA recursive computation of the optimal
alignment in O(s) space

Input: q, t strings, c0, cf begin and end components
Output:A optimal gap-affine alignment between q and t

Function BIWFA_ALIGN(q, t, c0, cf) begin
// Base cases
if n = 0 then return D ×m;
if m = 0 then return I × n;
// Find optimal breakpoint at ∼ s/2

(s, j, k, c)←BIWFA_BREAKPOINT(q, t, c0, cf)
// Align the first A0 and second A1 half
i← j − k ; // Breakpoint at (i,j)
if c ̸= I then i′ = i− 1 else i′ = i
if c ̸= D then j′ = j − 1 else j′ = j

A0 ←BIWFA_ALIGN(q0...i′ , t0...j′ , c0, c)
A1 ←BIWFA_ALIGN(qi+1...n−1, tj+1...m−1, c, cf)
return A0 + c+A1

end

Lemma 2.1. The optimal alignment score sopt ≤ s if and only if there
exist sf , sr , and k such that |sf−sr| ≤ p and at least one of the following
is true:

1. sf + sr = s and
−→
Mk,sf ≥

←−
Mk,sr

2. sf + sr = s+ o and
−→
I k,sf ≥

←−
I k,sr

3. sf + sr = s+ o and
−→
Dk,sf ≥

←−
Dk,sr ,

and further,
←−
Mk,sr (resp.

←−
I k,sr ,

←−
Dk,sr) is included in the traceback of

an alignment with score at most s if the first (resp. second, third) condition
is true.

Proof. See supplementary material.

This lemma implies that the minimum value s for which the “only if”
condition holds is the optimal score. Moreover, if the first of the three
conditions is found to hold for some values sf and sr , then sopt ≤
sf + sr + o. Therefore, the Algorithm 1 is guaranteed to find part of a
minimum-scoring alignment based on the following features:

• Algorithm 1 iterates through alternatingly incrementally increasing
values of sf and sr .

• Algorithm 1 continues for o additional iterations after finding some
sf and sr that satisfy the overlap condition.

• Algorithm 2 checks a window of p score values on each iteration.

2.5 Combining breakpoints into an alignment

Algorithm 3 demonstrates how to use the BiWFA algorithm to recursively
split alignments into smaller subproblems until the remaining alignment
can be trivially solved.

Note that a breakpoint computed by the BiWFA can be found on the I
orD components. Thus, those alignments that connect with this breakpoint
have to start or end at the given component. This way, Algorithm 3
considers the starting and ending component of each alignment, and forces
the underlying WFA algorithms to use different initial condition depending
on the alignment starting at the M (X0,0 = 0), I (I0,0 = 0), or
D component (D0,0 = 0). A similar argument applies to the ending
conditions of each alignment ending at the M (Ms,m−n = m), I

(Is,m−n = m), or D component (Ds,m−n = m).

2.6 BiWFA uses O(s) space and O((m+ n)s) time

The memory complexity of Algorithm 1 is relatively simple to characterize.
The range of diagonal values k increases by at most 2 every time s

is incremented. Thus, the memory use is proportional to the optimal
alignment score, O(s). Further, data structures are discarded before
entering a recursive call, so the maximum memory use occurs in the
outermost call, in which s is the optimal score of the full alignment.

The time complexity is more complicated to analyze. Our proof follows
similar arguments as those from Myers (1986).

Theorem 2.2. BiWFA’s time complexity is O((m+ n)s).

Proof. Let ℓ = m+ n, and let T (ℓ, s) be BiWFA’s run time with score
s. A call to BiWFA can result in two recursive calls. Let ℓf and ℓr be the
combined length of the sequences in the two calls, and similarly let sf
and sr be the two alignment scores. Following Lemma 2.1, we know that
these variables obey the following inequalities:

• ℓf + ℓr ≤ ℓ

• sf + sr ≤ s

• |sf − sr| ≤ p

Because each direction of WFA runs in O(sℓ) time (Marco-Sola et al.,
2021), we can choose a constant c1 large enough that the following
inequality holds for all s > 3p:

T (ℓ, s) ≤ c1sℓ+ T (ℓf , sf) + T (ℓr, sr). (3)

We can also choose a constant c2 large enough that for all s ≤ 3p

T (ℓ, s) ≤ c2ℓ. (4)

This follows because the recursion depth depends only on s, which we have
given an upper bound. Therefore, this term includes a bounded number of
calls that all have linear dependence on ℓ.

We will argue that T (ℓ, s) ≤ 3c1sℓ+c2ℓ by induction on s. The base
cases for s = 0, 1, . . . , 3p follow trivially from the latter of the previous
inequalities. Assume then that s > 3p and the induction hypothesis holds
for 0, 1, . . . , s − 1. Note that we then have sf , sr ≤ 2s/3, else either
|sf − sr| > p or sf + sr > s. Thus,

T (ℓ, s) ≤ c1sℓ+ (3c1(2s/3)ℓf + c2ℓf) + (3c1(2s/3)ℓr + c2ℓr)

≤ 3c1sℓ+ c2ℓ.

(5)

This proves the claim.

3 Results
We implemented the BiWFA algorithm described in this work in C.
The code is publicly available at https://github.com/smarco/BiWFA-paper
together with the scripts required to reproduced the experimental results
presented in this section.

3.1 Experimental setup

We evaluate the performance of our BiWFA implementation compared
to other high-performance sequence alignment libraries. We selected
the original WFA (Marco-Sola et al., 2021) and its new low-
memory modes (i.e., medium and low) implemented in WFA2-lib
(https://github.com/smarco/WFA2-lib). Also, we selected the efficient
wfalm (Eizenga and Paten, 2022) with its low-memory modes (i.e., low-
mem and recursive). Moreover, we included the highly optimized KSW2-
Z2 (ksw2_extz2_sse) from the KSW2 library (Suzuki and Kasahara, 2018;

.CC-BY 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.14.488380doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.14.488380
http://creativecommons.org/licenses/by/4.0/

i
i

“output” — 2022/4/14 — 18:38 — page 5 — #5 i
i

i
i

i
i

Optimal gap-affine alignment in O(s) space 5

●
●●●
●●
●
●●
●●●●●●●
●
●●●
●
●●
●
●●
●● ●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●

●

●

●●

●●●●●●●●●

●●

●●●●●●●

●

●●●

●●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●
●

●

●
●
●
●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●●
●
●●●●●
●●
●●
●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●
●●

●

●●●

●

●●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●
●●
●
●●●●●
●●
●●
●

●

●

●●●

●●

●●

●●

●

●

●
●

●●●●●●●
●

●

●

●

●

●
●
●
●

●●
●

●

●●

●
●
●

●

●

●
●●●●●●●●
●●●
●

●

●

●●
●

●●

●

●
●

●●●

●●

●●●

●

●

●

●●

●

●●●●●●
●

●

●

●
●

●●
●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●
●●

●

●●
●
●
●

●

●●
●

●

●●

●

●●

●

●●
●●

●

●

●●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●●●●
●●

●●●●●●●●●
●
●●●
●●
●
●●●
●
●●●●●

●

●

●

ONT PromethION reads vs CHM13 v1.1 ONT Ultra Long > 500kbps

edlib
 (e

dit d
istance)

bitp
al (s

core only)

ksw2−extz2−sse

WFA−high

WFA−med

WFA−low
wfalm

wfalm
−low

wfalm
−recursive

BiW
FA

edlib
 (e

dit d
istance)

bitp
al (s

core only)

ksw2−extz2−sse

WFA−high

WFA−med

WFA−low
wfalm

wfalm
−low

wfalm
−recursive

BiW
FA

1 MB

10 MB

100 MB

1 GB

10 GB

100 GB

1 TB

Algorithm

Memory consumptionA

●●

●

●

●

●

●
●
●

●
●

●
●
●

●

●●

●

●●

●
●

●

●

●
●●●●
●
●●
●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●
●

●

●●
●
●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●
●

●

●●
●
●

●

●

●

●●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●●

●

●

●

●
●

●

●
●●
●
●●●●●
●●
●●
●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●
●
●●●●●●●●
●●
●
●

●

●
●●●

●

●

●

●

●

●

●

●

●●
●

●

●●
●
●

●

●

●

●

●

●
●
●
●●●●●●●
●●●
●

●

●●● ●

●

●

●

●

●

●

●

●
●
●
●

●

●●
●●

●

●

●

●
●

●

●
●●
●
●●●●●●●
●●
●
●

●

●●●●

●

●

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●

●
●

●

●
●●
●
●●●●●●●
●●
●
●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●●
●
●●●●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●
●●

●

●

●

●
●

●

●
●●
●
●●●●●●●
●●
●
●

●

●●●
●

●

●●●●

●
● ●

●

●

ONT PromethION reads vs CHM13 v1.1 ONT Ultra Long > 500kbps

edlib
 (e

dit d
istance)

bitp
al (s

core only)

ksw2−extz2−sse

WFA−high

WFA−med

WFA−low
wfalm

wfalm
−low

wfalm
−recursive

BiW
FA

edlib
 (e

dit d
istance)

bitp
al (s

core only)

ksw2−extz2−sse

WFA−high

WFA−med

WFA−low
wfalm

wfalm
−low

wfalm
−recursive

BiW
FA

0.1

10.0

1,000.0

Algorithm

S
e
c
o
n
d
s

Execution timeB

Algorithm

edlib (edit distance)

bitpal (score only)

ksw2−extz2−sse

WFA−high

WFA−med

WFA−low

wfalm

wfalm−low

wfalm−recursive

BiWFA

Fig. 1: Experimental results from the application of BiWFA and other state-of-the-art libraries and tools on long sequences. Each plot shows the different
algorithms versus the memory consumption (A) and execution time (B). We differentiate algorithms that compute edit distance or only the score (left of
vertical line) from those that compute the full alignment, CIGAR string included (right of vertical line). In the ONT Ultra Long dataset, not all alignments
have been completed, as the tools ran out of memory (OOM) for some of the 48 sequence pairs. In particular, we obtained 10 OOMs with ksw2-extz2-sse,
and a single OOM for both WFA-high and wfalm.

Li, 2018) as the best representative of DP-based methods. Additionally, we
included the Edlib (Šošić and Šikić, 2017) and BitPal (Loving et al., 2014)
libraries, which implement bit-parallel alignment strategies for edit and
non-unitary penalties (i.e., gap-linear), respectively. Although they solve
a considerably easier problem (i.e., Edlib is restricted to edit-alignments
and BitPal only computes score), and thus are not directly comparable,
we included them in the comparison to provide a performance upper
bound. All the presented methods have been configured to generate global
alignments. These algorithms are grouped in two categories: ‘Gap-affine
(Exact)’ for exact algorithms that use gap-affine penalties (i.e., BiWFA,
WFA and its low-memory modes, wfalm and its low-memory modes, and
KSW2-Z2), and ‘Others’ for methods that use simpler penalty models or
can only compute the alignment score (i.e., Edlib and BitPAl).

For the evaluation, we used two real datasets. The first set of sequences
was generated by the Human Pangenome Reference Consortium (Miga and
Wang, 2021) and consists of long reads sequenced using Oxford Nanopore
Technologies (ONT), PromethION platform. The sequences are derived
from the human cell line HG002, subset to chromosome 12, and restricted
to those at least 10 kbp long, for a total number of 1312 sequence pairs
of average length equal to 172 kbps. The second dataset comprises ONT
MinION reads from Bowden et al. (2019), restricted to those at least 500
kbp long, for a total number of 48 sequence pairs of average length equal
to 630 kbps.

All the executions were performed single thread on a node running
CentOS Linux equipped with an AMD EPYC 7742 CPU and 1TB of
RAM.

3.2 Evaluation

Figure 1 shows the performance results obtained for all the evaluated
algorithms in terms of execution time and memory consumed. BiWFA
uses many times less memory than other methods. In particular, when
aligning ultra long ONT sequences (Figure 1B), BiWFA requires between
68−93× less memory compared to wfalm and WFA low-memory modes.
Furthermore, BiWFA uses 3.5× less memory compared to the efficient
recursive mode from wfalm (most memory-efficient gap-affine algorithm
to date).

At the same time, BiWFA proves to be one of the fastest tools in
aligning long sequences. Using ultra long sequences, our method is 23.5×
faster than wfalm’s recursive mode. Moreover, BiWFA’s execution times
are similar to those of BitPal (sometimes even faster, 1 − 1.2× faster
on average) computing exact alignments (not just the score) under the
gap-affine model.

Most notably, BiWFA execution times are very similar, or even
better, than those of the original WFA (despite the BiWFA requiring
2958× and 604× less memory when aligning ultra long MinION and
PromethION sequences, respectively). This result can be better understood

.CC-BY 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.14.488380doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.14.488380
http://creativecommons.org/licenses/by/4.0/

i
i

“output” — 2022/4/14 — 18:38 — page 6 — #6 i
i

i
i

i
i

6 Santiago Marco-Sola et al.

considering the memory inefficiencies that the original WFA experiences
when using a large memory footprint. As the sequence’s length and
error increases, the original WFA uses a substantially larger memory
footprint, putting a significant pressure on the memory hierarchy of
the processor. Due to the pervasive memory inefficiencies of modern
processors executing memory intensive applications, the original WFA’s
performance is severely deteriorated when aligning long sequence datasets
(like those from Nanopore presented in this evaluation). In contrast, the
BiWFA relieves this memory pressure using a minimal memory footprint.
As a result, the BiWFA is able to balance out the additional work induced
by BiWFA’s recursion, delivering a performance on-par with the original
WFA.

4 Discussion
As long sequencing technologies improve and high-quality sequence
assembly decreases in cost, we anticipate that the importance of pairwise
alignment algorithm will continue to increase. To keep up with upcoming
improvements in sequencing and genomics, pairwise alignment algorithms
need to face crucial challenges in reducing execution time and memory
consumption. In this work, we have presented the BiWFA algorithm,
a gap-affine pairwise alignment algorithm that runs in O(ns) time and
O(s) space, being the first algorithm to improve the long standing space
lower bound ofO(n). The BiWFA answers the pressing need for sequence
alignment methods capable to scaling to genome-scale alignments and full
pangenomes.

We have presented the BiWFA algorithm using affine gap scoring
model. Nevertheless, these very same ideas can be translated directly into
other distances like edit, linear gap, or piecewise affine gap. Moreover, it
can be easily extended to semi-global alignment (a.k.a. ends-free, glocal,
extension, or overlapped alignment) by modifying the initial conditions
and termination criterion. At the same time, the BiWFA algorithm retains
the strengths of the original WFA algorithm: no restrictions on the
sequences’ alphabet, preprocessing steps, nor prior estimation of the
alignment error.

Due to the simplicity of the WFA’s computational pattern, BiWFA’s
core functions can be easily vectorized and parallelized to fully exploit the
capabilities of modern SIMD multicore processors. Our implementation,
relies on the automatic vectorization capabilities of modern compilers and
the open multi-processing API (OpenMP) to implement these features.
As a result, the BiWFA implementation can exploit the SIMD and parallel
capabilities of any platform and processor supported by modern compilers,
without rewriting any part of the source code.

As a consequence of the minimal memory footprint required by
the BiWFA algorithm, our implementation relieves the pressure on the
memory system, reducing the memory penalties and slowdowns associated
with classical alignment algorithms. Thus, our algorithm can exploit the
benefits of the cache memory hierarchy and outperform the original WFA
when it becomes limited by the memory bandwidth.

Genomics and bioinformatics methods will continue to rely on
sequence alignment as a core and critical component. The BiWFA
algorithm paves the way for the development of faster and more accurate
tools that can scale with longer and noisy sequences using a minimal
amount of memory. In this way, we expect the BiWFA to enable efficient
sequence alignment at genome-scale in years to come.

Funding
This research was supported by the the European Union Regional
Development Fund within the framework of the ERDF Operational
Program of Catalonia 2014-2020 with a grant of 50% of total cost eligible

under the DRAC project [001-P-001723]. It was also supported by the
Ministerio de Ciencia e Innovacion MCIN AEI/10.13039/501100011033
under contracts PID2020-113614RB-C21 and PID2019-107255GB-C21,
by the Generalitat de Catalunya GenCat-DIUiE (GRR) (contracts
2017-SGR-313, 2017-SGR-1328, and 2017-SGR-1414). M.M. was
partially supported by the Spanish Ministry of Economy, Industry
and Competitiveness under Ramon y Cajal fellowship number RYC-
2016-21104. S.M. was supported by Juan de la Cierva fellowship
grant IJC2020-045916-I funded by MCIN/AEI/10.13039/501100011033
and by “European Union NextGenerationEU/PRTR”. B.P and J.E.
were supported, in part, by the United States National Institutes of
Health (award numbers: R01HG010485, U01HG010961, OT2OD026682,
OT3HL142481, and U24HG011853). E.G. was supported by NIH/NIDA
U01DA047638. A.G. acknowledges Dr. Nicole Soranzo’s efforts to
establish a pangenome research unit at the Human Technopole in Milan,
Italy.

References
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic

local alignment search tool. Journal of molecular biology, 215(3), 403–410.
Bowden, R., Davies, R. W., Heger, A., Pagnamenta, A. T., de Cesare, M., Oikkonen,

L. E., Parkes, D., Freeman, C., Dhalla, F., Patel, S. Y., Popitsch, N., Ip, C. L. C.,
Roberts, H. E., Salatino, S., Lockstone, H., Lunter, G., Taylor, J. C., Buck, D.,
Simpson, M. A., and Donnelly, P. (2019). Sequencing of human genomes with
nanopore technology. Nature Communications, 10(1).

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. (1998). Biological sequence
analysis: probabilistic models of proteins and nucleic acids. Cambridge University
Press.

Eizenga, J. M. and Paten, B. (2022). Improving the time and space complexity of the
wfa algorithm and generalizing its scoring. bioRxiv.

Farrar, M. (2007). Striped smith–waterman speeds database searches six times over
other simd implementations. Bioinformatics, 23(2), 156–161.

Garrison, E. and Marth, G. (2012). Haplotype-based variant detection from short-read
sequencing. arXiv preprint arXiv:1207.3907.

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162(3), 705–708.

Jones, N. C., Pevzner, P. A., and Pevzner, P. (2004). An introduction to bioinformatics
algorithms. MIT press.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy,
A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer
weighting and repeat separation. Genome Research, 27(5), 722–736.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
bwa-mem. arXiv preprint arXiv:1303.3997.

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18), 3094–3100.

Loving, J., Hernandez, Y., and Benson, G. (2014). BitPAl: a bit-parallel,
general integer-scoring sequence alignment algorithm. Bioinformatics, 30(22),
3166–3173.

Marco-Sola, S., Sammeth, M., Guigó, R., and Ribeca, P. (2012). The gem mapper:
fast, accurate and versatile alignment by filtration. Nature methods, 9(12), 1185–
1188.

Marco-Sola, S., Moure, J. C., Moreto, M., and Espinosa, A. (2021). Fast gap-
affine pairwise alignment using the wavefront algorithm. Bioinformatics, 37(4),
456–463.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,
A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The
genome analysis toolkit: a mapreduce framework for analyzing next-generation
dna sequencing data. Genome Research, 20(9), 1297–1303.

Miga, K. H. and Wang, T. (2021). The need for a human pangenome reference
sequence. Annual Review of Genomics and Human Genetics, 22(1), 81–102.

Myers, E. W. (1986). An O(ND) difference algorithm and its variations.
Algorithmica, 1(1), 251–266.

Myers, E. W. and Miller, W. (1988). Optimal alignments in linear space.
Bioinformatics, 4(1), 11–17.

Myers, G. (1999). A fast bit-vector algorithm for approximate string matching based
on dynamic programming. Journal of the ACM, 46(3), 395–415.

Navarro, G. (2001). A guided tour to approximate string matching. ACM computing
surveys (CSUR), 33(1), 31–88.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3), 443–453.

.CC-BY 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.14.488380doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.14.488380
http://creativecommons.org/licenses/by/4.0/

i
i

“output” — 2022/4/14 — 18:38 — page 7 — #7 i
i

i
i

i
i

Optimal gap-affine alignment in O(s) space 7

Rodríguez-Martín, B., Palumbo, E., Marco-Sola, S., Griebel, T., Ribeca, P., Alonso,
G., Rastrojo, A., Aguado, B., Guigó, R., and Djebali, S. (2017). Chimpipe: accurate
detection of fusion genes and transcription-induced chimeras from rna-seq data.
BMC genomics, 18(1), 1–17.

Rognes, T. and Seeberg, E. (2000). Six-fold speed-up of smith–waterman
sequence database searches using parallel processing on common microprocessors.
Bioinformatics, 16(8), 699–706.

Sellers, P. H. (1980). The theory and computation of evolutionary distances: pattern
recognition. Journal of Algorithms, 1(4), 359–373.

Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J., and Birol,
I. (2009). Abyss: a parallel assembler for short read sequence data. Genome
Research, 19(6), 1117–1123.

Smith, T. F. and Waterman, M. S. (1981). Comparison of biosequences. Advances
in Applied Mathematics, 2(4), 482–489.

Šošić, M. and Šikić, M. (2017). Edlib: a C/C++ library for fast, exact sequence
alignment using edit distance. Bioinformatics, 33(9), 1394–1395.

Suzuki, H. and Kasahara, M. (2017). Acceleration of nucleotide semi-global
alignment with adaptive banded dynamic programming. bioRxiv.

Suzuki, H. and Kasahara, M. (2018). Introducing difference recurrence relations
for faster semi-global alignment of long sequences. BMC Bioinformatics, 19(1),
33–47.

Ukkonen, E. (1985). Finding approximate patterns in strings. Journal of Algorithms,
6(1), 132–137.

Wozniak, A. (1997). Using video-oriented instructions to speed up sequence
comparison. Bioinformatics, 13(2), 145–150.

Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. (2000). A greedy algorithm for
aligning dna sequences. Journal of Computational biology, 7(1-2), 203–214.

Zhao, M., Lee, W.-P., Garrison, E. P., and Marth, G. T. (2013). Ssw library: an simd
smith-waterman c/c++ library for use in genomic applications. PloS one, 8(12).

.CC-BY 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.14.488380doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.14.488380
http://creativecommons.org/licenses/by/4.0/

