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Chapter 1

Introduction

An algorithm is a clear step-by-step description of how to solve a problem. The use of

algorithms is not restricted to scientific problems. Most of the time, when a person searches

in a phone book for a name, he/she unconsciously uses an algorithm called interpolation

search. Or when someone plans a trip to a specific destination, he/she usually employs,

without knowing it, an algorithm for finding a shortest path. These are simple examples of

algorithms that we use in our day-to-day life.

In the examples above the algorithms are executed by humans. In many cases, however,

the problems and the algorithms that solve them are too complicated for this, and the

algorithms need to be run on a computer. Thus, the design and analysis of algorithms is a

core area within computer science. Let’s have a look at some applications where efficient

computer algorithms are required. For instance, consider an international airport, where

many aircrafts land and take off in a day. Here, an accident may cause a tragedy. How can

we schedule these flights so that no collision or other accident happens? Note that flight

times may have to be changed due to delays or technical problems. Hence, the algorithm

for scheduling the flights not only needs to find schedules that are safe, it also needs to be

able to adapt the schedules quickly. Not only to handle this problem, but also for other

scheduling problems we need to use sophisticated and fast algorithms.

The internet is another area where algorithms play a crucial role. In 1995 two PhD students

at Stanford university developed an algorithm, called PageRank, to rank web pages based

on their content. The success of Google is for a large part based on this clever algorithm.

Google was not the first search engine, but PageRank gave the best search results at

that time. There are many other challenging problems related to internet that require

sophisticated algorithms. Almost all of the network routing and traffic challenges, internet

auctions and advertisement issues and many more problems are solved using algorithms.

Today the internet and world wide web have become the battle field for many companies,

and their means to be successful are efficient algorithms.
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Another area where algorithms have had a major impact is in biology [34]. For example,

the enormous progress in understanding genes and their interaction would not have been

possible without efficient algorithms. The list of areas where algorithms play a crucial

role is almost endless. In many of the areas, spatial data (data describing objects in two-,

three- or higher-dimensional space) play a crucial role. Computational geometry is the part

of algorithms research dealing with spatial data. It emerged from the general algorithms

area in the late 1970s [16]. Since then it has grown fast; thousands of articles have

been published and hundreds of scientists form the computational geometry community

nowadays. Since the subject of this thesis falls within computational geometry, the next

section is devoted to a brief introduction to computational geometry. Then we give some

background on the specific problems that we have considered, and in particular on the

concept of instance-optimality. Finally, we give an overview of the results that we have

obtained in this thesis.

1.1 Computational geometry

As mentioned above, computational geometry is a branch of algorithm design. Typically

algorithms in computational geometry deal with geometric objects such as polygons, lines

and points. Since we are living in a three-dimensional world, as soon as we want to

model and/or simulate the real world, spatial data and geometric algorithms come into play.

Many such algorithms have been developed by the computational-geometry community,

but researchers from various application areas are developing geometric algorithms as

well. The focus in computational geometry is often on algorithms with provably efficient

worst-case behavior, while the focus in the application areas is often on algorithms with

efficient implementations. Of course these approaches need not conflict, and in many cases

practically efficient solutions are based on theoretically well-founded methods.

Next we give a few examples of algorithmic problems arising in various application areas

and involving spatial data. We start with a problem from computer graphics. An important

task in computer graphics is to compute the view of a scene, as seen by an observer located

at a given view point. This involves determining which parts of the objects in the scene

are visible and which are invisible; this is the so-called hidden-surface removal problem.

One of its solutions, the so-called painter’s algorithm, is related to a structure (BSP tree)

we will study in this thesis, and it will be discussed in more detail later in this introduction.

Robotics is another area where geometric algorithms are required. As an example, efficient

geometric algorithms are needed to find a route for a moving robot to its destination among

obstacles. Much research in computational geometry has been done to solve different

versions of this problem [72]—for more applications of computational geometry in robotics

see, for example, the overview by Halperin et al. [47] or the book by Latombe [56].

Another area which can benefit from computational geometry is Geographical Information

Systems (GIS) [55]. An important task of a GIS system is to store an (often huge) amount

of geographical information in a suitable data structure—often called an indexing structure
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Figure 1.1 The dot density map of the U.S population in 2000, with each

point representing 10000 people. Source: http://udel.edu/

˜mtrainor/frec480/proj1/

in GIS—such that certain queries can be answered efficiently. This data may consist of the

borders of countries, elevation data in mountainous regions, etc. When we need to query

this information, computational geometry can play an important role. As an example,

suppose that we use points to show the population density in different regions. Each

point represents a specific number of people living in that region. Such map is called a

dot-map—see Fig. 1.1. To count the number of inhabitants in a specific query region we

can use data structures for (weighted) range queries. We will discuss more about range

searching later in this section and in Chapter 3.

Another field that has close connections to computational geometry is molecular biology.

For example, one often models molecules as spheres, and this leads to many interesting

geometric problems: testing for collisions during simulation of protein folding, finding

offset surfaces, and more. CAD/CAM, pattern recognition and data bases are other

examples of areas where geometric algorithms and data structures play a role. More

information about computational geometry can be found in one of the various textbooks [16,

21, 66, 69] or handbooks [43, 70].
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1.2 Spatial data structures in computational geometry

In many applications involving spatial data, the data needs to be stored in suitable data

structures. The efficiency of the applications then directly depends on their underlying data

structures. Many important spatial data structures, especially the ones used in practice,

are based on space partitioning or bounding volume hierarchies. A space-partitioning

structure for a set S of objects is an (often hierarchical) partitioning of the space into cells,

such that each cell contains only a few objects. Examples are grids, octrees, and BSP trees.

A bounding-volume hierarchy for a set S of objects is a tree whose leaves store the objects

from S and whose interior nodes store a bounding volume for the objects stored in the

node’s subtree. Examples are R-trees and partition trees. We study some of these data

structures in the thesis. Thus, first we introduce them briefly.

Binary space partitions

Description. In a BSP the space is recursively partitioned by hyperplanes until there

is at most one object intersecting the interior of each cell in the final partitioning. Note

that the splitting hyperplanes not only partition the space, they may also cut the objects

into fragments. The recursive partitioning can be modeled by a tree structure, called a

BSP tree. Nodes in a BSP tree correspond to regions of the original space, with the root

node corrsponding to the whole space and the leaves corresponding to the cells in the

final partitioning. Each internal node stores the hyperplane used to split the corresponding

subspace, and each leaf stores the object fragment intersecting the corresponding cell—see

Fig. 1.2. Note that the fact that the objects can be fragmented means that the number of

leaves of a BSP tree can be superlinear in the number of objects it stores.

When the objects are (d− 1)-dimensional—for example, a BSP for line segments in the

plane—then it is sometimes required that the cells do not have any object in their interior.

In other words, each fragment must end up being contained in a splitting hyperplane. The

fragments are then stored with the splitting hyperplanes containing them, rather than at

the leaves. In particular, this is the case for so-called auto-partitions. The performance of

algorithms that use a BSP usually depends on the size of the BSP tree or, in other words, on

the number of its leaves. Below we explain how BSPs can be used to do hidden-surface

removal.

An application of BSPs. As mentioned above, the hidden-surface-removal problem is

to determine the view of a set of objects as seen by an observer at a given view point. An

image-space approach to this problem uses the fact that the view will be displayed on

a screen and, hence, that the problem boils down to determining for every pixel on the

screen which object is visible at that pixel. A popular method used in practice to solve this

problem is called the z-buffer algorithm.

The z-buffer algorithm is based on scan converting the objects of the scene in arbitrary
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Figure 1.2 (a) A binary space partition of a set of objects. (b) The corresponding

BSP tree.

order. Scan converting an object means determining which pixels the object covers in

projection. We need two buffers called the z-buffer and the frame buffer. For each pixel,

the frame buffer stores the intensity of the object visible at that pixel and the z-buffer stores

the distance of the object visible at that pixel. When we scan convert an object we compare

its distance to the observer to the value already stored in the z-buffer of a pixel at which

the object is visible. If this value is smaller than the value stored in the z-buffer, we need to

update the values stored in the z-buffer and frame buffer of that pixel. Note that the z-buffer

algorithm has some overhead in terms of storage (namely an extra buffer in addition to

the frame buffer) and computation time (because of the many depth computations and

comparisons that need to be done).

As an alternative way to solve the hidden surface removal problem we can use the so-called

painter’s algorithm. This algorithm starts by sorting the objects in the scene according

to their distance to the observer, so that an object that lies behind another object (as seen

from the observer) comes earlier in the sorted order. After sorting the objects in this

manner, they are scan-converted one by one without doing any more comparisons. Thus,

the painter’s algorithm always overwrites the frame buffer during scan conversion— no

z-buffer is needed for comparisons of depth values.

However, computing an order for the objects is not so easy, and in some cases this order

does not even exist. When we have a BSP on the objects, however, we can always generate

a depth order on the object fragments stored in the BSP. This is because a fragment in

another side (with respect to the observer) of a splitting plane cannot be in front of any

fragment on the same side of the splitting plane. Hence, by traversing the BSP tree in a

suitable order, based on the location of the observer with respect to the splitting planes, we

can generate a depth order on the fragments.
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Applications of BSPs is not restricted to the painter’s algorithm. Binary space partitions

are also used in constructive solid geometry [74], shadow generation [27], surface simplifi-

cation [8] and many other application domains—see the overview by Tóth [77]. kd-trees,

which are one of the well-known and widely used geometric data structure, are in fact

special types of BSP trees, in which the splitting hyperplanes are required to be axis-aligned.

Previous work. In 1969 Schumacker et al. [71] introduced the idea of putting hyper-

planes in a scene to help in constructing an order for the objects. Following this idea

Fuchs et al. [40] proposed to use binary space partitions to solve hidden-surface-removal

problem. Paterson and Yao [67] were the first to study the construction of BSPs from a

theoretical point of view, and to analyze the worst-case number of fragments generated

by their algorithms. They presented two algorithms, one deterministic and one random-

ized, for constructing BSPs for a set of segments in the plane. The worst-case (expected)

size of the BSPs created (with respect to the number of fragments) by their algorithms

is O(n log n). They also studied the problem in higher dimensions and proved that for

any set of (d− 1)-dimensional simplices in R
d, for d > 3, a BSP of size O(nd−1) can be

constructed [67]. Paterson and Yao have proved that one can make a BSP of size O(n
√
n)

for a set of axis-aligned boxes in R
3 and this bound is tight in the worst case. Later,

Tóth [75] showed that there exists a set of segments in R
2 such that any BSP for this set has

size O(n log n/ log log n). The gap between this lower bound and the bound achieved by

the algorithm of Paterson and Yao was open for several years, until recently Tóth gave an

algorithm [80] to make a BSP of size O(n log n/ log log n) for any set of segments in R
2.

There are several results for special and more realistic input sets. For a set of axis-aligned

segments in R
2, Paterson and Yao proposed an algorithm that constructs a BSP of size

O(n) [68]. D’Amore and Franciosa [12] considered a similar problem and achieved the

same result. Tóth [76] generalized these results such that for any set of segments with

k different directions one can construct a BSP of size O(kn). Dumitrescu, Mitchel and

Sharir [33] studied the problem of making a BSP for axis-aligned segments, rectangles

and hyper-rectangles in R
2 and higher dimensions. De Berg [15] gave an algorithm which

makes a BSP of size O(n) for fat objects or more generally uncluttered scenes in R
d.

Agarwal et al. [6] studied the problem for fat rectangles in R
3 and gave an algorithm to

make a BSP of size n · 2O(
√
logn). More results about BSPs can be found in a survey by

Tóth [77].

Rectilinear r-partitions

Description. Another important class of spatial data structures are the so-called bounding-

volume hierarchies (BVHs). A bounding-volume hierarchy for a set S of objects is a tree

whose leaves store the objects from S and whose interior nodes store a bounding volume

for the objects stored in the node’s subtree. Examples are R-trees and partition trees. Note

that, in contrast to a BSP tree, the objects in a BVH are never fragmented. Hence, it always

uses linear storage. An important type of BVHs is one that uses axis-aligned boxes as
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(a) (b)

Figure 1.3 (a) A rectilinear r-partition for the set of points. (b) The box-tree

corresponding to the rectilinear r-partition.

bounding volumes. Such a BVH is sometimes called a box-tree [4, 83]—see Figure 1.3.

We can use BVHs to solve one of the most fundamental problems in computational ge-

ometry, namely the range-searching problem. In range searching, our aim is to process a

set S of n objects so that, given a query region, one can quickly find the objects lying in

that query region. For an extensive overview of range searching, see the survey paper by

Agarwal and Erickson [5]. When we have a BVH on the objects, we can answer a range

query by traversing the tree in a top-down manner, as follows. Suppose we arrive at a node

v of the tree. We then test if the bounding volume of v is completely or partially inside

the query region or if it is disjoint from the query region. If the bounding volume of v is

completely inside the query region, obviously all the objects inside the bounding volume

of it are in the query region and we can report all the objects stored in the corresponding

subtree. If the bounding volume of v is disjoint from the query region, none of its objects

is in the query region and we can simply ignore its children for further processing. Finally,

if the bounding volume of v is partially in the query region we repeat this process for its

children.

As a concrete example, suppose that we want to answer range-searching queries on a set

of points in the plane and that the query ranges are rectangles. A BVH which can be used

for this is the so-called box-tree. A box-tree is a tree in which each leaf is associated

with a bounding box of a few input objects (in this case points), and each interior node

is associated with the smallest box Bv enclosing all the bounding boxes stored at the

leaves of the subtree rooted at v. The basic building blocks of a box-tree are rectilinear

r-partitions, which are defined as follows. A rectilinear r-partition of size r for a set S
of n points in R

d, is a collection ψ(S) = {(S1, b1), (S2, b2), . . . , (Sr, br)} such that the

sets Si form a partition of S and each bi is a bounding box enclosing the points in Si. A

rectilinear r-partition is called fine if for each Si we have n/2r 6 |Si| 6 2n/r. Note that

the boxes bi need not be disjoint. The definition of fine rectilinear r-partitions is similar to

the definition of fine simplicial partitions by Matoušek [63]. The stabbing number of an

axis-aligned hyperplane h in the rectilinear r-partition is the number of bounding boxes

which it intersects. The stabbing number of rectilinear r-partition is the maximum stabbing

number among all axis-aligned hyperplanes.
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A box-tree can be used to answer a range searching query in R
2, using the general strategy

described earlier: traverse the tree in a top-down manner, only descending into subtrees

if the bounding volume (rectangle in this case) stored at the root of the subtree partially

overlaps the query range. It is not hard to see that if the query region is an axis-aligned

half-plane then the query time will depend on the stabbing number of the rectilinear r-
partition used to construct the tree. Thus we would like to compute a rectilinear r-partition

for a set of points whose stabbing number is minimal.

When the BVH is stored in external memory, one usually uses B-tree [29, Chapter 18] as

underlying data structure. The resulting data structure with bounding boxes as bounding

volumes is then called an R-tree [45]. R-trees are extensively used as external memory data

structures and have been studied extensively—see the book by Manolopoulos et al. [61].

In an R-tree all the leaves are at the same depth and each node, except the root, has a

degree between t and 2t for a fixed parameter t. The degree of the root can be between

2 and 2t. A common way to build R-trees is the top-down approach: we partition the

set of objects S into subsets Si, then recursively construct a subtree Ti for each set Si.

Thus the degree of the tree depends on the number of subsets. When a range query with

a range Q is performed, one can use the same approach, described above, to recursively

search in the subtrees Ti for which the bounding box of Si intersects Q. It is not hard to

see that the worst-case query time in an R-tree also depends on the stabbing number of

the rectilinear partitions used in the construction of the R-tree. In Chapter 3 we therefore

study the problem of computing rectilinear partitions with optimal stabbing number.

Previous work. There has been a lot of work on finding simplicial partitions with low

stabbing numbers and on constructing partition trees [35, 25, 48, 63]. When it comes

to rectilinear partitions and box-trees, there are fewer papers. For answering rectangle

query ranges on a set of points, we can construct a kd-tree on the set of input points,

and then convert this kd-tree to a box-tree. Then the query time is O(n1−1/2d + k) in

R
d [5, 57] where k is the output size. There are some other heuristics which use kd-tree

for answering rectangle queries [5, 65]. R-trees have been introduced for the first time

by Guttmann [45], and to minimize the query time several heuristics have been proposed

for making R-trees [37, 41, 58], but none of them studied bounds on their worst-case

performance. Faloutos et al. [38] proposed a worst-case bound for a restricted case of a

1-dimensional R-tree. De Berg et al. [18] studied the problem of constructing an R-tree on

a set of rectangles in R
2 in order to report all the rectangles containing a query point, and

proved worst-case bounds on the query time. Then, Agarwal et al. [4], gave an algorithm

to build an R-tree that answers a rectangle query in R
d in O((N/B)1−1/d + T logB N)

I/Os, where N is the number of d-dimensional hyper-rectangles stored in the R-tree, B is

the block size and T is the output size. Later, Arge et al. [13] improved the query time to

O((N/B)1−1/d + T/B) I/Os, using a variant of R-trees called PR-trees.
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(a)
(b)

Figure 1.4 (a) A Steiner triangulation of a simple polygon. (b) A rectangular

decomposition of a rectilinear polygon.

Decompositions of simple polygons.

Description. Above we discussed two important classes of geometric data structures,

BSPs and BVHs. Next we turn our attention to decompositions of polygons, another problem

that we will study in this thesis. Computing decompositions of simple polygons is one of

the most fundamental problems in computational geometry. When the polygon at hand is

arbitrary then one typically wants a decomposition into triangles, and when the polygon

is rectilinear one wants a decomposition into rectangles—see Figure 1.4. Sometimes any

such decomposition will do; then one can just compute an arbitrary triangulation or, for

rectilinear polygons, a vertical decomposition. This can be done in linear time [23]. In

other cases one would like the decomposition to have certain properties.

Suppose for example that we want to answer a ray shooting query in a simple polygon, that

is, given a ray whose starting point lies inside the polygon we wish to find the first edge

hit by the ray. If we have a triangulation of the polygon then, after locating the triangle

containing the starting point, we can just traverse the triangles intersected by the ray to

find the desired side of the polygon. The running time of the algorithm depends on the

stabbing number of the triangulation, as defined next.

For a polygon P and a triangulation ∆(P ) of it, the stabbing number of a segment s
inside P is the number of triangles intersected by s. The stabbing number of ∆(P ) is

the maximum stabbing number over all segments inside P . It is easy to see that the

performance of the ray shooting algorithm described above depends on the stabbing

number of triangulation made for the polygon. A triangulation of a simple polygon usually

only uses diagonals, that is, (non-intersecting) line segments connecting vertices of the

polygons. However, one can also use additional vertices; these additional vertices are

called Steiner vertices, and the resulting triangulation is called a Steiner triangulation. In
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fact, working with a Steiner triangulation may be necessary to ensure low stabbing number:

there are simple polygons with n vertices where any non-Steiner triangulation has stabbing

number n− 2 while there are Steiner triangulations with stabbing number O(log n).

The (rectilinear) stabbing number of a rectangular decomposition of a rectilinear polygon

is defined in a similar way as the stabbing number of a triangulation, except that we only

consider axis-parallel segments inside the polygon. More precisely the stabbing number

of an axis-parallel segment in a rectangular decomposition of a rectilinear polygon P
is the number of rectangles which it intersects. The stabbing number of rectangular

decomposition is the maximum stabbing number among all axis-aligned segments inside P .

We will study decompositions with low stabbing number for simple polygons and rectilinear

polygons in Chapter 4 of the thesis.

Previous work. There are many papers dealing with triangulations or other types of

decomposition of simple polygons [52]. Hershberger and Suri [50] were the first to

consider the problem of finding a Steiner triangulation with low stabbing number of a

simple polygon. They proposed an algorithm that produces a Steiner triangulation with

stabbing numberO(log n). This is optimal in the worst case, since any Steiner triangulation

of a convex polygon with n vertices has stabbing number Ω(log n).

For the case of partitioning a rectilinear polygon into a set of rectangles De Berg and

Van Kreveld [20] gave an algorithm which makes such a partition with stabbing number

O(log n). This algorithm is also worst-case optimal, because any rectilinear partition of a

staircase polygon of size n has stabbing number Ω(log n). The two results just mentioned

are about decompositions of simple polygons. There are also results about decompositions

with low stabbing number of polygons with holes [50] and about decompositions with

low stabbing number of a hypercube in d-dimensional space into a given number of boxes

or other convex pieces [78, 79]. Finally, the problem of finding a triangulation with low

stabbing number of a point set in R
3 has been studied [3].

1.3 Worst-case optimality versus instance-optimality

In the previous section we discussed several geometric (data) structures. We also noted

that for each of these data structures there are algorithms which construct data structures

that are worst-case optimal with respect to a given characteristic such as size (BSPs) or

stabbing number (rectilinear partitions, Steiner triangulations). As an example, for a set of

n points and given r one can make a rectilinear r-partition with stabbing number O(
√
r)

for the set of points. Moreover, there are point sets for which any rectilinear r-partition

has stabbing number Ω(
√
r). An example of such a point set is a set of n points forming

a regular
√
n×√

n grid. On the other hand, there are point sets for which we can make

rectilinear r-partitions with better stabbing numbers. For example, when the points are all

on a diagonal line we can make a rectilinear r-partition with stabbing number 1. Similarly

when the points are in a convex position we can make a rectilinear r-partition with stabbing
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(a) (b)

Figure 1.5 (a) A set of points on a diagonal and their rectilinear r-partition with

stabbing number 1. (b) A set of points in a convex position.

number 2—see Fig. 1.5. Note that an algorithm that guarantees a worst-case optimal

stabbing number may in fact produce a rectilinear r-partition with stabbing number Θ(
√
r)

in these two examples.

This gives the idea of looking for algorithms which make a rectilinear r-partition with

minimum or close to minimum stabbing number for an input instance. We call the

rectilinear r-partition with minimum stabbing number for a set of n points an optimal

rectilinear r-partition.

The same phenomenon arises for the other two structures we discussed. First, consider

the problem of computing BSPs of small size. The algorithm by Tóth [80] for computing

a BSP for n segments in the plane produces a BSP of size O(n log n/ log log n), which is

optimal in the worst case, but there are also sets of segments that admit a BSP of size n.

Second, consider the problem of computing decompositions with low stabbing number

of simple and rectilinear polygons. As mentioned, the algorithms by Hershberger and

Suri [50] and by De Berg and Van Kreveld [20], respectively, give decompositions with

stabbing number O(log n) which is optimal in the worst case. However, there are polygons

for which there exists rectilinear partitions or Steiner triangulations with lower stabbing

numbers. The polygon which is shown in Figure 1.6 has a rectangular partition and a

Steiner triangulation with O(1) stabbing number.

To summarize, for all the above data structures there are algorithms that are worst-case

optimal. More precisely, for each of these structures there are algorithms that produce a

structure whose quality (in terms of size or stabbing number) is worst-case optimal in an

asymptotic sense. However there are input instances for each of the problems for which

the proposed algorithms do not do well. What we would prefer is an algorithm that is not

just asymptotically optimal in the worst case, but that is optimal (or close to optimal) for

the given input instance. This leads to the following general problem statement: given a

class of geometric structures (BSPs, or rectilinear r-partitions, . . . ), and an input instance

(a set of line segments, points, . . . ), construct a geometric structure on the given instance

with minimal cost.
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(a) (a)

Figure 1.6 (a) The rectangular decomposition with O(1) stabbing number. (b)

The triangulation with O(1) stabbing number.

Previous work. As just explained, we are interested in algorithms for computing ge-

ometric (data) structures that are optimal for the given instance. Observe that this way

of looking at a problem is, in fact, standard practice in optimization problems. Thus the

novelty in the above is not so much that we want solutions that are optimal for the given

instance, but rather that we cast the problems of constructing BSPs of small size, and

rectilinear r-partitions and polygon decompositions with low stabbing number, in this

light.

Note that some existing papers use the term ”instance-optimal algorithms” in a somewhat

different meaning. For example, Afshani et al. [2] consider instance-optimal algorithms

for convex-hull computation in R
2 and R

3 and some other geometric problems. Here the

instance-optimality refers to the running time of the algorithm, with respect to aspects

like output size and input distribution. Fagen et al. [36] and others [30, 31] used the term

in a similar way. When we talk about (instance-)optimality, however, we refer to the

quality of the computed geometric structure with respect to the given criterion. For the

problems we have studied, this has not been done before, to the best of our knowledge.

The only exception is the computation of BSP of small size for axis-parallel segments in

the plane, where De Berg et al. [19] showed that one can compute an (instance-)optimal

rectilinear BSP using dynamic programming. To avoid confusion with the notion of

instance-optimality studied in these other papers, we will from now on usually just talk

about optimal BSPs, optimal rectilinear r-partitions and so on, when we mean instance-

optimal structures. When we want to talk about worst-case optimality, we will use this term

explicitly. A related result achieved on optimal BSPs is that for any set of (not necessarily

rectilinear) disjoint segments in the plane one can compute a so-called perfect BSP in

O(n2) time, if it exists [17]. (A perfect BSP is a BSP in which none of the objects is cut.) If

a perfect BSP does not exist, then the algorithm only reports this fact; it does not produce

any BSP in this case. Thus for arbitrary sets of segments in the plane it is unknown whether

one can efficiently compute an optimal BSP.
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Figure 1.7 The three types of BSPs, drawn inside a bounding box of the scene.

Note that, as is usually done for auto-partitions, we have continued

the auto-partition until the cells are empty.

1.4 Results in this thesis

In this thesis we study the problems of finding optimal BSPs, rectilinear r-partitions with

optimal stabbing number for point sets, and decompositions of simple and rectilinear

polygons with optimal stabbing number. We show NP-hardness and/or give approximation

algorithms for these problems. In addition, we study a problem that was not mentioned so

far, namely the problem of finding optimal approximations of uncertain piecewise linear

functions. Next we discuss our results in more detail.

Binary space partitions. Let S be a set of disjoint segments in the plane. Recall that

a BSP is constructed by recursively splitting the space with a line, until each cell has at

most one (fragment of a) segment in it. Thus, in a generic step of the algorithm we have a

region R and a set S(R) containing the segment fragments in R, and we wish to split R
into two subregions with a line. In our search for optimal BSPs in R

2 we considered three

specific types of BSPs. The types of BSPs we consider differ in the restrictions we put on

the splitting lines that we are allowed to use.

The first type of BSP we consider is one where we do not put any restrictions on the

splitting lines. Such BSPs are called Free BSPs. The second type is called a restricted BSP;

in this type of BSP we require that the splitting line for the region R contains (at least)

two fragment endpoints in S(R). The third type, which is the most restricted among those

considered, is called an auto-partition; here we require that the splitting line for R contains

one of the segments in S(R). The three types of BSPs are illustrated in Figure 1.7. We first

considered the problem of computing an optimal auto-partition. The reason to first study

auto-partitions was that auto-partitions perform quite well in practice, even though for

some input sets they produce larger BSPs than the other types. Also, since in constructing

auto-partitions we are more restricted in choosing splitting lines, it might be easier to find

an optimal auto-partition.



14 Chapter 1 Introduction

However, our attempts to develop an efficient algorithm to find optimal auto-partitions

turned out to be unsuccessful. We proved that computing an optimal auto-partition is

NP-hard. Interestingly, the problem of finding an optimal auto-partition seems to be more

difficult than finding an optimal free BSP. As mentioned above, it is possible to decide in

O(n2) time if a set n of line segments admits a perfect restricted (or free) BSP, that is, a

restricted (or free) BSP that does not cut any of the input segments. However, our proof

shows that determining if a set of input segments admits an auto-partition without cuts

in NP-hard. Our NP-hardness proof is by reduction from a new version of 3-SAT, which

we prove to be NP-complete. We call this new version PLANAR MONOTONE 3-SAT. We

believe that this version of 3-SAT problem is interesting on its own and may be useful for

NP-hardness proofs of other geometric and graph problems. Indeed it has been used in an

NP-hardness proof for a problem related to switch graphs [53].

We also studied the relation between the numbers of cuts made by optimal free and

restricted BSPs. Let us denote the number of cuts of the optimal free and restricted BSPs for

a set of segments by OPTfree and OPTres. It is obvious that OPTfree 6 OPTres. In [28]

there is an example showing that for some input sets OPTfree = 2 · OPTres. We show that

this bound is tight: for any input set of segments we have OPTfree 6 2 · OPTres. This

result is interesting because it implies that if one can find an algorithm to make an optimal

restricted BSP for an input set, the algorithm would be a 2-approximation for finding an

optimal free BSP. All of the above results are presented in Chapter 2 of this thesis.

The results on binary space partitions were published as:

M. de Berg and A. Khosravi. Optimal binary space partitions in the plane. In Proc. 16th

Annual International Conference on Computing and Combinatorics (COCOON’10), pages

216–225, 2010.

Rectilinear r-partition. Inspired by the construction of R-trees, we studied the problem

of computing optimal rectilinear r-partitions for a set of n points in the plane, both

theoretically and experimentally. First, we showed that finding an optimal rectilinear

r-partition when we have r as a parameter is NP-hard even in R
2. Then, we gave an exact

algorithm for finding an optimal rectilinear r-partition which has polynomial running time

when r is a constant. We changed the same algorithm to be a 2-approximation with a better

running time. By showing that any algorithm which only considers disjoint boxes would

not give a good approximation factor we finished the theoretical studies about rectilinear

r-partitions.

We also performed an experimental investigation of various heuristic algorithms. We tested

four different heuristic methods each on four different types of point distributions. A

simple variant of a kd-tree approach turned out to give the best results in our test. All the

theoretical and experimental results of our research on rectilinear r-partitions is presented

in chapter 3 of this thesis.

The results on rectilinear r-partition were published as:
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M. de Berg, A. Khosravi, S. Verdonschot and V. van der Weele. On rectilinear partitions

with minimum stabbing number. In Proc. of 12th Algorithms and Data Structures Symp.

(WADS 2011), pages 302–313, 2011.

Decompositions of simple polygons. The third problem that we consider from the

instance-optimality point of view is the computation of decompositions with low stabbing

number of rectilinear and simple polygons. First, we considered the problem of computing

a rectangular decomposition of a rectilinear polygon with optimal stabbing number. For

this problem we presented a 3-approximation algorithm. Our algorithm first partitions the

rectilinear polygon P into histograms such that any segment inside P intersects at most 3

of these histograms. Our main result is an algorithm that computes a rectangular decompo-

sition of a histogram with optimal stabbing number. This leads to a 3-approximation for

the problem. Then we turned our attention to Steiner triangulations of simple polygons

and proposed an O(1)-approximation for this problem. All of our results with respect to

partitioning simple and rectilinear polygons are represented in chapter 4.

The results on decomposition of simple polygons were published as:

M. A. Abam, B. Aronov, M. de Berg and A. Khosravi. Approximation algorithms for

computing partitions with minimum stabbing number of rectilinear and simple polygons.

In Proc. of 27th Annual Symp. on Computational Geometry (SoCG 2011), pages 407–416,

2011.

Approximating uncertain functions. In Chapters 2–4 we studied instance-optimal algo-

rithms for computing geometric structures that are traditionally studied from a worst-case

perspective. Another way to look at this is that we view the construction of these structures

as an optimization problem. In Chapter 5 we also consider an optimization problem,

namely how to best approximate (with respect to a given error function) a piecewise

linear function F: R → R by another linear function F with fewer breakpoints. This is

a classic problem in mathematics and computer science and it has already been studied

extensively [1, 7, 9, 22, 44, 46, 51, 64, 81]. There are then two optimization problems that

are considered: the min-k and the min-ε problem. In the min-k problem we are given an

error ε, and our goal is to approximate F by F using a minimum number of links and such

that the error is at most ε. In the min-ε version of the problem we are given a number k > 1
and the goal is to find a piecewise linear function with at most k links which minimizes

the error.

We study a new version of this problem, where the function F is not known exactly. More

precisely, we are given a set of values x1, . . . , xn—the x-coordinates of the breakpoints

of the function—and for each xi we are given a set yi,1, . . . , yi,mi
of potential values for

F(xi) together with the associated probabilities pi,j . Thus Pr[F(xi) = yi,j ] = pi,j . Even

though the min-k and min-ε problems for piecewise linear functions have been considered

thoroughly before [44, 46, 82], to the best of our knowledge these problems have not been

considered for uncertain points so far. Define m =
∑n

i=1mi, that is, m is the total number
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of potential values over all F(xi). We achieved the following two results.

First, we give an algorithm to solve the min-k problem for uncertain functions: given an

uncertain function F and a maximum error ε, in O(m) time we can compute a function F
with the minimum number of links such that error(F,F) 6 ǫ. Second, we show how to

solve the min-ε problem: given an uncertain function F, and an integer value 1 6 k 6 n
and any δ > 0, one can find a function F of at most k links that minimizes error(F,F)
in O(n4/3+δ +m log n) time. The first problem is fairly easily solved by a reduction to

the minimum link path problem. The second problem is more challenging, however. The

details of the algorithms are presented in chapter 5 of the thesis.

The results on approximating piecewise linear functions were published as:

M. A. Abam, M. de Berg and A. Khosravi. Piecewise-linear approximations of uncertain

functions. In Proc. of 12th Algorithms and Data Structures Symp. (WADS 2011), ages

1–12, 2011.



Chapter 2

Binary Space Partitions for

Segments in the Plane

Chapter summary. An optimal BSP for a set S of disjoint line segments in the plane is a BSP for S
that produces the minimum number of cuts. We study optimal BSPs for three classes of BSPs, which

differ in the splitting lines that can be used when partitioning a set of fragments in the recursive

partitioning process: free BSPs can use any splitting line, restricted BSPs can only use splitting lines

through pairs of fragment endpoints, and auto-partitions can only use splitting lines containing a

fragment. We obtain the following two results:

• It is NP-hard to decide whether a given set of segments admits an auto-partition that does not

make any cuts.

• An optimal restricted BSP makes at most twice as many cuts as an optimal free BSP for the

same set of segments.
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2.1 Introduction

Motivation. Many problems involving objects in the plane or some higher-dimensional

space can be solved more efficiently if a hierarchical partitioning of the space is given.

One of the most popular hierarchical partitioning schemes is the binary space partition, or

BSP for short [16]. In a BSP the space is recursively partitioned by hyperplanes until there

is at most one object intersecting the interior of each cell in the final partitioning. Note that

the splitting hyperplanes not only partition the space, they may also cut the objects into

fragments.

The recursive partitioning can be modeled by a tree structure, called a BSP tree. Nodes in a

BSP tree correspond to regions of the original space, with the root node corresponding to

the whole space and the leaves corresponding to the cells in the final partitioning. Each

internal node stores the hyperplane used to split the corresponding region, and each leaf

stores the object fragment intersecting the corresponding cell. When the objects are (d−1)-
dimensional—as is the case, for example, for a BSP for line segments in the plane—then

some fragments may end up being contained in a splitting hyperplane. The fragments are

then stored with the splitting hyperplanes containing them, rather than at the leaves.

BSPs have been used in numerous applications. In most of these applications, the efficiency

is determined by the size of the BSP tree, which is equal to the total number of object

fragments created by the partitioning process. As a result, many algorithms have been de-

veloped that create small BSPs; Paterson and Yao [67] presented an algorithm that computes

for any given set of n disjoint segments in the plane a BSP of size O(n log n). In a recent

paper [80], Tóth gave an algorithm which constructs a BSP of size Ω(n log n/ log log n)
for any set of disjoint segments in the plane, which is tight in the worst case [75]. For many

other settings—axis-parallel objects, 3-dimensional objects, fat objects, etc.—algorithms

have been developed that produce provably small BSPs. Paterson and Yao [68] presented

an algorithm for constructing BSPs for orthogonal objects in 3-dimension. Dumitrescu,

Mitchell and Sharir [33] have studied BSPs for axis-parallel segments, rectangles and

hyper-rectangles in R
2 and higher dimensions. Similarly D’Amore and Franciosa [12]

considered the problem of making a BSP for axis aligned segments in R
2. De Berg [15]

gave an algorithm which constructs a BSP of linear size for fat objects, and more generally

for so-called uncluttered scenes. Finally, Agarwal et al. [6] studied making BSPs for fat

rectangles in R
3, presenting an algorithm for constructing a BSP of size n · 2O(

√
logn). For

a more extensive overview see the survey paper by Tóth [77].

In all these algorithms, bounds are proved on the worst-case size of the computed BSP

over all sets of n input objects from the class of objects being considered. Ideally, one

would like to have an algorithm that computes a BSP that is optimal for the given input,

rather than optimal in the worst-case. In other words, given an input set S, one would like

to compute a BSP that is optimal (that is, has the minimum number of object fragments)

for S.

For n axis-aligned segments in the plane, one can compute an optimal rectilinear BSP

in O(n5) time using dynamic programming [19].(A rectilinear BSP is one in which all
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Figure 2.1 The three types of BSPs, drawn inside a bounding box of the scene.

Note that, as is usually done for auto-partitions, we have continued

the auto-partition until the cells are empty.

splitting hyperplanes are axis-aligned.) Another result related to optimal BSPs is that, for

any set of (not necessarily rectilinear) disjoint segments in the plane, one can compute a

so-called perfect BSP in O(n2) time, if it exists [17]. (A perfect BSP is a BSP in which

none of the objects is cut.) If a perfect BSP does not exist, then the algorithm only reports

this fact; it does not produce any BSP in this case. Thus for arbitrary sets of segments in

the plane it is unknown whether one can efficiently compute an optimal BSP.

Problem statement and our results. In our search for optimal BSPs, we consider three

types of BSPs. These types differ in the splitting lines they are allowed to use. Let S denote

the set of n disjoint segments for which we want to compute a BSP, and suppose at some

point in the recursive partitioning process we have to construct the subtree rooted at a node

v. Let R be the region corresponding to v and let S(R) be the set of segment fragments

lying in the interior of R. Then the three types of BSPs can use the following splitting lines

to partition R.

• Free BSPs can use any splitting line.

• Restricted BSPs must use a splitting line containing (at least) two endpoints of

fragments in S(R). We call such a splitting line a restricted splitting line.

• Auto-partitions must use a splitting line that contains a segment from S(R).

Fig. 2.1 illustrates the three types of BSPs. Note that an auto-partition is only allowed to use

splitting lines containing a fragment lying in the region to be split; it is not allowed to use

a splitting line that contains a fragment lying in a different region. Also note that when a

splitting line contains a fragment—such splitting lines must be used by auto-partitions, but

may be used by the other types of BSPs as well—then that fragment is no longer considered

in the rest of the recursive partitioning process. Hence, it will not be fragmented further.
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For auto-partitions we require that the splitting process continues until each fragment is

contained in a splitting line.

We use OPTfree(S) to denote the minimum number of cuts in any free BSP for S. Thus the

number of fragments in an optimal free BSP for S is n+ OPTfree(S). Similarly, we use

OPTres(S) and OPTauto(S) to denote the minimum number of cuts in any restricted BSP

and in any auto-partition for S. Clearly, OPTfree(S) 6 OPTres(S) 6 OPTauto(S). It is

well known that for some sets of segments OPTres(S) < OPTauto(S); indeed, it is easy

to construct an example where OPTres(S) = 0 and OPTauto(S) = n/3. Nevertheless,

auto-partitions seem to perform well in many situations. Moreover, the collection of

splitting lines to choose from in an auto-partition is smaller than for restricted or free BSPs,

so computing optimal auto-partitions might be easier than computing optimal restricted or

free BSPs. Unfortunately, our hope to find an efficient algorithm for computing optimal

auto-partitions turned out to be unsuccessful: in Section 2.2 we prove that computing

optimal auto-partitions is an NP-hard problem. In fact, it is even NP-hard to decide whether

a set of segments admits a perfect auto-partition. This should be contrasted to the result

mentioned above, that deciding whether a set of segments admits a perfect restricted

BSP can be done in O(n2) time. (Notice that when it comes to perfect BSPs, there is no

difference between restricted and free BSPs: if there is a perfect free BSP then there is

also a perfect restricted BSP [17].) Hence, optimal auto-partitions seem more difficult to

compute than optimal restricted or free BSPs.

Our hardness proof is based on a new 3-SAT variant, monotone planar 3-SAT, which

we define and prove NP-complete in Section 2.2. We believe this new 3-SAT variant is

interesting in its own right, and may find applications in other NP-completeness proofs.

Indeed, our 3-SAT variant has already been used in a recent paper [53] to prove NP-

hardness of a problem on so-called switch graphs.

We turn our attention in Section 2.3 to unrestricted and free BSPs. In particular, we study the

relation between optimal free BSPs and optimal restricted BSPs. In general, free BSPs are

more powerful than restricted BSPs: in his MSc thesis [28], Clairbois gave an example of a

set of segments for which the optimal free BSP makes one cut while the optimal restricted

BSP makes two cuts, and he also proved that OPTres(S) 6 3 · OPTfree(S) for any set S.

In Section 2.3 we improve this result by showing that OPTres(S) 6 2 · OPTfree(S) for

any set S.

2.2 Hardness of computing perfect auto-partitions

Recall that an auto-partition of a set S of disjoint line segments in the plane is a BSP in

which, whenever a region is partitioned, the splitting line contains one of the fragments

lying in that region. We call an auto-partition perfect if none of the input segments is cut,

and we consider the following problem.

PERFECT AUTO-PARTITION
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x1 ∨ x5 ∨ x6

x2 ∨ x3

x1 ∨ x2
x5 ∨ x6

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

x4 ∨ x6

x1 ∨ x4 ∨ x5

x1 x2 x3 x4 x5 x6

Ci

Cj

CkCh

Figure 2.2 A rectilinear representation of a planar 3-SAT instance.

Input: A set S of n disjoint line segments in the plane.

Output: YES if S admits a perfect auto-partition, NO otherwise.

We will show that PERFECT AUTO-PARTITION is NP-hard. Our proof is by reduction from

a special version of the satisfiability problem, which we define and prove NP-complete in

the next subsection. After that we prove the hardness of PERFECT AUTO-PARTITION.

Planar monotone 3-SAT. Let U := {x1, . . . , xn} be a set of n boolean literals, and let

C := C1 ∧ · · · ∧ Cm be a CNF formula defined over these literals, where each clause Ci is

the disjunction of at most three literals. Then 3-SAT is the problem of deciding whether

such a boolean formula is satisfiable. An instance of 3-SAT is called monotone if each

clause is monotone, that is, each clause consists only of positive literals or only of negative

literals. 3-SAT is NP-complete, even when restricted to monotone instances [42].

For a given (not necessarily monotone) 3-SAT instance, consider the bipartite graph

G = (U ∪ C, E), where there is an edge (xi, Cj) ∈ E if and only if xi or its negation xi is

one of the literals in the clause Cj . Lichtenstein [60] has shown that 3-SAT remains NP-

complete when G is planar. Moreover, as shown by Knuth and Raghunatan [26], one can

always draw the graph G of a planar 3-SAT instance as in Fig. 2.2: the literals and clauses are

drawn as axis-aligned rectangles with all the literal-rectangles on a horizontal line, the edges

connecting the literals to the clauses are vertical segments, and the drawing is crossing-free.

We call such a drawing of a planar 3-SAT instance a rectilinear representation. PLANAR

3-SAT remains NP-complete when a rectilinear representation is given.

Next we introduce a new version of 3-SAT, which combines the properties of monotone

and planar instances. We call a clause with only positive literals a positive clause, a clause

with only negative literals a negative clause, and a clause with both positive and negative

literals a mixed clause. Thus a monotone 3-SAT instance does not have mixed clauses.

Now consider a 3-SAT instance that is both planar and monotone. A monotone rectilinear
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representation of such an instance is a rectilinear representation where all positive clauses

are drawn on the positive side of (that is, above) the literals and all negative clauses are

drawn on the negative side of (that is, below) the literals. Our 3-SAT variant is defined as

follows.

PLANAR MONOTONE 3-SAT

Input: A monotone rectilinear representation of a planar monotone 3-SAT instance.

Output: YES if the instance is satisfiable, NO otherwise.

PLANAR MONOTONE 3-SAT is obviously in NP. We will prove that it is NP-hard by a

reduction from PLANAR 3-SAT. Let C = C1∧· · ·∧Cm be a given rectilinear representation

of a planar 3-SAT instance defined over the literal set U = {x1, . . . , xn}. We call a literal-

clause pair (xi, Cj) inconsistent if xi appears in Cj and Cj is placed on the positive

side of the literals. Similarly we call (xi, Cj) inconsistent if xi appears in Cj and Cj is

placed on the negative side. When a rectilinear representation does not have inconsistent

literal-clause pairs, then it must be monotone. Indeed, any monotone clause must be placed

on the correct side of the literals, and there cannot be any mixed clauses because any mixed

clause must form an inconsistent pair with at least one of its literals.

We convert the given instance C step by step into an equivalent instance with a monotone

planar representation, in each step reducing the number of inconsistent literal-clause pairs

by one.

Let (xi, Cj) be an inconsistent pair; inconsistent pairs involving a positive literal in a

clause on the negative side can be handled similarly. We eliminate this inconsistent pair as

follows.We introduce two new literals, a and b, and modify the set of clauses as follows

(see Fig. 2.3).

• In clause Cj , replace xi by a.

• Introduce the following four clauses: (xi ∨ a) ∧ (xi ∨ a) ∧ (a ∨ b) ∧ (a ∨ b).

• In each clause containing xi that is placed on the positive side of the literals and that

connects to xi to the right of Cj , replace xi by b.

Let C′ be the new set of clauses with the rectilinear representation obtained by the above

process.

Lemma 2.1 C is satisfiable if and only if C′ is satisfiable.

Proof. Suppose there is a truth assignment to the literals x1, . . . , xm that satisfies C. Now

consider C′, which is defined over {x1, . . . , xm} ∪ {a, b}. Use the same truth assignment

for x1, . . . , xm, and set a := xi and b := xi. One easily checks that with this truth

assignment to a and b, all new and modified clauses are satisfied.

Conversely, suppose there is a truth assignment to {x1, . . . , xm} ∪ {a, b} that satisfies

C′. We claim that using the same assignment for x1, . . . , xm will satisfy C. Indeed,

(xi ∨ a) ∧ (xi ∨ a) ∧ (a ∨ b) ∧ (a ∨ b) implies that xi = a = b.
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a ∨ bxi ∨ a

xi ∨ a a ∨ b

Cj

· · · xi · · · · · · a · · ·

xi a bxi

Figure 2.3 Eliminating an inconsistent literal-clause pair.

This means that Cj (where xi was replaced with a) and all clauses in C where xi was

replaced with b, are satisfied. All other clauses in C appear unchanged in C′, and hence,

they are also satisfied. ✷

Fig. 2.3 shows how this modification is reflected in the rectilinear representation. (In this

example, there are two clauses for which xi is replaced by b, namely the ones whose edges

to xi are drawn fat.) We keep the rectangle for xi at the same location. Then we shift the

vertical edges that now connect to b instead of xi a bit to the right—because of this, we

may have to slightly grow or shrink some of the clause rectangles as well—to make room

for a and b and the four new clauses. This way we keep a valid rectilinear representation.

By applying the conversion described above without any specific order to each of the at

most 3m inconsistent literal-clause pairs, we obtain a new 3-SAT instance with at most

13m clauses defined over a set of at most n+6m literals. This new instance is satisfiable if

and only if C is satisfiable, and it keeps the monotone representation. We get the following

theorem.

Theorem 2.2 PLANAR MONOTONE 3-SAT is NP-complete.

Next we show how to reduce a planar monotone 3-SAT instance to a perfect auto-partition

instance.

From planar monotone 3-SAT to perfect auto-partitions. Let C = C1 ∧ · · · ∧Cm be

a planar monotone 3-SAT instance defined over a set U = {x1, . . . , xn} of literals, with a

monotone rectilinear representation. We show how to construct a set S of line segments

in the plane that admits a perfect auto-partition if and only if C is satisfiable. The idea is

illustrated in Fig. 2.4.

The literal gadget. For each literal xi there is a gadget consisting of two segments, si and

si. Setting xi = TRUE corresponds to extending si before si, and setting xi = FALSE

corresponds to extending si before si.
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xi

ℓ(si)

ℓ(si)
si

si

tj,2

tj,3

tj,0

Cj

tj,1

Figure 2.4 The idea behind replacing clauses and literals (Cj contains literal xi

The clause gadget. For each clause Cj there is a gadget consisting of four segments,

tj,0, . . . , tj,3. The segments in a clause form a cycle, that is, the splitting line ℓ(tj,k) cuts

the segment tj,(k+1) mod 4; see Fig.2.4. Note that, in the absence of other splitting lines,

any auto-partition of the segments in the cycle makes at least one cut. In case a splitting

line passes through a cycle, the cycle is broken and one can construct an auto-partition for

the cycle with no cuts.

This means that a clause gadget, when considered in isolation, would generate at least one

cut. Now suppose that the gadget for Cj is crossed by the splitting line ℓ(si) through the

segment si in such a way that ℓ(si) separates the segments tj,0, tj,3 from tj,1, tj,2, as in

Fig. 2.4. Then the cycle is broken by ℓ(si) and no cut is needed for the clause. But this

does not work when ℓ(si) is used before ℓ(si), since then ℓ(si) is blocked by ℓ(si) before

crossing Cj .

The idea is thus as follows. For each clause (xi ∨ xj ∨ xk), we want to make sure that

the splitting lines ℓ(si), ℓ(sj), and ℓ(sk) all cross the clause gadget. Then by setting one

of these literals to TRUE, the cycle is broken and no cuts are needed to create a perfect

autopartition for the segments in the clause. We must be careful, though, that the splitting

lines are not blocked in the wrong way—for example, it could be problematic if ℓ(sk)
would block ℓ(si)—and also that clause gadgets are only intersected by the splitting lines

corresponding to the literals in that clause. Next we show how to overcome these problems.

Detailed construction. From now on we assume that the literals are numbered according to

the monotone rectilinear representation, with x1 being the leftmost literal and xn being the

rightmost literal.

The gadget for a literal xi will be placed inside the unit square [2i− 2, 2i− 1]× [2n−
2i, 2n− 2i+ 1], as illustrated in Fig. 2.5. The segment si is placed with one endpoint at

(2i− 2, 2n− 2i) and the other endpoint at (2i− 3
2 , 2n− 2i+ εi) for some 0 < εi <

1
4 .

The segment si is placed with one endpoint at (2i− 1, 2n− 2i+1) and the other endpoint

at (2i − 1 − εi, 2n − 2i + 1
2 ) for some 0 < εi <

1
4 . Next we specify the slopes of the

segments, which determine the values εi and εi, and the placement of the clause gadgets.

The gadgets for the positive clauses will be placed to the right of the literals, in the
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Figure 2.5 Placement of the literal gadgets and the clause gadgets (not to scale).

horizontal half-strip [2n− 1,∞]× [0, 2n− 1]; the gadgets for the negative clauses will be

placed below the literals, in the vertical half-strip [0, 2n− 1]× [−∞, 0]. We describe how

to choose the slopes of the segments si and to place the positive clauses; the segments si
and the negative clauses are handled in a similar way.

Consider the set C+ of all positive clauses in our 3-SAT instance, and the way they are

placed in the monotone rectilinear representation. We say that, in a given rectilinear

representation, a clause Ci directly encloses a clause Cj if the following holds: Ci and

Cj can be connected by a vertical segment that does not cross any other clause, with Ci

being further away from the horizontal line on which the literals are placed. Let us call the

clause directly enclosing a clause Cj the parent of Cj . In Fig. 2.2, for example, Ci is the

parent of Cj and Ck but it is not the parent of Ch. Now let G+ = (C+, E+) be the directed

acyclic graph where each clause Cj has an edge to its parent (if it exists), and consider

a topological order on the nodes of G+ . We define the rank of a clause Cj , denoted by

rank(Cj), to be its rank in this topological order. Clause Cj will be placed at certain

distance from the literals that depends on its rank. More precisely, if rank(Cj) = k then

Cj is placed in a 1× (2n+ 1) rectangle Rk at distance dk from the line x = 2n− 1 (see

Fig. 2.5), where dk := 2 · (2n)k+1.

Before describing how the clause gadgets are placed inside these rectangles, we define the

slopes of the segments si. To this end we define rank(xi), the rank of a literal xi (with

respect to the positive clauses), as the maximum rank of any clause it participates in. Now

the slope of si is 1
2·dk

, where k = rank(xi). Recall that xi is placed inside the unit square

[2i− 2, 2i− 1]× [2n− 2i, 2n− 2i+ 1]. We have the following lemma.
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Lemma 2.3 Let xi be a literal, and ℓ(si) be the splitting line containing si.

(i) For all x-coordinates in the interval [2i− 2, 2n− 1 + drank(xi) + 1], the splitting

line ℓ(si) has a y-coordinate in the range [2n− 2i, 2n− 2i+ 1].

(ii) The splitting line ℓ(si) intersects all rectangles Rk with 0 6 k 6 rank(xi).

(iii) The splitting line ℓ(si) does not intersect any rectangle Rk with k > rank(xi).

Proof. (i) Observe that

(2n− 1 + drank(xi) + 1− (2i− 2)) · 1

2drank(xi)
6

1

2
+

2n− 2i+ 2

2drank(xi)
< 1,

since i > 1 and drank(xi) > d0 = 4n. Hence, the increase in y-coordinate of ℓ(si) in the

x-interval [2i− 2 : 2n− 1 + drank(xi) + 1] is less than 1, proving (i).

(ii) immediately follows from (i).

(iii) We observe that

(2n− 1 + drank(xi)+1 − (2i− 2)) · 1

2drank(xi)
>

drank(xi)+1

drank(xi)
= 2n,

so the increase in y-coordinate is at least 2n by the time Rrank(xi)+1 is reached. Hence,

ℓ(si) passes above Rk for all k > rank(xi). ✷

We can now place the clause gadgets. Consider a clause C = (xi ∨ xj ∨ xk) ∈ C+, with

i < j < k; the case where C contains only two literals is similar. By Lemma 2.3(ii),

the splitting lines ℓ(xi), ℓ(xj), ℓ(xk) all intersect the rectangle Rrank(C). Moreover, by

Lemma 2.3(i) and since we have placed the literal gadgets one unit apart, there is a 1× 1
square in Rrank(C) just above ℓ(si) that is disjoint from the supporting line of any segment.

Similarly, just below ℓ(sk) there is a square that is not crossed. Hence, if we place the

segments forming the clause gadget as in Fig. 2.6, then the segments will not be intersected

by any splitting line. Moreover, the splitting lines of segments in the clause gadget—these

segments either have slope -1 or are vertical—will not intersect any other clause gadget.

This finishes the construction.

One important property of our construction is that the rectangle containing a clause gadget

is only intersected by splitting lines of the literals in that clause. Another important property

has to do with the blocking of splitting lines by other splitting lines. Recall that the rank of

a literal is the maximum rank of any clause it participates in. We say that a splitting line

ℓ(si) is blocked by a splitting line ℓ(sj) if ℓ(sj) intersects ℓ(si) between si and Rrank(xi).

This is dangerous, since it may prevent us from using ℓ(si) to resolve the cycle in the

gadget of a clause containing xi. The next lemma states the two key properties of our

construction.
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ℓ(si)

ℓ(xj)

ℓ(xk)

Rrank(C)

Figure 2.6 Placement of the segments forming a clause gadget.

Lemma 2.4 The literal and clause gadgets are placed such that:

(i) The gadget for any clause (xi ∨ xj ∨ xk) is only intersected by the splitting lines

ℓ(si), ℓ(sj), and ℓ(sk). Similarly, the gadget for any clause (xi ∨ xj ∨ xk) is only

intersected by the splitting lines ℓ(si), ℓ(sj), and ℓ(sk).

(ii) A splitting line ℓ(si) can only be blocked by a splitting line ℓ(sj) or ℓ(sj) when

j > i; the same holds for ℓ(si).

Proof. (i) Consider a positive clause C = (xi ∨ xj ∨ xk) with i < j < k; the proof for

positive clauses with two literals and for negative clauses is similar. The lines ℓ(si), ℓ(sj),
and ℓ(sk) intersect the gadget for C by construction. Now consider any splitting line ℓ(sl)
with l 6∈ {i, j, k}. If rank(xl) < rank(C), then ℓ(sl) does not intersect the gadget for

C by Lemma 2.3(iii). If rank(xl) > rank(C) and l < i or l > k, then ℓ(sl) intersects

Rrank(C) but not in between ℓ(si) and ℓ(sk), by Lemma 2.3(i). Hence, in this case ℓ(sl)
does not intersect the clause gadget for C. The remaining case is that rank(xl) > rank(C)
and i < l < k. But this is impossible, since the planarity of the embedding implies

that if i < l < k and l 6= j, then xl can only participate in clauses enclosed by C, so

rank(xl) < rank(C). Finally, we note that the gadget for C obviously is not intersected

by any splitting line ℓ(sl), nor by any splitting line of a segment used in any other clause

gadget.

(ii) Consider a splitting line ℓ(si); the proof for a splitting line ℓ(si) is similar. If ℓ(si) is

blocked by some ℓ(sj) then the diagonal placement of the literal gadgets (see Fig. 2.5)

immediately implies j > i. Now suppose that ℓ(si) is intersected by some ℓ(sj) with

j < i. Then the slope of ℓ(si) is greater than the slope of ℓ(sj). This implies that

rank(xi) < rank(xj). Hence, by Lemma 2.3(i) the intersection must be after Rrank(xi),

proving that ℓ(si) is not blocked by ℓ(sj). ✷

Lemma 2.4 implies the main result of this section.

Theorem 2.5 PERFECT AUTO-PARTITION is NP-complete.
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Proof. We can verify in polynomial time whether a given ordering of applying the splitting

lines yields a perfect auto-partition, so PERFECT AUTO-PARTITION is in NP.

To prove that PERFECT AUTO-PARTITION is NP-hard, take an instance of PLANAR

MONOTONE 3-SAT with a set C of m clauses defined over the literals x1, . . . , xn. Apply

the reduction described above to obtain a set S of 2n+4m segments forming an instance of

PERFECT AUTO-PARTITION. Note that the reduction can be done such that the segments

have endpoints with integer coordinates of size O(n2m), which means the number of bits

needed to describe the instance is polynomial in n + m. It remains to show that C is

satisfiable if and only if S has a perfect auto-partition.

Suppose S has a perfect auto-partition. Set xi := TRUE if si is extended before si in this

perfect auto-partition, and set xi := FALSE otherwise. Consider a clause C ∈ C. Since the

auto-partition is perfect, the cycle in the gadget for C must be broken. By Lemma 2.4(i)

this can only be done by a splitting line corresponding to one of the literals in the clause,

say xi. But then si has been extended before si and, hence, xi = TRUE and C is true. We

conclude that C is satisfiable.

Now consider a truth assignment to the literals that satisfies C. A perfect auto-partition

for S can be obtained as follows. We first consider s1 and s1. When x1 = TRUE we first

take the splitting line ℓ(s1) and then the splitting line ℓ(s1); if x1 = FALSE then we first

take ℓ(s1) and then ℓ(s1). Next we treat s2 and s2 in a similar way, then we proceed with

s3 and s3, and so on. So far we have not made any cuts. We claim that after having put all

splitting lines ℓ(si) and ℓ(si) in this manner, we can put the splitting lines containing the

segments in the clause gadgets, without making any cuts. Indeed, consider the gadget for

some, say, positive clause C. Because the truth assignment is satisfying, one of its literals,

xi, is TRUE. Then ℓ(si) is used before ℓ(si). Moreover, because we treated the segments

in order, ℓ(si) is used before any other splitting lines ℓ(sj), ℓ(sj) with j > i are used. By

Lemma 2.4(ii) these are the only splitting lines that could block ℓ(si). Hence, ℓ(si) reaches

the gadget forC and so we can use it to resolve the cycle and get a perfect auto-partition. ✷

2.3 Optimal free BSPs versus optimal restricted BSPs

Let S be a set of n disjoint line segments in the plane. In this section we will show

that OPTres(S) 6 2 · OPTfree(S) for any set S. It follows from the lower bound of

Clairbois [28] that this bound is tight.

Consider an optimal free BSP tree T for S, that is, a tree corresponding to an optimal free

BSP of S. Let ℓ be the splitting line of the root of T , and assume without loss of generality

that ℓ is vertical. Let P1 be the set of all segment endpoints to the left or on ℓ, and let P2 be

the set of segment endpoints to the right of ℓ. Let CH1 and CH2 denote the convex hulls

of P1 and P2, respectively. We follow the same global approach as Clairbois [28]. Namely,

we replace ℓ by a set L of three or four restricted splitting lines that do not intersect the
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Figure 2.7 Illustration for Lemma 2.6, note that ℓ1, ℓ2 and ℓ∗ are restricted

splitting lines.

interiors of CH1 and CH2, and are such that CH1 and CH2 lie in different regions of

the partition induced by L. In Fig. 2.7, for instance, we would replace ℓ by the lines

ℓ∗, ℓ1, ℓ2 (it will be shown below how to find ℓ∗, ℓ1, ℓ2). The regions not containing CH1

and CH2—the grey regions in Fig. 2.7—do not contain endpoints, so inside them we can

simply make splits along any segments intersecting the regions. After that, we recursively

convert the BSPs corresponding to the two subtrees of the root to restricted BSPs. The

challenge in this approach is to find a suitable set L, and this is where we will follow a

different strategy than Clairbois.

Observe that the segments that used to be cut by ℓ will now be cut by one or more of

the lines in L. Another potential cause for extra cuts is that existing splitting lines that

used to end on ℓ may now extend further and create new cuts. This can only happen,

however, when ℓ crosses the region containing CH1 and/or the region containing CH2

in the partition induced by L (the white regions in Fig. 2.7); if ℓ is separated from these

regions by the lines in L, then the existing splitting lines will actually be shortened and thus

not create extra cuts. Hence, to prove our result, we will ensure the following properties:

(I) the total number of cuts made by the lines in L is at most twice the number of cuts

made by ℓ.

(II) in the partitioning induced by L, the regions containing CH1 and CH2 are not

crossed by ℓ.

The lines in L are of three types. They are either inner tangents of CH1 and CH2, or

extensions of edges of CH1 or CH2, or they pass through a vertex of CH1 (or CH2) and

the intersection of another line in L with a segment in S.

We denote the vertex of CH1 closest to ℓ by q1 and we denote the vertex of CH2 closest to

ℓ by q2 (with ties broken arbitrarily). Let σ be the strip enclosed by the lines through q1
and q2 parallel to ℓ, and for i ∈ {1, 2} let σi denote the part of σ lying on the same side of

ℓ as CHi—see also Fig. 2.7. (When q1 lies on ℓ, then σ1 will just be a line; this does not

invalidate the coming arguments.)
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Lemma 2.6 Let ℓ∗ be a restricted splitting line separating CH1 from CH2. Suppose there

are points p1 ∈ ℓ∗ ∩ σ1 and p2 ∈ ℓ∗ ∩ σ2 such that, for i ∈ {1, 2}, the line ℓi through pi
and tangent to CHi that separates CHi from ℓ is a restricted splitting line (after making a

cut along ℓ∗). Then we can find a set L of three partition lines satisfying conditions (I) and

(II) above.

Proof. Take ℓ∗ as the first splitting line in L. Of all the points p1 satisfying the conditions

in the lemma, take the one closest to ℓ ∩ ℓ∗. (If a segment s ∈ S passes exactly through

ℓ ∩ ℓ∗, then p1 = ℓ ∩ ℓ∗.) The corresponding line ℓ1 is the second splitting line in L. The

third splitting line, ℓ2, is generated similarly: of the points p2 satisfying the conditions

of the lemma, take the one closest to ℓ ∩ ℓ∗ and use the corresponding line ℓ2. Note

that, when we replace ℓ by ℓ∗, the segments which were intersected by ℓ, are intersected

by ℓ∗ and we can use their intersection points as new segment endpoints. By construc-

tion, p1p2 is not intersected by any segment in S, which implies that condition (I) holds.

Moreover, ℓ does not cross the regions containing CH1 and CH2, so condition (II) holds. ✷

To show we can always find a set L satisfying conditions (I) and (II), we distinguish six

cases. To this end we consider the two inner tangents ℓ′ and ℓ′′ of CH1 and CH2, and look

at which of the points q1 and q2 lie on which of these lines. Cases (a)–(e) are handled by

applying Lemma 2.6, case (f) needs a different approach. Next we discuss different cases

in detail—see Fig. 2.8.

Case (a): Neither ℓ′ nor ℓ′′ contains any of q1 and q2. Let e1 and e2 be the edges of

CH1 and CH2 incident to and below q1 and q2 respectively. Let ℓ(e1) and ℓ(e2) be the

lines through these edges. Since neither ℓ′ nor ℓ′′ contains any of q1 and q2 then we have

ℓ(e1) ∩ ℓ(e2) ∈ σ. Assume without loss of generality that ℓ(e1) ∩ ℓ(e2) ∈ σ2. We can

now apply Lemma 2.6 with ℓ∗ = ℓ(e1), and p2 = ℓ(e1) ∩ ℓ(e2), and p1 = q1.

Case (b): ℓ′ contains one of q1, q2, and ℓ′′ does not contain any of q1, q2. Assume without

loss of generality that the inner tangent ℓ′ that has CH1 below it, contains q2. Note that

ℓ′′ is above CH2. We can now proceed as in case (a), except that we let e1 and e2 be the

edges of CH1 and CH2 incident to and above q1 and q2, respectively.

Case (c): ℓ′ contains q1 and not q2, and ℓ′′ contains q2 and not q1. Similar to the previous

cases. Note that e1 and e2 are the edges below q1 and q2.

Case (d): ℓ′ contains both of q1, q2, and ℓ′′ contains one of q1, q2. Apply Lemma 2.6

with ℓ∗ = ℓ′, and p1 = q1, and p2 = q2.

Case (e): ℓ′ contains both of q1, q2, and ℓ′′ does not contain any of q1, q2. Apply

Lemma 2.6 with ℓ∗ = ℓ′, and p1 = q1, and p2 = q2.
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ℓ

ℓ′ = ℓ∗ ℓ′ = ℓ∗

Figure 2.8 Illustrations for cases (a)–(e). ℓ′ and ℓ′′ are shown by dotted lines,

ℓ(e1) and ℓ(e2) are shown by sold lines and the bold gray lines

represent the lines in L.

Case (f): Both ℓ′ and ℓ′′ contain q2 but not q1. This is the most difficult case, and the

only one where we need to replace ℓ with four splitting lines. Let e1 be the edge of CH1

incident to and above q1 and e′1 the edge incident to and below q1. Similarly, let e2 be

the edge incident to and above q2 and e′2 the edge incident to and below q2. We denote

the intersection of ℓ′ and ℓ(e1) by o′ and the intersection of ℓ′′ and ℓ(e′1) by o′′. Also, let

i′ = ℓ(e′2) ∩ ℓ(e′1), and i′′ = ℓ(e2) ∩ ℓ(e1); see Fig. 2.9. We consider four subcases below.

Case (f.1): ℓ passes to the right of at least one of o′ and o′′. Assume without loss of

generality that ℓ passes to the right of o′. Now we can apply Lemma 2.6 with ℓ∗ = ℓ′, and

p1 = o′, and p2 = q2.

Case (f.2): ℓ passes to the left of at least one of i′ or i′′. Assume without loss of generality

that ℓ passes to the left of i′. Now we can use Lemma 2.6 with ℓ∗ = ℓ(e′1), p1 = q1 and

p2 = i′.

Case (f.3): an input segment intersects ℓ(e1) or ℓ(e′1) in a point u ∈ σ2. Assume without

loss of generality u ∈ ℓ(e1). Now we can apply Lemma 2.6 with ℓ∗ = ℓ(e1), p2 = u and

p1 = q1.

Case (f.4): none of the cases (f.1)-(f.3) applies. As the first splitting line we choose ℓ′. For

the second splitting line we initially set p1 = o′ and draw a line ℓ(p1) from p1 passing

through q1; see Fig. 2.10(a). We move p1 toward ℓ∩ ℓ′ while moving ℓ(p1) with it, keeping
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ℓ′′

ℓ′

q1
q2

CH1 CH2

o′

o′′

e1

e′
1

e2

e′
2

i′

i′′

ℓ

Figure 2.9 The case that i, i′ are on the left and o′ and o′′ are on the right side

of ℓ.

it tangent to CH1, until it reaches the intersection of an input segment with ℓ′. If we reach

such a point before arriving at ℓ∩ ℓ′, we take the resulting line ℓ(p1) as the second splitting

line; otherwise we move p1 back to o′ and use that line which is equal to ℓ(e1) as the

second splitting line. Note that if a line passes through o′ we have p1 = o′.

For the third splitting line we set p2 = ℓ′ ∩ ℓ and draw a line ℓ(p2) from p2 that is tangent

to CH2, such that CH2 lies above it. We move p2 toward q2 until it reaches the intersection

of a segment with ℓ′ (if such an intersection does not exist at the end it will reach q2). For

the last splitting line we set p3 = ℓ(p1) ∩ ℓ and p4 = ℓ′ ∩ ℓ and make the segment p3p4,

first we move p3 toward q1 until it reaches the intersection of an input segment with ℓ(p1)
or q1. Then, we move p4 until it reaches the intersection of an input segment with ℓ′, if we

cannot find such an intersection we rotate p3p4 to become fixed by CH1.

It is easy to check that the resulting set, L, of splitting lines satisfies condition (II). It is

important to note that p2 can be on the left or right side of p1 on ℓ′. When there is at

least one input segment intersecting the segment made by o′ and ℓ ∩ ℓ′, then p2 is on the

left side of p1 (or the same point as p1), otherwise p2 will be on the right side of p1 and

ℓ(p1) = ℓ(e1). To show that condition (I) holds, we first consider the case where p2 is on

the left side of p1, and then the case where p2 is on the right side of p1 is studied.

The segments which are intersected by L have an endpoint in CH1 and another endpoint in

CH2. Imagine moving along such a segment from its endpoint inside CH2 to its endpoint

inside CH1. We distinguish two types of segment, depending on whether the first splitting

line in L that is crossed is ℓ′ or ℓ(p2)

A segment of the first type, after intersecting ℓ′, can intersect ℓ(p1) or it can intersect

p1p3 and then p3p4. In the first case it intersects two lines of L. To argue about the
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Figure 2.10 Illustration of difficult case and replacing ℓ with 4 splitting lines.

second case, denote the intersection of p1p3 with ℓ by t. By construction none of the

input segments intersect tp3, thus the segments of the second type can only intersect p1t.
According to case (f.3) none of the input segments intersects ℓ(e1) in σ2, thus o′f (which

is a part of ℓ(e2) in σ2) is not intersected by any input segment. By construction p1o
′ is

not intersected by any input segment. Thus, p1t is not intersected and there cannot be any

segments intersecting ℓ′, p1p3 and p3p4. In conclusion, all input segments of the first type

are intersected twice by the lines in L.

Now consider the segments of the second type, which first cross ℓ(p2). After crossing ℓ(p2),
they can intersect ℓ′, or they can intersect p2p4 (a part of ℓ′) and then p3p4. In the first case,

only two lines in L are intersected. As for the second case, by construction we know that

none of the input segments intersects p2p4. Thus, this case in fact cannot occur. We can

conclude that all input segments of the second type are intersected twice by the lines in L.

Now consider the case where p2 is on the right side of p1—see Fig. 2.10.(b). Again we can

divide the segments into two types; the segments which first intersect ℓ′, and the segments

which first intersect ℓ(p2). A segment of the first type can, after intersecting ℓ′, intersect

ℓ(p1) or it can intersect first p1p3 and then p3p4. In the first case it intersects two lines

of L.

To handle the second case, we denote ℓ(p1) ∩ ℓ by f . The argument to show that none of
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Figure 2.11 The structure in which we have OPTres(S) = 2 · OPTfree(S) (the

optimal free BSP on the left and optimal restricted BSP on the right),

the bold segments are input segments and the grey lines are splitting

lines. Note that the input segments are disjoint segments very close

to each other and some of the splitting lines contain input segments.

the input segments intersects p1p3 is the same as the previous case. Hence all the segments

which first intersect ℓ′, are intersected twice by the lines in L.

The segments which first intersect ℓ(p2), can then intersect p2p1, p1p3 and p3p4, or they

can intersect p1p4 and p3p4 after intersecting ℓ(p2), or they can intersect only ℓ′. In the

last case there are just two lines in L intersected by the segments. By construction we

know that none of the input segments intersects p2p4, and thus none of them intersects

p2p1 and p1p4. Thus, the first two subsets are also empty and the set of input segments in

this set are also intersected twice by the lines in L.

Theorem 2.7 For any set S of disjoint segments in the plane, OPTres(S) 6 2·OPTfree(S).

A new lower-bound example. Clairbois [28] has shown a construction with a set S of

13 segments for which OPTres(S) = 2 while OPTfree(S) = 1. That construction shows

that our bound is tight. In Fig. 2.11 a simpler construction is given, which uses only 9 line

segments, and for which we also have OPTres(S) = 2 and OPTfree(S) = 1.

2.4 Conclusion

We showed that it is NP-hard to decide whether a set of segments in the plane admits a

perfect auto-partition. This of course implies one cannot get an approximation algorithm

for minimizing the number of cuts with a multiplicative approximation factor (unless

P=NP). We do not know, however, how difficult it is to compute or approximate optimal

restricted (or free) BSPs. Note that deciding whether there is a perfect restricted (or free)

BSP is in fact easy, so any attempt to prove that computing optimal restricted (or free)

BSPs is NP-hard should follow a different approach. We also showed that an optimal
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restricted BSP makes at most twice as many cuts as an optimal free BSP. Thus, when

searching for an approximation algorithm for computing optimal BSPs, one could focus

on the restricted BSPs—having such an algorithm would then immediately imply an

approximation algorithm for free BSPs, whose approximation factor is at most twice as

large.
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Chapter 3

Rectilinear r-partitions

Chapter summary. Let S be a set of n points in R
d, and let r be a parameter with 1 6 r 6 n. A

rectilinear r-partition for S is a collection Ψ(S) := {(S1, b1), . . . , (St, bt)}, such that the sets Si

form a partition of S, each bi is the bounding box of Si, and n/2r 6 |Si| 6 2n/r for all 1 6 i 6 t.
The (rectilinear) stabbing number of Ψ(S) is the maximum number of bounding boxes in Ψ(S)
that are intersected by an axis-parallel hyperplane h. We study the problem of finding an optimal

rectilinear r-partition—a rectilinear partition with minimum stabbing number—for a given set S.

We obtain the following results.

• Computing an optimal partition is NP-hard already in R
2.

• There are point sets such that any partition with disjoint bounding boxes has stabbing num-

ber Ω(r1−1/d), while the optimal partition has stabbing number 2.

• An exact algorithm to compute optimal partitions, running in polynomial time if r is a

constant, and a faster 2-approximation algorithm.

• An experimental investigation of various heuristics for computing rectilinear r-partitions

in R
2.
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3.1 Introduction

Motivation. Range searching is one of the most fundamental problems in computational geometry.

In its basic form it can be stated as follows: preprocess a set S of objects in R
d into a data structure

such that the objects intersecting a query range can be reported (or counted) efficiently. The

range-searching problem has many variants depending, for example, on the type of objects (points,

polygons, etc.), on the dimension of the underlying space (two- or higher-dimensional), and on the

type of query range (boxes, simplices, etc.)—see the survey of Agarwal and Erickson [5] for an

overview.

A range-searching data structure that is popular in practice is the bounding-volume hierarchy, or

BVH for short. This is a tree in which each object from S is stored in a leaf, and each internal node

stores a bounding volume of the objects in its subtree. Often the bounding volume is a bounding

box: the smallest axis-aligned box containing the objects in the subtree. When a BVH is stored

in external memory, one usually uses a B-tree [29, Chapter 18] as underlying tree structure; the

resulting structure (with bounding boxes as bounding volumes) is then called an R-tree. R-trees are

one of the most widely used external-memory data structures for spatial data, and they have been

studied extensively—see for example the book by Manolopoulos et al. [61]. In this chapter we study

a fundamental problem related to the construction of R-trees, as explained next.

One common strategy to construct R-trees is the top-down construction. Top-down construction

algorithms partition S into a number of subsets Si, and then recursively construct a subtree Ti

for each Si. Thus the number of subsets corresponds to the degree of the R-tree. When a range

query with a range Q is performed, one has to recursively search in the subtrees Ti for which the

bounding box of Si (denoted by bi) intersects Q. If bi ⊂ Q, then all objects stored in Ti lie inside Q;

if, however, bi intersects ∂Q (the boundary of Q) then we do not know if the objects stored in

Ti intersect Q. Thus the overhead of the search algorithm is determined by the bounding boxes

intersecting ∂Q. If Q is a box, as is often the case, then the number of bounding boxes bi intersecting

∂Q is bounded, up to a factor 2d, by the maximum number of bounding boxes intersecting any

axis-parallel plane. Thus we want to partition S into subsets so as to minimize the number of

bounding boxes intersecting any axis-parallel plane.

Further background and problem statement. Let S be a set of n points in R
d, and let

r be a parameter with 1 6 r 6 n. A rectilinear r-partition for S is a collection Ψ(S) :=
{(S1, b1), . . . , (St, bt)} such that the sets Si form a partition of S, each bi is the bounding box of Si,

and n/2r 6 |Si| 6 2n/r, for all 1 6 i 6 t. Note that even though the subsets Si form a (disjoint)

partition of S, the bounding boxes bi need not be disjoint. The stabbing number of an axis-parallel

hyperplane h with respect to Ψ(S) is the number of boxes bi whose relative interior intersects h,

and the (rectilinear) stabbing number of Ψ(S) is the maximum stabbing number of any axis-parallel

hyperplane h. Observe that our rectilinear r-partitions are the axis-parallel counterpart of the (fine)

simplicial partitions introduced by Matoušek [63].

It has been shown that there are point sets S for which any rectilinear r-partition has stabbing number

Ω(r1−1/d) [63]; as an example when the points in S form a grid of size n1/d×· · ·×n1/d. Moreover,

any set S admits a rectilinear r-partition with stabbing number O(r1−1/d); such a rectilinear r-

partition can be obtained by a construction similar to a kd-tree [16]. Thus from a worst-case and

asymptotic point of view the problem of computing rectilinear r-partitions with low stabbing number

is solved. However, any specific point set may admit a rectilinear r-partition with a much lower

stabbing number than Θ(r1−1/d). For instance, if the points from S are all collinear on a diagonal
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line, then there is a rectilinear r-partition with stabbing number 1. The question now arises: given

a point set S and a parameter r, can we compute a rectilinear r-partition that is optimal for the

given input set S, rather than worst-case optimal? In other words, we want to compute a rectilinear

r-partition that has the minimum stabbing number over all rectilinear r-partitions for S.

Our results. We start by a theoretical investigation of the complexity of the problem of finding

optimal rectilinear r-partitions. In Section 3.2 we show that already in R
2, finding an optimal

rectilinear r-partition is NP-hard if r is considered as a parameter. In Section 3.3 we then give

an exact algorithm for computing optimal rectilinear r-partitions which runs in polynomial time

if r is a constant, and a 2-approximation with a better running time. We conclude our theoretical

investigations by showing that algorithms only considering partitions with disjoint bounding boxes

cannot have a good approximation ratio: there are point sets such that any partition with disjoint

bounding boxes has stabbing number Ω(r1−1/d), while the optimal partition has stabbing number 2.

We also perform an experimental investigation of various heuristics for computing rectilinear r-

partitions with small stabbing number in R
2. A simple variant of a kd-tree approach, which we call

the windmill kd-tree turns out to give the best results.

3.2 Finding optimal rectilinear r-partitions is NP-hard

The exact problem we consider in this section is as follows.

OPTIMAL RECTILINEAR r-PARTITION

Input: A set S of n points in R
2 and two parameters r and k.

Output: YES if S admits a rectilinear r-partition with respect to r with stabbing number at most k,

NO otherwise.

We will show that this problem is already NP-complete for fixed values of k.

Theorem 3.1 OPTIMAL RECTILINEAR r-PARTITION is NP-complete for k = 5.

To prove the theorem we use a reduction from 3-SAT, which is similar to the proof by Fekete et

al. [39] of the NP-hardness of minimizing the stabbing number of a matching on a planar point

set. Let U := {x1, . . . , xm} be a set of m boolean literals, and let C := C1 ∧ · · · ∧ Cs be a CNF

formula defined over these literals, where each clause Ci is the disjunction of three literals. The

3-SAT problem is to decide whether such a boolean formula is satisfiable; 3-SAT is NP-hard [42].

Our reduction will be such that there is a rectilinear r-partition with stabbing number k = 5 for the

OPTIMAL RECTILINEAR r-PARTITION instance if and only if the 3-SAT instance is satisfiable. To

simplify the reduction we assume that n = 72r (to make
√

2n/r an integer greater than or equal to

12); however, the reduction works for any n = α · r for an integer α > 72. We first describe the

various gadgets we need and then explain how to put them together.

The barrier gadget. A barrier gadget is a set G of 25 ·h2 points, where h > 12 and h2 = 2n/r,

arranged in a regular 5h × 5h grid. To simplify the construction we fix h = 12. Thus a barrier

gadget is simply a 60× 60 grid placed in a small square. The idea is essentially that if we partition

a barrier gadget and require stabbing number 5, then both the vertical and the horizontal stabbing

numbers will be 5. This will prevent any other bounding boxes from crossing the vertical strip (and,

similarly, the horizontal strip) whose bounding lines contain the vertical (resp. horizontal) edges of
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the square containing the barrier gadget. Thus the barrier gadget can be used to make sure there is no

interaction between different parts of the global construction. Lemma 3.2 below makes this precise

by giving a bound on the minimum stabbing number of any r-partition of a barrier gadget. In fact,

we are interested in the case where G is a subset of a larger set S. In our construction we will place

any barrier gadget G in such a way that the points in S \G lie outside the bounding box of G, so

when analyzing the stabbing number of a barrier gadget we will always assume that this is the case.

Let G be a barrier gadget and S ⊃ G be a set of n points. We define Ψ(S ↓ G), the restriction to G
of a rectilinear r-partition Ψ(S) = {(S1, b1), . . . , (St, bt)}, as

Ψ(S ↓ G) := {(Si ∩G, bi) : 1 6 i 6 t and Si ∩G 6= ∅}.

In other words, the boxes in Ψ(S ↓ G) are the boxes from Ψ(S) whose associated point set contains

at least one point from the barrier. The following lemma gives a bound on the vertical and horizontal

stabbing numbers of a rectilinear partition of a barrier gadget, where the vertical (horizontal) stabbing

number is defined as the maximum number of boxes intersected by any vertical (horizontal) line.

Lemma 3.2 A barrier gadget G can be covered by a set of 25 boxes with stabbing number 5.

Moreover, for any rectilinear r-partition Ψ(S) of stabbing number 5, the restriction Ψ(S ↓ G) has

vertical as well as horizontal stabbing number 5.

Proof. The first part of the lemma is easy: since we can put up to h2
6 2n/r points in a box, we can

cover all the points from G using 25 square boxes each containing a subgrid of h2 points.

To prove the second part of the lemma, consider a rectilinear r-partition Ψ(S) of stabbing number 5.

Consider the set B containing the boxes in Ψ(S ↓ G). Each box bi ∈ B contains at least one points

from G, and together they contain at least 25 · h2 points from G. Let LV be a set of 5(h− 1) + 6
vertical lines and LH be a set of 5(h − 1) + 6 horizontal lines that make the grid for the barrier

gadget. The horizontal and vertical lines together separate all the points in G—see Fig. 3.1. Let

L = LV ∪ LH . Define λ(bi) to be the number of lines from L that intersect bi, and define

λ*(bi) :=
λ(bi)

|Si ∩G| .

For example, if bi is a box whose associated set Si ∩G is a h× h subgrid, then λ(bi) = 2h− 2 and

λ*(bi) = (2h− 2)/h2.

Figure 3.1 One of the subsquares of the barrier gadget with 144 points in it.
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It is not difficult to verify that (2h− 2)/h2 is the minimum possible cost of any box bi ∈ B. Indeed,

consider an a×b box bi. Then |Si∩G| 6 a ·b. Let us consider the case when |Si∩G| = a ·b which

gives the maximum value for all the a× b boxes. We have λ(bi) = a+ b−2 and the minimum value

for λ(bi) is when we choose a and b such that |b− a| 6 1. Thus for a a× b box, when |b− a| 6 1
we have the maximum value for λ*(bi). If we consider all the boxes bi in which |b − a| 6 1, for

larger values of a and b the value of λ*(bi) would be smaller. This is because by increasing a and b
the growth of h2 is more than 2h− 2. Then the minimum value is when we have the largest box.

Thus the total cost of all boxes is

∑

bi∈B

λ(bi) =
∑

bi∈B

{

λ*(bi) · |Si ∩G|
}

>
2h− 2

h2
·
∑

bi

|Si∩G| >
2h− 2

h2
·25·h2 = 50h−5.

Define λ(ℓ), for a line ℓ ∈ L, as the number of boxes in Ψ(S ↓ G) that intersect ℓ. Observe that
∑

ℓ∈L

λ(ℓ) =
∑

bi∈B

λ(bi).

Now assume for a contradiction that, say, the vertical stabbing number of Ψ(S ↓ G) is 4 or less.

Then
∑

ℓ∈LH

λ(ℓ) =
∑

ℓ∈L

λ(ℓ)−
∑

ℓ∈LV

λ(ℓ) > 50h− 5− 4 · |LV | = 30h− 9,

This implies that
∑

ℓ∈LH
λ(ℓ) > 30h− 9 and for h > 12 this implies that the average number of

boxes intersected by each horizontal line is greater than 5. Thus the lemma holds. ✷

The literal gadget. Fig. 3.2 shows the literal gadget. The three subsets in the left part of the

construction, and the three subsets in the right part, each contain n/2r = 36 points. Because of the

barrier gadgets, the points from one subset cannot be combined with other points and must be put

together into one rectangle in the partition. The six subsets in the middle part of the construction each

contain 4n/r = 288 points. To make sure the stabbing number does not exceed 5, these subsets can

be grouped in two different ways. One grouping corresponds to setting the literal to true, the other

grouping to false—see Fig. 3.2. Note that the gadget defines two vertical slabs. If the literal is set to

true then the left slab has stabbing number 2 and the right slab has stabbing number 4, otherwise the

opposite is the case.

The clause gadget. A clause gadget consists of three subsets of 4n/r = 288 points, arranged

as shown in Fig. 3.3(a), and placed in the left or right slab of the corresponding literals: a positive

literal is placed in the left slab, a negative lateral in the right slab. If the stabbing number of the slab

is already 4, which is the case when the literal evaluates to false, then the subset of 4n/r points in

the clause gadget must be grouped into two “vertical” rectangles. Hence, not all literals in a clause

can evaluate to false if the stabbing number is to be at most 5.

The global structure. The global construction is shown in Fig. 3.3(b). There are literal gadgets,

clause gadgets, and barrier gadgets. The literal gadgets are placed diagonally and the clause gadgets

are placed below the literals. We also place barriers separating the clause gadgets from each other.

Finally, the gadgets for occurrences of the same literal in different clauses should be placed such that

they are not stabbed by a common vertical line. This concludes our sketch of the construction which

proves Theorem 3.3.
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(a) (b)

stabbing number 4
stabbing number 2

n/2r pts

n/r pts

barrier gadgets

light grey region:
no box can cross
because of barrier
gadgets

left slab right slab left slab right slab

Figure 3.2 The literal gadget. (a) True setting. (b) False setting.

Theorem 3.3 OPTIMAL RECTILINEAR r-PARTITION is NP-complete for k = 5.

Proof. We can verify in polynomial time whether for a given set of boxes B we can make a rectilinear

r-partition with stabbing number of 5 or not, so OPTIMAL RECTILINEAR r-PARTITION is in NP.

To prove that OPTIMAL RECTILINEAR r-PARTITION is NP-hard, take an instance of 3-SAT with

a set C of m clauses defined over the literals x1, . . . , xn. Apply the reduction described above to

obtain a set of n points forming an instance of OPTIMAL RECTILINEAR r-PARTITION. As we

described above we can set the values of k and r so that the relations for making a barrier gadget

holds.

Suppose S has a rectilinear r-partition with stabbing number 5. Based on the construction this is

only possible if for each clause gadget, at least 4 sets of n/r points (one set of 4n/r points) have

paired horizontally. When this set of points is placed in the right slab of a literal we set its value to

x1

x2

xm

C1

Cs

C2

left slab of xi right slab of xj left slab of xk barrier gadgets(a) (b)

n/r ptsn/r pts

Figure 3.3 (a) A clause gadget for (xi ∨ xj ∨ xk), and one possible grouping

of the points. (b) The global structure.
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false and when it is placed in the left slab of a literal we set its value to true. Since in each clause

there exists 4 sets of n/r points which are paired horizontally. We conclude in each clause there is a

true literal. Thus, C is satisfiable.

Now consider a truth assignment to the literals that satisfies C. A rectilinear r-partition for S with

stabbing number of 5 can be obtained as follows. For each barrier gadget it has already been shown

that how we can make a rectilinear r-partition with stabbing number 5. Based on the values of

literals we make the rectilinear r-partition partitions for every literal gadget as shown in Figure 3.2.

For each literal gadget, we pair the sets of points in its slab with stabbing number 2 horizontally

and its slab with slabbing number 4 vertically. Since every clause has a true literal, and based on

the descriptions for literal and barrier gadgets the vertical and horizontal stabbing numbers of the

rectilinear r-partition made is 5. ✷

3.3 Polynomial time algorithms for constant r

In the previous section we showed that OPTIMAL RECTILINEAR r-PARTITION is NP-hard even in

the plane when r is considered part of the input. Now we give a simple algorithm to show that the

problem in R
d can be solved in polynomial time for fixed r in fixed dimension d. Our algorithm

works as follows.

1. Let C be the set of all boxes defined by at most 2d points in S. Note that |C| = O(n2d).

2. For each t with r/2 6 t 6 2r, proceed as follows. Consider all O(n2dt) possible subsets

B ⊂ C with |B| = t. Check whether B induces a valid solution, that is, whether we can

assign the points in S to the boxes in B such that (i) each point is assigned to a box containing

it, and (ii) each box is assigned between n/2r and 2n/r points. How this is done will be

explained later.

3. Over all sets B that induce a valid solution, take the set with the smallest stabbing number.

Each box in it is the bounding box of the points assigned to it, so we can report these boxes as

the partition.

To implement Step 2 we construct a flow network with node set {vsource, vsink} ∪ S ∪ B. The

source node vsource has an arc of capacity 1 to each point p ∈ S, each p ∈ S has an arc of capacity 1

to every bj ∈ B that contains p, and each bj ∈ B has an arc of capacity 2n/r to the sink node

vsink. The arcs from the boxes to the sink also have (besides the upper bound of 2n/r on the flow)

a lower bound of n/2r on the flow. The set B induces a valid rectilinear r-partition if and only

if there is an integer flow of n units from vsource to vsink. Such a flow problem can be solved in

O(min(V 3/2, E1/2)E log(V 2/E + 2) log c) time [10], where V is the number of vertices in the

network, E is the number of arcs, and c is the maximum capacity of any arc. We have V = O(n),
E = O(nr), and c = 2n/r. Since we have to check O(n4dr) subsets B, the running time is

O(n4dr · (nr)3/2 log2(n/r+ 2)) and is polynomial (assuming r and d as constants). We obtain the

following result.

Theorem 3.4 Let S be a set of n points in R
d, and r a constant. Then we can compute a rectilinear

r-partition with optimal stabbing number in time O(n4dr+3/2 log2 n).
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We can significantly improve the running time if we are satisfied with a 2-approximation. The

trick is to place a collection Hi of 3r hyperplanes orthogonal to the xi-axis (the ith-axis) such that

there are at most n/3r points from S between any two consecutive hyperplanes in Hi. Instead of

finding O(n2d) boxes in the first step of the algorithm, we now find O(r2d) boxes defined by the

hyperplanes in H := H1 ∪ · · · ∪ Hd. Then we have |C| = O(r2d). We apply the Step 2 of the

algorithm and find for r/2 6 t 6 2r all the O(r2dt) subsets B ⊂ C. We check for each subset

whether it is a valid solution, and take the best valid solution.

Theorem 3.5 Let S be a set of n points, and r a constant. Then we can compute a rectilinear

r-partition with stabbing number at most 2 ·OPT , where OPT is the minimum stabbing number of

any rectilinear partition for S, in time O(n3/2 log2 n).

Proof. Let Ψ := {(S1, b1), . . . , (St, bt)} be an optimal rectilinear r-partition for S, and let OPT

denote the stabbing number of Ψ. Expand every bj in all directions until each facet of bj is contained

in a hyperplane from H . Let bj denote the expanded box, and let Ψ := {(S1, b1), . . . , (St, bt)}.

The set {b1, . . . , bt} is one of the subsets B considered in Step 2, and it induces a valid solution.

Hence, the stabbing number of the reported partition is at most the stabbing number of Ψ.

Now consider any axis-parallel hyperplane h. Assume without loss of generality that h is orthogonal

to the x1-axis and that h lies in between hyperplanes hi, hi+1 ∈ H . Let bj be a box intersecting h.

Note that bj must intersect hi or hi+1 (or both), otherwise bj contains too few points. Hence, the h
intersects at most 2 ·OPT boxes bj . ✷

3.4 Arbitrary versus disjoint rectilinear r-partitions

Since computing optimal rectilinear r-partitions is NP-hard, one should look at approximation

algorithms. It may be easier to develop an approximation algorithm considering only rectilinear

r-partitions with disjoint bounding boxes. The next theorem shows that in R
2 such an approach will

not give a good approximation ratio.

Theorem 3.6 Assume that 32 6 r 6 4 · √n. Then there is a set S of n points in R
2 whose optimal

rectilinear r-partition has stabbing number 2, while any rectilinear r-partition with disjoint bounding

boxes has stabbing number Ω(
√
r).

Proof. Let G be a
√

r/8×
√

r/8 grid in R
2. (For simplicity assume that

√

r/8 is an integer. Since

32 6 r we have
√

r/8 > 2.) We put each grid point in S and call them black points. We call the

lines forming the grid G black lines. Note that there are r/8 black points. Fig. 3.4 shows an example

with r = 128. Next we refine the grid using 2(
√

r/8 − 1) additional axis-parallel grey lines. At

each of the new grid points that is not fully defined by gray lines—the grey dots in the figure—we

put a tiny cluster of 2n/r points, which we also put in S. If the cluster lies on one or more black

lines, then all points from the cluster lie in the intersection of those lines, as shown in Fig. 3.4.

So far we used (2r/8−2 ·
√

r/8) ·2n/r+r/8 points. Since r 6 4 ·√n, the number of points which

we used so far is less than n. The remaining points can be placed far enough from the construction
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clusters

Figure 3.4 Every rectilinear r-partition with disjoint bounding boxes has stab-

bing number Ω(
√
r) while there exists a partition with stabbing

number 2.

(not influencing the coming argument.) Next, we rotate the whole construction slightly so that no

two points have the same coordinate in any dimension. This rotated set is our final point set S.

To obtain a rectilinear r-partition with stabbing number 2, we make each of the clusters into a

separate subset Si, and put the black points into one separate subset; the latter is allowed since

r/8 6 2n/r. (If r/8 < n/2r we can use some of the remaining points or the points of gray dots to

fill up the subset.)

If the clusters are small enough, then the rotation we have applied to the point set guarantees that no

axis-parallel line can intersect two clusters at the same time. Any line intersects at most one of the

clusters and the rectangle containing the black points, and the stabbing number of this rectilinear

r-partition is 2.

We claim that any disjoint rectilinear r-partition for S has stabbing number Ω(
√

r/8). To see this,

observe that no subset Si in a disjoint rectilinear r-partition can contain two black points. Indeed,

the bounding box of any two black points contains at least one full cluster and, hence, together with

the black points would have too many points. We conclude that each black point is assigned to a

different bounding box. Let B be the collection of these bounding boxes. Now duplicate each of the

black lines, and move the two duplicates of each black line slightly apart. This makes a set H of

O(
√

r/8) axis-parallel lines such that each bounding box in B intersects at least one line from H .

Then the total number of intersections between the boxes in B and the lines in H is Ω(r), implying

that there is a line in H with stabbing number Ω(
√

r/8). ✷

The same argument holds for Rd. Next, we prove the above theorem for Rd.

Theorem 3.7 Let d be a constant, and assume d · 2d+2
6 r 6 2dd/2 · √n. Then there is a set S of

n points in R
d whose optimal rectilinear r-partition has stabbing number 2, while any rectilinear

r-partition with disjoint bounding boxes has stabbing number Ω(r1−1/d).

Proof. Let G be a (r/2dd)1/d × . . . × (r/2dd)1/d grid in R
d. (We assume for simplicity that

(r/2dd)1/d is an integer; note that since d · 2d+2
6 r we have (r/2dd)1/d > 2.) We put each grid

point in S. We call these points black points, and we call the hyperplanes forming the grid G black

hyperplanes. Note that there are r/2dd black points. Fig. 3.4 shows an example for d = 2 with
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r = 128. Next we refine the grid using d((r/2dd)1/d − 1) additional axis-parallel grey hyperplanes.

At each of the new grid points that is not fully defined by gray hyperplanes—the grey dots in the

figure—we put a tiny cluster of 2n/r points, which we also put in S. If the cluster lies on one or

more black hyperplanes, then all points from the cluster lie in the intersection of those hyperplanes.

So far we used

((2((r/2dd)1/d − 1))d − ((r/2dd)1/d − 1)d − ((r/2dd)1/d)) · 2n/r

points; in gray dots. Since we have r 6 2dd/2 · √n it is easy to show that this number is less than

(r/2− 1) · 2n/r. Moreover (r/2dd) (the number of black points) is less than 2n/r. Thus the total

number of points we have put so far is less than n. The remaining points can be placed far enough

from the construction, not influencing the coming argument.) Next, we rotate the whole construction

slightly so that no two points have the same coordinate in any dimension. This rotated set is our final

point set S.

To obtain a rectilinear r-partition with stabbing number 2, we make each of the clusters into a

separate subset Si, and we put the black points into one separate subset; the latter is allowed since

r/d2 6 2n/r. (If r < n/2r we can use some of the remaining points or the points of gray dots to

fill up the subset.) If the clusters are small enough, then the rotation we have applied to the point set

guarantees that no axis-parallel hyperplane can intersect two clusters at the same time. Hence, the

stabbing number of this rectilinear r-partition is 2.

We claim that any disjoint rectilinear r-partition for S has stabbing number Ω(r1−1/d). To see this,

observe that no subset Si in a disjoint rectilinear r-partition can contain two black points. Indeed, the

bounding box of any two black points contains at least one full cluster and, hence, together with the

black points would be too many points. We conclude that each black point is assigned to a different

bounding box. Let B be the collection of these bounding boxes. Now consider a set H of O(r1/d)
axis-parallel hyperplanes such that each bounding box in B intersects at least one hyperplane from

H . (Such a set can be found by duplicating each of the black hyperplanes, and moving the two

duplicates of each black hyperplane slightly apart.) Then the total number of intersections between

the boxes in B and the hyperplanes in H is r, which implies that there is a hyperplane in H with

stabbing number Ω(r1−1/d). ✷

3.5 Experimental results

In the previous sections we studied the complexity of finding an optimal rectilinear r-partition of

a given point set. For arbitrary r the problem is NP-hard, and for constant r the exact algorithm

was polynomial but still very slow. Hence, we now turn our attention to heuristics. In the initial

experiments on which we report below, the focus is on comparing the various heuristics and

investigating the stabbing numbers they achieve as a function of r, for fixed n.

Data sets. We tested our heuristics on four types of point sets–see Fig. 3.5. The Uniform data set

picks the points uniformly at random from the unit square. For the Dense data set we take a Uniform

data set and square all y-coordinates, so the density increases near the bottom. For the Line Clusters

data set we first generated a few line segments, whose endpoints are chosen uniformly at random

in the unit square. To generate a point in P , we pick one of the line segments randomly, select a

position along the line segment at random and add some Gaussian noise. The Point Clusters data
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Uniform Dense

Line clusters Point clusters

Figure 3.5 The different types of input sets.

set is similar, except that it clusters around points instead of line segments. All sample sets contain

n = 50, 000 points and the reported stabbing numbers are averages over 20 samples.

Next we describe our heuristics. Let P denote the set of points in R
2 for which we want to find a

rectilinear r-partition with low stabbing number.

The windmill kd-tree. A natural heuristic is to use a kd-tree [16]: partition the point set P
recursively into equal-sized subsets, alternatingly using vertical and horizontal splitting lines, until

the number of points in each region drops below 2n/r. For each region R of the kd-tree subdivision,

put the pair (R∩P, bR) into the rectilinear r-partition, where bR is the bounding box of R∩P . Note

that this method runs in O(n log n) time, and gives a stabbing number O(
√
r), which is worst-case

optimal. The windmill kd-tree is a version of kd-tree in which, for two of the four nodes of depth 2,

the splitting line has the same orientation as the splitting line at their parents. This is done in such a

way that the subdivision induced by the nodes at level 2 has stabbing number 3 rather than 4–see

Fig. 3.6. It turns out that the windmill kd-tree is always at least as good as the regular kd-tree, and

often performs significantly better. The results for the uniform Data set are shown in Fig. 3.7 for r
ranging from 100 to 2,500 with step size 100. The figure shows that, depending on the value of r,

the stabbing number of the kd-tree and the windmill kd-tree are either the same, or the windmill has

25% lower stabbing number. The switch between these two cases occurs exactly at the values of r
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Figure 3.6 A kd-tree, a windmill kd-tree, and their stabbing numbers.

100 400 700 1000 1300 1600 1900 2200 2500
0

10

20

30

40

50

60

70

r

st
a
b
b
in
g
n
u
m
b
e
r

Figure 3.7 Comparison of the kd-tree and the windmill kd-tree.

where the depth switches from even to odd (or vice versa), which is as expected when looking at

Fig. 3.6. In the remainder we only compare the windmill kd-tree to the other methods, and ignore

the regular kd-tree.

The greedy method. We first compute a set B of candidate boxes such that n/2r 6 |bi| for

each box bi ∈ B. Each box has a certain cost associated to it. Among these boxes consider the

boxes bj such that |bj | 6 2n/r. We then take the cheapest box bj , put the pair (bj , P ∩ bj) into

the rectilinear r-partition, and remove the points in bj from P . Finally, boxes that now contain too

few points are discarded from B, the costs of the remaining boxes are updated, and the process is

repeated. The method ends when the number of points drops below 2n/r; these points are then put

into a single box (which we allow to contain fewer than n/2r points if needed).

This method can be implemented in various ways, depending on how the set B and the cost of a box

are defined. In our implementation we took m vertical lines with (roughly) n/(m − 1) points in

between any two consecutive lines, and m horizontal lines in a similar manner. B then consists of

all O(m4) boxes that can be constructed by taking two vertical and two horizontal lines from these

lines. In our experiments we used m = 50, because this was the largest value that gave reasonable

computation times. The cost of a box bi is defined as follows. We say that a point p ∈ P is in conflict

with bi if p 6∈ bi and the horizontal or the vertical line through p intersects bi. Let Ci be the set



3.5 Experimental results 49

1

23

45

Figure 3.8 A Hilbert curve and its use to generate a rectilinear r-partition.

of points in conflict with bi. Then the cost of bi is |Ci|/|bi ∩ P |. The idea is that we prefer boxes

containing many points and in conflict with few points.

The Hilbert curve. A commonly used approach to construct R-trees is to use a space-filling

curve such as a Hilbert curve [49]—see Fig. 3.8(a). We can also use a Hilbert curve to compute a

rectilinear r-partition: first, sort the given points according to their position on the Hilbert curve, and

then generate the subsets in the rectilinear r-partition by taking consecutive subsets along the Hilbert

curve. Since the lowest stabbing number is usually achieved by using as few rectangles as possible,

we do this in a greedy manner: put the first 2n/r points in the first subset, the next 2n/r rectangles

in the second subset, and so on—see Fig. 3.8(b).

K-Means. The final method we tested was to compute r clusters using K-means—in particular,

we used K-Means++ [14]—and then take the clusters as the subsets in the rectilinear r-partition.

Some of the resulting clusters may contain too many or too few points. We solved this by shifting

points into neighboring clusters.

3.5.1 Results of the comparisons

Figs. 3.9.(a)-(d) shows the results of our experiments. The clear conclusion is that the windmill

kd-tree outperforms all other methods on all data sets. The Hilbert-curve approach always comes

in second, except for the Dense data set. Note that the windmill and the greedy method give the

same results for the Uniform data set and the Dense data set—which is easily explained, since the

rectilinear r-partition computed by these methods only depends on the ranks (their position in the

sorted order) of the coordinates, and not on their actual values—while the other two methods perform

worse on the Dense data set: apparently they do not adapt well to changing density. The windmill

and the Hilbert-curve method not only gave the best results, they were also the fastest. Indeed, both

methods could easily deal with large data sets. (On inputs with n = 10, 000, 000 and r = 500 they

only took a few minutes.)
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Figure 3.9 The results of the comparison of methods on (a) uniform (b) dense

(c) line clusters, and (d) point cluster point sets

3.6 Conclusion

We studied the problem of finding optimal rectilinear r-partitions of point sets. On the theoretical

side, we proved that the problem is NP-hard when r is part of the input, although it can be solved

in polynomial time for constant r. The exact and approximation algorithms for constant r are still

unpractically slow, however, so it would be interesting to design faster exact algorithms (or perhaps

a practically efficient PTAS).

We also tested several heuristics and concluded that our so-called windmill kd-tree performs the best

among them. This immediately leads to the question whether the windmill approach could also lead

to R-trees that are practically efficient. This is, in fact, unclear. What we have tried to optimize is

the maximum stabbing number of any axis-parallel line. When querying with a rectangular region,

however, we are interested in the number of regions intersected by the boundary of the region. First

of all, the boundary does not consist of full lines, but of line segments that in practice are possibly

small compared to the data set. Secondly, the boundary of the rectangle consists of horizontal and

vertical segments. Now, what the windmill does (as compared to a regular kd-tree) is to balance

the horizontal and vertical stabbing number, so that the maximum is minimized. The sum of the
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horizontal and vertical stabbing number in the subdivision does not change, however. So it might

be that the windmill approach is good to minimize the worst-case query time for long and skinny

queries. This would require further investigation. It would also be interesting to find rectilinear

r-partitions whose (maximum or average) stabbing number is optimal with respect to a given set of

query boxes, or try to minimize the full partition tree, instead of just one level.
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Chapter 4

Decompositions of Rectilinear

and Simple Polygons

Chapter summary. Let P be a rectilinear simple polygon. The stabbing number of a partition of

P into rectangles is the maximum number of rectangles stabbed by any axis-parallel line segment

inside P . We present a 3-approximation algorithm for the problem of finding a partition with

minimum stabbing number. It is based on an algorithm that finds an optimal partition for histograms.

We also study Steiner triangulations of a simple (non-rectilinear) polygon P . Here the stabbing

number is defined as the maximum number of triangles that can be stabbed by any line segment

inside P . We give an O(1)-approximation algorithm for the problem of computing a Steiner

triangulation with minimum stabbing number.
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4.1 Introduction

Background and problem statement Computing decompositions of simple polygons is one

of the most fundamental problems in computational geometry. When the polygon at hand is arbitrary

then one typically wants a decomposition into triangles, and when the polygon is rectilinear one

wants a decomposition into rectangles. Sometimes any such decomposition will do; then one can just

compute an arbitrary triangulation or, for rectilinear polygons, a vertical or horizontal decomposition.

This can be done in linear time [23]. In other cases one would like the decomposition to have certain

additional properties. The property we are interested in, is that the so-called stabbing number—see

below for a definition—of the decomposition is low.

Let P be a simple polygon with n vertices, and consider a decomposition of P into triangles. The

vertices of the triangles need not all be vertices of P : it is allowed to introduce additional vertices, on

the boundary of P and/or in its interior. However, we require the decomposition to be conforming:

two triangles can only intersect in a common vertex or in a common edge. In other words, no

triangle edge can end in the interior of another triangle edge. Such a decomposition is called a

Steiner triangulation. The triangle vertices that are not vertices of P are called Steiner vertices. Note

that we allow Steiner vertices on the boundary of P . The stabbing number of a segment s with

respect to a Steiner triangulation T is the number of triangles from T intersecting s, and the stabbing

number of T is the maximum stabbing number of any segment s that lies in the interior of P . Having

a Steiner triangulation with low stabbing number is useful for ray shooting in P : after locating

the starting point of the ray in the triangulation, one can answer a ray-shooting query by walking

through the triangulation until the boundary of P is reached. The time for the walk is bounded by

the stabbing number of the triangulation. Hershberger and Suri [50] showed that any simple polygon

has a Steiner triangulation with stabbing number O(log n). This bound is asymptotically tight in

the worst case, because any Steiner triangulation of a convex polygon with n vertices has stabbing

number Ω(log n) [50].

The above concepts can also be studied for rectilinear polygons. We call a decomposition of a simple

rectilinear polygon P into rectangles a rectangular partition. A rectangular partition need not be

conforming: a rectangle edge may end in the interior of another rectangle edge. The stabbing number

of a segment s with respect to a rectangular partition R is the number of rectangles intersected by s,

and the (rectilinear) stabbing number of R is the maximum stabbing number of any axis-parallel

segment s in the interior of P . De Berg and Van Kreveld [20] showed that any rectilinear polygon

admits a rectangular partition with stabbing number O(log n). Again, this bound is asymptotically

tight in the worst case: any rectangular partition of a staircase polygon with n vertices has stabbing

number Ω(log n) [20].

The algorithms of Hershberger and Suri [50] and of De Berg and Van Kreveld [20] guarantee

partitions with stabbing number O(log n), which is tight in the worst case. However, some polygons

admit a partition with a much smaller stabbing number than Θ(log n). Indeed, it is easy to see that

some simple polygons admit a Steiner triangulation with stabbing number O(1) and, similarly, that

some rectilinear polygons admit a rectangular partition with stabbing number O(1)—as an example

see Fig. 4.1.

This leads to the topic of our paper: given a polygon P , we wish to compute an optimal partition of

P , that is, a partition whose stabbing number is minimum over all such partitions of P .
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(a) (a)

Figure 4.1 (a) The rectangular decomposition with O(1) stabbing number. (b)

The triangulation with O(1) stabbing number.

Our results. We present approximation algorithms for this problem, for Steiner triangulations

of simple polygons and for rectangular partitions of rectilinear polygons. (We remark that these

problems are not known to be NP-complete.) Our main result is a 3-approximation algorithm for

the rectilinear case. It is based on an algorithm that computes an optimal rectangular partition for

histograms. We also give a linear-time O(1)-approximation algorithm for computing a Steiner

triangulation of a simple polygon.

Related work. Chazelle et al. [24] studied the stabbing number of convex decompositions

of polytopes. Later, Tóth [79] proved that any subdivision of d-dimensional space for d > 2
into n convex cells has stabbing number Ω((log n/ log log n)1/(d−1)). He also showed that any

partition of d-dimensional space (d > 2) into n axis-aligned boxes has rectilinear stabbing num-

ber Ω(log1/(d−1) n), and presented a partitioning scheme achieving this bound [78]. Considering

triangulations of point sets, Agarwal, Aronov and Suri [3] proved that one can triangulate n points in

R
3 (using Steiner points) with stabbing number O(

√
n · log n).

4.2 Rectangular partitions

Let P be a rectilinear simple polygon with n vertices. We denote the interior of P by int(P )
and its boundary by ∂P . In the remainder of this section, whenever we speak of partitions and

stabbing numbers, we always mean rectangular partitions and rectilinear stabbing numbers. We

denote the stabbing number of a partition R by σ(R). The horizontal stabbing number of R,

denoted σhor(R), is defined as the maximum stabbing number of any horizontal segment s ⊂
int(P ). The vertical stabbing number, denoted σvert(R), is defined similarly. Note that σ(R) =
max(σhor(R), σvert(R)).
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Sleft(e)
Sright(e)

Figure 4.2 A maximal edge that is not anchored, and the set of rectangles

bordering it.

4.2.1 The structure of optimal partitions

We start by proving some structural properties of optimal partitions. An optimal partition of P , is the

partition with minimum stabbing number among all partitions of P . Consider a partition R of P .

The partition is induced by a set E(R) of maximal edges. A maximal edge is a segment of maximal

length that is a part of the union of one or more rectangle edges in the interior of ∂P . A maximal

edge is anchored if at least one of its endpoints is a vertex of P . We first show that we can restrict

our attention to anchored edges when computing optimal partitions.

Lemma 4.1 Any rectilinear simple polygon P has an optimal partition Ropt in which all maximal

edges are anchored.

Proof. Over all optimal partitions of P , let Ropt be one with the minimum number of non-anchored

edges and, among those partitions, one with the minimum number of rectangles. Suppose for a

contradiction that Ropt has a maximal edge e that is not anchored, and assume without loss of

generality that e is vertical. We denote the set of rectangles bordering e on the left by Sleft(e), and

the set of rectangles bordering e on the right by Sright(e); see Figure 4.2. Assume without loss of

generality that |Sleft(e)| 6 |Sright(e)|.
Now imagine moving e horizontally to the right until either (i) e hits a vertex of ∂P (and thus

becomes anchored), or (ii) one of the rectangles in Sright(e) disappears. Let R denote the resulting

partition. We claim that σ(R) 6 σ(Ropt). Since R either has fewer non-anchored edges than Ropt

or the same number of non-anchored edges and fewer rectangles, this contradicts the choice of Ropt

and thus proves the lemma.

To prove the claim, we observe that the horizontal movement of e clearly does not increase the

horizontal stabbing number. The vertical stabbing number does not increase either, since any maximal

vertical segment still stabs the same set of rectangles or it stabs the rectangles from Sleft(e) instead

of those from Sright(e), and |Sleft(e)| 6 |Sright(e)|. The claim follows. ✷

A rectilinear binary space partition, or BSP for short, of a rectilinear polygon P is a rectangular

partitioning obtained by the following recursive process. First, P is cut into two subpolygons with an

axis-parallel segment inside P , and then the two subpolygons are partitioned recursively in the same

way. A BSP is anchored if each of its cuts is anchored. One may think that any rectilinear polygon
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admits an optimal partition that is an anchored BSP. Unfortunately this is not the case: Fig. 4.3 shows

an example of a polygon that has a non-BSP partition with stabbing number 3 and for which any

BSP has stabbing number at least 4. However, for so-called histograms we can show that there is

always an optimal partition that is an anchored BSP. In fact, we show that any anchored partition

of a histogram is a BSP. A (vertical) histogram is a rectilinear polygon H that has a horizontal

edge seeing every point q ∈ int(H). Here we say that an edge e sees a point q ∈ H if there is an

axis-parallel segment s connecting e to q that is completely lying inside int(H) except possibly for

its endpoints. We call the horizontal edge that sees all points in the histogram H the base of the

histogram and denote it by base(H). A horizontal histogram is defined similarly: it has a vertical

base that can see any point in the interior of the polygon.

Lemma 4.2 Any anchored partition of a histogram is a BSP.

Proof. Let R be an anchored partition of a histogram H . We will prove the statement by induction

on n, the number of vertices of H . For n = 4 the statement is trivially true, so assume n > 4.

If base(H) has only a single rectangle r ∈ R adjacent to it, then H \ r consists of one or more

subhistograms, which are separated from r by horizontal BSP cuts. The partitionings inside these

subhistograms induced by R are anchored and, hence, they are BSPs by induction. If there is

more than one rectangle adjacent to base(H), then there is a maximal edge ending in the interior

of base(H) with a vertex of P as its other endpoint. This is a BSP cut, which partitions H into

two subhistograms. The partitions inside these subhistograms induced by R are BSPs by induction. ✷

4.2.2 A 3-approximation algorithm

Next we present our 3-approximation algorithm for the problem of finding an optimal rectangular

partition of a given rectilinear polygon P . The algorithm constructs the partition in two steps. In

the first step we split P into a set of histograms such that any axis-parallel segment inside P stabs

at most three histograms. This can be done in O(n) time [59]—see also [20]. The approach is as

follows, we pick an arbitrary edge e of P , and make the histogram H(e) inside P having e as its

Figure 4.3 A rectilinear polygon for which the optimal rectangular partition is

not a BSP.
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base. The histogram H(e) has a number of windows to the remaining part of P , we repeat the

process using each of these windows as the base of a new histogram. In the second step we compute

an optimal rectangular partition for each resulting histogram H . By proving that this can be done in

polynomial time, we have the following theorem.

Theorem 4.3 Let P be a rectilinear simple polygon with n vertices. Then we can compute a

rectangular partition of P with stabbing number at most 3 ·OPT in polynomial time, where OPT

is the minimum stabbing number of any rectangular partition of P .

Proof. Consider a partition of P into a set of histograms using the above approach. Let us denote

the set of histograms in the partition by H = {H1, . . . , Hi}. Let OPT j denote the stabbing

number of an optimal partition of a histogram Hj ∈ H . We claim that OPT j 6 OPT for each

Hj ∈ H . Indeed, let Ropt denote an optimal partition of P . A property of the partitioning into

histograms [59, 20] is that it only adds segments that “completely cut through P ”, that is, segments

both of whose endpoints are on ∂P . This implies that any rectangle r ∈ Ropt is cut into rectangles

by the partition (if it is cut at all)—no other shape arise. This means that the part of Ropt inside

Hj is a valid rectangular partition of Hj . This implies OPT j 6 OPT . Any axis-aligned seg-

ment s ∈ int(P ) intersects at most three histograms of H , and we have OPT j 6 OPT for each

histogram. Thus, finding OPT j in polynomial time for each Hj results in a partition of P with

stabbing number at most 3 ·OPT . ✷

4.2.3 An optimal algorithm for histograms

Let H be a histogram. With a slight abuse of notation, we use n to denote the number of vertices

of H . We assume without loss of generality that H is a vertical histogram lying above its base. By

Lemmas 4.1 and 4.2, the histogram H admits an optimal partition that is an anchored BSP. We will

need the following additional properties.

Lemma 4.4 There is an optimal partition Ropt for H that is an anchored BSP and such that, for

every rectangle r ∈ Ropt, we have

(i) the bottom edge of r is contained in either the top edge of a single rectangle r′ ∈ Ropt or in

base(H), and

(ii) the top edge of r contains an edge of H .

Proof. By Lemmas 4.1 and 4.2 there is an optimal partition Ropt that is an anchored BSP. We claim

that Ropt already has property (i) and that we can convert it into a partition having property (ii) as

well without increasing its stabbing number.

Let ebot be the bottom edge of some rectangle r in Ropt. Because H is a histogram, ebot is either

contained in base(H) or in the union of some top edges of other rectangles in the partition. If the

former is the case then r has property (i), so assume ebot is contained in the union of some top

edges of other rectangles. If ebot overlapped with more than a single top edge, then there would

be a vertical edge e in the partition whose top endpoint lies on ebot. But because H lies above its

base, the maximal edge containing e cannot have a vertex of H as bottom endpoint, so e would not

be anchored. Thus ebot must be contained in the top edge of a single rectangle, proving that r has

property (i).
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Figure 4.4 Illustration for the proof of Lemma 4.4.

Next we convert Ropt as follows. For each rectangle r that does not yet have property (ii) we push

its top edge etop upward until it hits ∂H; see Figure 4.4. After doing this, the edge has property (ii).

Because of property (i), there are no rectangles whose bottom edge overlaps only partially with etop
and so the partition remains a partition into rectangles. The stabbing number is not increased by this

operation, so after pushing up all edges we have an optimal partition with properties (i) and (ii).

Note that the partition is still an anchored BSP after pushing all edges upward. Indeed, any vertical

maximal edge is anchored at its top vertex, so it remains anchored (unless it completely disappears

because of the pushing operations). Every horizontal maximal edge must also be anchored otherwise

it would have been pushed up further. Thus the partition is anchored and by Lemma 4.2 we conclude

that it is still a BSP. ✷

In the sequel we only consider partitions with properties (i) and (ii) from Lemma 4.4 (but not all

partitions are anchored).

Reduction to a decision problem Our algorithm will do a binary search for the smallest

value k such that H admits a partition with stabbing number k. Since there is always a partition with

stabbing number at most 2 log2 n [20], the binary search needs O(log log n) steps. It remains to

describe our decision algorithm, called HISTOGRAMPARTITION(H, k), which decides whether H
has a partition with stabbing number at most k.

Canonical chords Define a chord of H to be a maximal horizontal segment contained in the

interior of H except for its endpoints. A chord s partitions H into two parts. The part above s
is a histogram, which we denote by H(s). Note that any partition R of H induces a partition

of H(s); this partition is denoted by R(s). Now consider a partition of H obtained by adding

a chord from each vertex of H for which this is possible; this partition is sometimes called the

horizontal decomposition of H . We call the resulting set of chords the canonical chords of H—see

Figure 4.5(a). It will be convenient to also treat base(H) as a canonical chord.

The basic idea behind the algorithm is to treat the canonical chords from top to bottom. Now consider

a canonical chord si with, say, two canonical chords sj and sℓ immediately above it. Here we say

that si is immediately above sj , if we can connect si to sj with a vertical segment that does not cross

any other canonical chord. One may hope that, if we have optimal partitions for H(sj) and H(sℓ),
then we can somehow “extend” these to an optimal partition for H(si). Unfortunately this is not the

case, since an optimal partition need not be composed of optimal subpartitions. The next idea is to
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Figure 4.5 (a) Partitioning a histogram using canonical chords. (b) A partition

with a unimodal labeling. The label sequence of the chord s is 4, 3
and the label sequence of the base is 1, 4, 3.

compute all possible partitions for H(si). These can be obtained by considering all combinations of

a possible partition for H(sj) and a possible partition for H(sℓ). Implementing this idea naively

would lead to an exponential-time algorithm, however. Next we show how to compute a subset of

all possible partitions that has only polynomial size and is still guaranteed to contain an optimal

partition.

Labeled partitions and label sequences We first introduce some notation and terminology.

Let R be any partition of H (satisfying the properties (i) and (ii) in Lemma 4.4). We say that a

rectangle r ∈ R is on top of a rectangle r′ ∈ R if the bottom edge of r is contained in the top edge

of r′. When the bottom edge of r is contained in base(H) then we say that r is on top of the base.

A labeling of R assigns a positive integer label λ(r) to each rectangle r ∈ R. We say that a labeled

partition is valid (with respect to the stabbing number k we are aiming for) if it satisfies the following

conditions:

• if r is on top of r′ then λ(r) < λ(r′);
• the vertical stabbing number of R equals the maximum label of any rectangle r ∈ R;

• the stabbing number of R is at most k.

Observe that the first two conditions together imply that the stabbing number of R is equal to the

maximum label assigned to any rectangle on top of base(H). Also note that any partition with

stabbing number k has a valid labeling: for example, one can set λ(r) to be equal to the maximum

number of rectangles that can be stabbed by a vertical segment whose lower endpoint lies inside r.

We will use the labelings to decide which partitions can be disregarded and which ones we need to

keep.

Consider a chord s of H . We define the label sequence of s with respect to a labeled partition R as

the sequence of labels of the rectangles crossed by s, ordered from left to right; here we say that

s crosses a rectangle r if s intersects int(r) or the bottom edge of r. We denote this sequence by

Σ(s,R); see Figure 4.5(b) for an example. We say that a label sequence is valid if it consists of at

most k labels and the maximum label is at most k. Note that a labeled partition is valid if and only

if the label sequence of each of its canonical chords is valid. A label sequence λ1, . . . , λt is called

unimodal if there is an index i such that λ1 6 · · · 6 λi and λi > · · · > λt. A labeling of a partition

is unimodal if the label sequence of every chord is unimodal. A given label sequence can be made
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Figure 4.6 Illustration for the proof of Lemma 4.5.

unimodal using the following simple procedure.

MAKEUNIMODAL(Σ)
Let Σ = λ1, . . . , λt, and let λi∗ be a maximum label in the sequence. For each i < i∗

set λi := maxj6i λj , and for each i > i∗ set λi := maxj>i λj .

The next lemma states that we can make the label sequences of all canonical chords unimodal, and

still keep a valid sequence.

Lemma 4.5 Any anchored partition of H of stabbing number at most k admits a valid unimodal

labeling.

Proof. Let R be a partition of H . We first create a valid labeling for R as explained earlier: we

set the label of a rectangle r to be equal to the maximum number of rectangles that can be stabbed

by a vertical segment whose lower endpoint lies inside r. Next we turn this labeling into a valid

unimodal labeling using the following process. Let s1, . . . , sm be the set of all canonical chords,

sorted from bottom to top (that is, by increasing y-coordinates) and breaking ties arbitrarily. For each

chord si in order, we apply MAKEUNIMODAL to the label sequence Σ(si, R). We claim that this

process satisfies the following invariant: after handling si (i) the labeling is still valid, and (ii) the

label sequence of any chord si′ with i′ < i is unimodal.

To prove that the invariant is maintained, consider a chord si. Let r1, . . . , rt be the rectangles

ending on or properly intersecting si. We denote the current label of a rectangle rℓ by λℓ, and the

label after applying MAKEUNIMODAL to si by λℓ. Let Σi := λ1, . . . , λt. Let Rint
i be the set of

rectangles properly intersecting si. The rectangles in Rint
i are consecutive, because the partition is

anchored. Let Rleft
i and Rright

i be the sets of rectangles to the left and right of Rint
i , respectively—see

Figure 4.6. Let Σint
i be the subsequence of Σi consisting of the labels of the rectangles in Rint

i .

Note that Σint
i is already unimodal before si is handled, because these rectangles were handled in a

previous step.

We claim that the labels in Σint
i are not modified when we make Σi unimodal. To prove this claim,

note that if the label of some rℓ ∈ Rint
i has been changed, then there must be labels λℓ′ and λℓ′′ ,

with ℓ′ < ℓ < ℓ′′, such that λℓ < min(λℓ′ , λℓ′′). We cannot have λℓ′ , λℓ′′ ∈ Σint
i , because that

would mean that Σint
i was not unimodal before si was handled. Let λ∗

l and λ∗
r be the labels of the

rectangles below the rectangles in Rleft
i and Rright

i , respectively. It follows from the definition of

labeling that for any rectangle rj ∈ Rleft
i we have λj < λ∗

l . Similarly, for any rectangle rk ∈ Rright
i

we have λk < λ∗
r . Since the labeling below si was unimodal before handling si, we have λ∗

l 6 λℓ or
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Figure 4.7 Merging two rectangles.

λ∗
r 6 λℓ, or both. If both inequalities hold, then the claim holds since at least one of (the rectangles

corresponding to) λℓ′ or λℓ′′ belongs to one of Rleft
i or Rright

i and is smaller than λℓ. Otherwise,

assume without loss of generality that λ∗
l 6 λℓ and λℓ 6 λ∗

r . If λℓ′ ∈ Rleft
i then since λℓ′ < λ∗

l we

have λℓ′ < λl and the claim holds. When λℓ′ is not in Rleft
i , it should be in Rint

i . Since λℓ 6 λ∗
r ,

and from the fact that the labeling below si before modification was unimodal, we can conclude that

λℓ′ 6 λℓ and the claim holds.

Since the labels in Σint
i are not modified, we clearly have property (ii): the label sequence of any

chord si′ with i′ < i is still unimodal. We also have property (i). Indeed, if a rectangle rℓ ∈ Rleft
i

gets a new label, then there is a label λℓ′ ∈ Σleft
i to the left of it that is at least as large as the new label

λℓ. But this implies that the label of the rectangle below all rectangles in Rleft
i is larger than this label.

Hence, the modification of the label of rℓ does not make the labeling invalid. A similar argument

shows that the modification of the labels of rectangles in Rright
i does not make the labeling invalid. ✷

Dominated and non-dominated sequences Next we explain how the labelings help us

decide which partitions can safely be discarded. Consider an algorithm that handles the chords

from top to bottom, and suppose that the algorithm reaches a chord s. Let R1 and R2 be two

labeled partitions of H(s). Suppose that Σ(s,R1) is a subsequence of Σ(s,R2). Then there is

no need to keep R2: both partitions have stabbing number at most k so far, and it is easy to see

that if we can complete R2 to a partition with stabbing number k of the full histogram H then we

can do so with R1 as well. As another example in which we can ignore one of the two partitions,

suppose Σ(s,R1) = 1, 1, 3, 1 and Σ(s,R2) = 2, 3, 1, and let r1, . . . , r4 be the four rectangles in

R1 reaching the chord s. Then we could have merged r1 and r2 just before reaching s, that is, we

could have terminated r1 and r2 and start a new rectangle with label “2”—see Figure 4.7. The new

subsequence is then 2,3,1. This is a subsequence of Σ(s,R2)—in fact, it happens to be equal to

Σ(s,R2)— so we can disregard R2.

We now make this idea formal. We say that Σ(s,R1) dominates Σ(s,R2) if we can obtain a

sequence Σ(s,R′
1) that is a subsequence of Σ(s,R2) by applying the following merging operation

zero or more times to Σ(s,R1):

• Replace a subsequence λi, . . . , λj of Σ(s,R1) by the single label “max(λi, . . . , λj) + 1”.

Note that we can have i = j; in this case the operation just adds 1 to the label λi.

Intuitively, if a label sequence dominates another label sequence, then the first sequence has postponed

some merging operations that we can still do later on. Thus there is no need to maintain partitions

with dominated label sequences. (Note that postponing a merging operation implies that the resulting

partition may not be anchored anymore. This is not a problem; it just means that in the algorithm
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presented below, we cannot restrict ourselves to anchored partitions.) The next lemma gives a bound

on the number of label sequences that we need to maintain in the worst case.

Lemma 4.6 Let S be any collection of valid unimodal sequences such that no sequence in S
dominates any other sequence in S. Then |S| = O(23k/2/

√
k).

Proof. For a unimodal sequence Σ, let inc(Σ) denote the largest (not necessarily strictly) increasing

subsequence of Σ. Here by a subsequence we mean a continues subsequence. Since Σ is unimodal,

inc(Σ) is the prefix of Σ ending at the rightmost occurrence of the maximum value in the sequence.

Similarly, let dec(Σ) denote the largest decreasing subsequence of Σ. Define Sinc ⊂ S to be the

set of sequences for which |inc(Σ)|, the length of inc(Σ), is at most |dec(Σ)|. We now bound the

number of sequences in Sinc; the other sequences (for which the reverse holds) can be counted in the

same way.

Consider two different unimodal sequences Σ,Σ′ such that inc(Σ) = inc(Σ′). We claim that either

Σ dominates Σ′ or vice versa. Indeed, traverse Σ \ inc(Σ) and Σ′ \ inc(Σ′) simultaneously from

left to right until the first position where they differ. Suppose the label of Σ is smaller than the label

of Σ′ at this position (or Σ has ended). Then it is easy to see that Σ dominates Σ′. We conclude

that Sinc does not contain two sequences Σ,Σ′ with inc(Σ) = inc(Σ′). Hence, the number of label

sequences in Sinc is bounded by the number of different (non-strictly) increasing subsequences in

Sinc.

We conclude that the number of label sequences in Sinc is bounded by the number of different

(non-strictly) increasing sequences of length at most k and consisting of the integers 1, . . . , k. This

is equivalent to the number of increasing sequences of length exactly k and consisting of integers

0, . . . , k. This, in turn, is equivalent to the number of ways in which one can place k balls into

k + 1 labeled bins. Now we note that the maximum label of any two sequences in Sinc is the

same—otherwise the sequence with the smaller maximum label would dominate the other sequence.

Moreover, the number of times the maximum label, M , occurs can differ by at most one. Since,

otherwise the sequence with fewer maximum labels dominates the other sequence. Suppose that M
occurs x or x+ 1 times in any sequence. We now only consider the sequences where M occurs x
times; to obtain the final bound we just have to multiply by two. Then, in terms of the balls and bins

metaphor, we only have to look at sequences that all put exactly the same number of balls into one of

the bins. But that means we can ignore these balls (and this bin). Since we have |inc(Σ)| 6 |dec(Σ)|
for each of the subsequences in Sinc, this means that we have to consider at most ⌊k/2⌋ balls. The

number of ways in which one can put ⌊k/2⌋ into k bins is
(⌊ 3k−3

2
⌋

k

)

= O(23k/2/
√
k). ✷

The algorithm We can now describe our decision algorithm.

HISTOGRAMPARTITION(H, k)

1. Compute the set of canonical chords of H and sort the chords by decreasing y-coordinate.

2. For each chord s in order, compute a collection R(s) of labeled partitions of H(s), as follows.

(i) If H(s) is a rectangle then set R(s) := {H(s)}.

(ii) Otherwise s has one or more chords s1, . . . , st immediately above it—see Figure 4.8.

We compute all valid unimodal partitions of H(s) that can be obtained from any com-

bination of partitions in R(s1), . . . ,R(st) and whose label sequence is not dominated
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by the label sequence of any other such partition. (How this is done will be explained

below.) Let R(s) be the set of all computed partitions. If R(s) is empty, then report

that no partition with stabbing number k exists for H , and exit.
3. Return any partition in R(base(H)).

Next we explain how Step 2(ii) is performed. We assume that t > 1, that is, that s has several chords

immediately above it; the case t = 1 can be handled in a similar (but much simpler) way. In the

sequel, we identify each partition with its label sequence and only talk about label sequences. Note

that the operations we perform on the label sequences can be easily converted into the corresponding

operations on the partitions. For every pair of labeled partitions R1 ∈ R(s1), Rt ∈ R(st) we

proceed as follows.

(a) For each 1 < i < t, consider the set R(si). Note that the label sequences in R(si) all have

the same maximum value, Mi. This is true because a label sequence dominates any label

sequence with larger maximum value. (The number of times the maximum label occurs can

differ by at most one.) We pick an arbitrary label sequence Σi ∈ R(si) for which Mi occurs

the minimum number of times.

(b) We now have, besides the partitions Σ1 ∈ R(s1) and Σt ∈ R(st), picked a partition Σi

from each R(si) with 1 < i < t. Let Σ be the label sequence obtained by concatenating the

sequences Σi in order, inserting a label “1” for any horizontal histogram edge incident to a

chord si, as illustrated in Figure 4.8. The labels “1” correspond to new rectangles that we can

start, whose top edge is the given histogram edge. We then make Σ unimodal. This is done

using a variant of the procedure MAKEUNIMODAL explained earlier: the difference is that

if we give several consecutive labels the same value, then we merge them into a single new

label—see Figure 4.8.

(c) If the number of labels in Σ is at most k, then we put Σ into R(s). Otherwise Σ is invalid

because it contains too many labels, and we have to merge some rectangles to obtain a shorter

sequence. This is done as follows. Suppose that Σ contains k + x labels λ1, . . . , λk+x.

Then we have to get rid of x labels by merging. Let xleft, xright be integers such that

xleft + xright = x + 2 and both xleft, xright are non-zero, or xleft + xright = x + 1 and

one of xleft, xright is zero. We merge xleft labels from the left into one new label, and xright

labels from the right into one, as in Figure 4.8. In other words, on the left side we replace

λ1, . . . , λxleft
by a single new label λxleft

+ 1 (and similarly on the right). If there are some

labels immediately to the right of λxleft
with the same value as λxleft

, then we include them

into the merging process. (We can do this for free, since it reduces the number of labels,

without increasing the value of the new label.) If this merging process yields a new label

whose value is more than the previous maximum label value, then we simply merge the entire

sequence into a single new label. If the value of this label is k + 1, then we discard the

sequence.

After having applied the above steps to every pair R1 ∈ R(s1), Rt ∈ R(st), we remove from R(s)
all partitions with a label sequence that is dominated by the sequence of some other partition. How

this is done, is explained below. The next lemma shows the correctness of the decision algorithm.

Lemma 4.7 HISTOGRAMPARTITION(H, k) returns a partition of H with stabbing number at most k
if it exists.

Proof. We will prove that the algorithm maintains the following invariant. Let R∗ be an anchored

partition of H of stabbing number at most k with a valid unimodal labeling.
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Invariant: After handling the chord s, the set R(s) contains at least one label sequence

Σ that dominates Σ(s,R∗).

Let Σ∗ := Σ(s,R∗) and Σ∗
i := Σ(si, R

∗). Consider the handling of s in Step 2. If we are in

case (i) then the invariant obviously holds, so now suppose we are in case (ii). Let s1, . . . , st be

the chords immediately above s. By the invariant, each set R(si) contains a label sequence Σi

dominating Σ∗
i . We argue that this implies that we can generate a label sequence Σ from Σ1, . . . ,Σt

that dominates Σ∗, and that our algorithm actually finds such a label sequence.

The former statement is easy to see. By definition we can apply some merging operations to each Σi

to turn it into a subsequence of Σ∗
i —in fact, we may also have to increase some labels, but this does

not change the argument—and then we can simply “copy” the operations that turn Σ∗
1, . . . ,Σ

∗
t into

Σ∗, thus turning Σ1, . . . ,Σt into a sequence dominating Σ∗. To argue that our algorithm actually

finds a dominating sequence Σ—that is, that Step 2(ii) is implemented correctly—we have to argue

a bit more carefully.

Suppose that in Step (b) we replace several labels by a single label λ. When these labels are between

two other labels with value at least λ, we cannot avoid increasing their values to at least λ, and the

best we can do is to replace all of them by a single label λ. Consider the sequence Σ made in step (b),

that was generated from a pair Σ1, Σt such that Σ1 dominates Σ∗
1 and Σt dominates Σ∗

t . Recall

that for making Σ we picked, for 1 < i < t, label sequences Σi ∈ R(si) for which the label with

maximum value occurs the minimum number of times. Together with the fact that Σ1 dominates Σ∗
1

and Σt dominates Σ∗
t , and that, as just explained, we replace labels in an optimal way, this implies

that Σ dominates Σ∗.

Now suppose that the number of labels in Σ is more than k. If the maximum label value in Σ∗ is

higher than the maximum label value in Σ, then Step (c) will clearly result in a sequence dominating

Σ∗. Otherwise the maximum label values in Σ∗ and Σ are the same. Consider a sequence of

replacement operations that turns Σ into a subsequence of Σ∗; such a sequence of operations exists

because Σ dominates Σ∗. Let j be such that λj ∈ Σ has the maximum value. Let Mleft (and Mright)

s1

s

s4

1 3 3 2 1 1 5 45 41

Σ = [ 1, 3, 3 ] 1 [ 2, 1 ] 1 [ 1, 5, 5, 4 ] 1 [ 1, 4 ] 1

s2 s3

making the sequence unimodal: 1,3,3,3,5,5,4,4,4,1

the sides to reduce the length of the sequence: 4,5,5,5
merging from

Figure 4.8 A chord s, the chords immediately above it, and the label sequence

Σ defined by the label sequences of the chords.
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Σi = 〈1, 2, 4, 4, 1, 1〉 Σj = 〈1, 3, 4, 4, 2〉

Σ1

i = 〈1, 2〉

Σ2

i = 〈1, 1〉

Σ1

j = 〈1, 3〉

Σ2

j = 〈2〉

(a)

Σi = 〈1, 2, 4, 4, 2, 1〉 Σj = 〈1, 1, 4, 4, 4, 3〉

Σ1

i = 〈1, 2〉

Σ2

i = 〈2, 1〉

Σ1,1

j = 〈1, 1, 4〉

Σ1,2

j = 〈1, 1〉

(b)

Σ2,1

j = 〈3〉

Σ2,2

j = 〈4, 3〉

Figure 4.9 (a) Two sequences Σi and Σj in which ni = nj and the four subse-

quences made from them. (b) Two sequences Σi and Σj in which

ni = nj + 1 and the six subsequences made from them.

be the maximum value of any label to the left (resp. right) of λj that is involved in a replacement

operation. Then simply replacing all xleft labels to the left of λj whose value is at most Mleft by a

single label Mleft +1, and replacing all xright labels to the right of λj whose value is at most Mright

by a single label Mright +1, leads to a sequence that dominates Σ∗ and has at most k labels. Step (c)

must consider some combination of merging x′
left labels from the left and x′

right labels from the

right with x′
left 6 xleft and xright 6 xright, and this will then result in a sequence dominating Σ∗. ✷

The following lemma explains an approach for removing all partitions with a label sequence that is

dominated by another partition in the set.

Lemma 4.8 Let R denote a set of unimodal sequences, and let n be the total number of elements

of the sequences in R. Then we can remove all sequences from R that are dominated by another

sequence in R in time O(n log n).

Proof. Let Mi denote the maximum label in a sequence Σi, and let ni be the number of times

it occurs in Σi. Define Mmin := min{Mi : Σi ∈ R} and nmin := min{ni : Σi ∈ R}. As

mentioned above, the non-dominated sequences in R all have Mi = Mmin and ni 6 nmin + 1.

Thus, first we remove all the sequences with Mi > Mmin and the sequences with ni > nmin + 1.

This can be done in O(n) time.

We partition the set of remaining sequences into two subsets: a subset R(nmin) containing all Σi

with ni = nmin, and a subset R(nmin + 1) containing all Σi with ni = nmin + 1. Note that a

sequence in R(nmin + 1) can never dominate a sequence in R(nmin). Hence, our task is now to (i)

remove all sequences from R(nmin) that are dominated by another sequence in R(nmin), and (ii)

remove all sequences from R(nmin + 1) that are dominated by another sequence in R(nmin + 1),
and (iii) remove all sequences from R(nmin + 1) that are dominated by a sequence in R(nmin).

Task (i) is performed as follows. Each sequence Σi ∈ R(nmin) is divided into two subsequences

by removing all labels of maximum value from it. We denote the resulting sequences by Σ1
i and

Σ2
i —see Figure 4.9(a). Now consider two sequences Σi,Σj ∈ R(nmin). The crucial observation is

that Σi dominates Σj if and only if Σ1
i dominates Σ1

j and Σ2
i dominates Σ2

j . Let R1(nmin) := {Σ1
i :

Σi ∈ R(nmin)} and R2(nmin) := {Σ2
i : Σi ∈ R(nmin)}, where we make sure all sequences
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in R1(nmin) and R1(nmin) have length exactly k by adding extra zeros; for R1(nmin) these are

added at the beginning of the sequence and for and R1(nmin) they are added at the end. Note that

all sequences in R1(nmin) are non-decreasing, and all sequences in R2(nmin) are non-increasing.

For two sequences Σ1
i ,Σ

1
j ∈ R1(nmin) we write Σ1

i ≺ Σ1
j if Σ1

i dominates Σ1
j . Since the sequence

in R1(nmin) are non-decreasing this is equivalent to the following. Let Σ1
i = λ1, . . . , λk and

Σ1
j = λ′

1, . . . , λ
′
k. We have Σ1

i ≺ Σ1
j if there is an index m such that λm < λ′

m and for all

m < l 6 k we have λl = λ′
l. Note that ≺ defines a total order on R1(nmin).

For two sequences Σ2
i ,Σ

2
j ∈ R2(nmin) we also write Σ2

i ≺ Σ2
j if Σ2

i dominates Σ2
j . Again, ≺

defines a total order on R2(nmin). We now remove the dominated sequences from R(nmin) as

follows.

Sort R1(nmin) according to ≺, and sort R2(nmin) according to ≺. Using RadixSort this can

be done in O(nk) = O(n log n) time [29]. Now suppose that the first sequence in R1(nmin)
is Σ1

i . Find the corresponding sequence Σ2
i in R2(nmin); by maintaining cross-pointers this can

be done in O(1) time. Remove all the sequences Σ2
j from R2(nmin) such that Σ2

i ≺ Σ2
j , and

remove the corresponding sequences from Σ1
j from R1(nmin). Since for the removed sequences

we have Σ1
i ≺ Σ1

j and Σ2
i ≺ Σ2

j , we also have that Σi dominates Σj . Hence, we remove Σj from

R(nmin). Now remove Σ1
i and Σ2

i from R1(nmin) and R2(nmin), and repeat the process: take the

next sequence from R1(nmin), locate its corresponding sequence in in R2(nmin), and remove the

dominated sequences, and so on. The whole process, including the sorting, takes O(n log n) time,

and it removes all dominated sequences from R(nmin).

Task (ii), removing all sequences from R(nmin + 1) that are dominated by another sequence in

R(nmin + 1), can be done in the same way, so it remains to perform task (iii). This is done as

follows. Again, we divide each sequence Σi ∈ R(nmin) into two subsequences by removing all

labels of maximum value from it. Now consider the sequences Σj ∈ R(nmin + 1). We also remove

nmin labels of maximum value from them, thus dividing them into two. However, we can do this in

two ways, either adding the remaining label of maximum value to the left sequence or two the right

sequence. Thus we can obtain four different sequences, which we denote by Σ1,1
j , Σ1,2

j , Σ2,1
j and

Σ2,2
j —see Figure 4.9(b). We now have: Σi ∈ R(nmin) dominates Σj ∈ R(nmin + 1) if and only

if either Σ1
i dominates Σ1,1

j and Σ2
i dominates Σ2,1

j , or Σ1
i dominates Σ1,2

j and Σ2
i dominates Σ2,2

j .

Thus filtering out the sequences from R(nmin + 1) that are dominated by a sequence from R(nmin)
can be done in O(n log n), using a similar strategy as before. ✷

The next lemma explains the running time of the algorithm. It follows from the above lemmas and

the fact that k 6 2 log2 n.

Lemma 4.9 Algorithm HISTOGRAMPARTITION runs in O(n7 log n log log n) time.

Proof. By Lemma 4.6 the number of sequences in each R(si) is at most O(23k/2/
√
k). The fact

that k 6 2 log2 n then implies |R(si)| = O(n3/
√
log n). Thus there are O(n6/ log n) different

pairs of R1 ∈ R(s1) and Rt ∈ R(st) in Step 2.

Step (a) takes time linear in the total length of all subsequences, which is O(n4/
√
log n), but we

can re-use this result for each combination R1, Rt. The concatenated sequence with which we start

in Step (b) has length at most n. We need to do O(k) different combinations of merging-from-the-

left/merging-from-the-right as follows. Let us denote the number of times the maximum value occurs
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for the resulting sequence Σ = {λ1, . . . , λh} by m. If m > k we simply merge the entire sequence.

Now suppose that m < k, and the labels λi, . . . , λj all have the maximum value. We need to find

two labels λs (s < i) and λh (h > j) such that h− s+ 1 = k. When there is more than one label

with the same value as λs pick the rightmost one. Similarly when there is more than one label with

the same value as λh pick the leftmost one. Merge all the labels to the left of and including λs, and

merge all the labels to the right of and including λh. Repeat this for O(k) different possible values

of h and s.

Thus the total running time needed for a single pair R1 ∈ R(s1) and Rt ∈ R(st) is O(k) =
O(log n). Multiplying by the number of pairs, the time becomes O(n6).

We have now generated O(n6) sequences with length at most k, from which we have to select

the non-dominated ones. Using the approach described in Lemma 4.8 we can find all dominating

sequences in O(n6 log n). This is the time that we spend for each chord si. We have at most n
chords and we need to test log log n different values for k. This makes the total running time to be

O(n7 log n log log n). ✷

4.3 Approximating optimal Steiner triangulations

In this section we give a O(1)-approximation algorithm for the problem of finding a Steiner triangu-

lation with minimum stabbing number of a given n-vertex polygon.

We say that a point p ∈ P sees a point q ∈ P if the line segment pq lies completely in P , and we

say that a point p sees a segment s—or, equivalently, that the segment s sees p—if p sees at least one

point of s. The weak visibility polygon of a segment s in P , denoted by VP(s), is the simple polygon

consisting of all points of P that see s. The number of vertices of VP(s) is denoted by |VP(s)|. Let

OPT (P ) denote the minimum stabbing number of any Steiner triangulation of P , and let Vmax be

the maximum complexity of any weak visibility polygon VP(s), where s is either an edge of P or a

chord of P (that is, a segment whose endpoints lie on ∂P and that otherwise lies in int(P )). We

have the following lemma.

Lemma 4.10 OPT (P ) > log(Vmax − 2)− log log(Vmax − 2).

Proof. Let s be a segment such that |VP(s)| = Vmax and let Topt be an optimal Steiner triangulation

of P . We may assume without loss of generality that s does not pass through vertices of triangles.

We denote the set of triangles crossed by s from right to left by D(s) := {δ1, δ2, . . . , δk}; see

Fig. 4.10(a). If k > log(Vmax − 2) we are done, so suppose that k 6 log(Vmax − 2). The

proof is based on constructing a rooted binary tree B whose nodes correspond to edges of the

triangles in Topt. We show that B has at least (Vmax − 2)/k leaves; the height of B is thus at least

log((Vmax − 2)/k) = log(Vmax − 2)− log k 6 log(Vmax − 2)− log log(Vmax − 2).

By construction, the height of B will be equal to the number of triangles stabbed by some segment

in P , implying the claim of the lemma. The details are as follows.

For each edge e of the visibility polygon VP(s), except for the two edges where s touches ∂P , we

define a directed segment witness(e) inside P that connects s to e. Thus witness(e) is a witness of

the fact that e is visible from s. Note that we have at least Vmax − 2 witness edges. We partition

the set of witness edges into k subsets, as follows. For each triangle δi, let exit(δi) denote the
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δ1

δi

d1 d7

d2
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d9

exit(δi)
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e5
d8

d9

(a) (b)

Figure 4.10 (a) The weak visibility polygon of s. (b) A part of the binary tree B.

edge of δi that does not intersect s. We put each witness w := witness(e) into a subset associated

with the first exit edge that it intersects. The first exit edge is the first edge which we encounter,

when we traverse w from s to e. Let Wi denote the set of witnesses associated with exit(δi) and

let exit(δi∗) be the exit edge with the maximum number of witnesses associated with it. Note that

|Wi∗ | > (Vmax − 2)/k.

We now construct the tree B, whose nodes will correspond to edges of triangles in Topt, iteratively as

follows. The root of B is the edge exit(δi∗). Consider the witnesses w ∈ Wi∗ in arbitrary order. For

each w := witness(e), we expand the tree as follows. Traverse w from s to e, visiting the triangle

edges intersected by w in order. At the same time, traverse the current tree B starting at the root in

such a way that the node visited in B corresponds to the triangle edge being crossed by w. At some

point this may no longer be possible: then we step from an edge e′ to an edge e′′ while the node ν of

B that we are in (and which corresponds to e′) does not have a child corresponding to e′′. In this

case we create a new child µ , which corresponds to e′′—see Fig. 4.10(b). When we step from e′′

to e′′′, we create a child for µ which corresponds to e′′′ and so on. Thus, we create a path hanging

from ν that corresponds to the edges intersected after e′. It is important to note that an edge can

appear multiple times in B. When we enter a triangle through a given edge, we can obviously only

leave it through two other edges. (Here we use the assumption that we have a Steiner triangulation

and not an arbitrary decomposition into triangles, that is, that there are no vertices in the interior

of any triangle edge.) Hence B is a binary tree. Moreover, the path from the root of B to any leaf

corresponds to the sequence of triangle edges intersected by some witness. Hence, the height of B is

indeed a lower bound on the stabbing number of Topt. ✷

Next we give an algorithm that computes a Steiner triangulation for P with stabbing number

O(log Vmax). By Lemma 4.10 this is an O(1)-approximation for finding an optimal Steiner triangu-

lation of a simple polygon P . The algorithm consists of two stages.

In the first stage we recursively compute a decomposition of P into weak visibility polygons, in

a standard way as follows. In a generic step of the algorithm we get a subpolygon P ′ ⊂ P and

a designated edge e′ of P ′. Initially P ′ = P and e′ is an arbitrary edge of P . We then compute

VP(e′). Note that P ′ \ VP(e′) consists of several subpolygons, each separated from VP(e′) by a
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w1

w2

w1

s

Figure 4.11 We need to replace each of the windows by a diamond-like polygon,

and then triangulate them separately.

chord which is called the window of the subpolygon. We recurse on each subpolygon with its window

as designated edge. This weak-visibility-polygon decomposition can be found in O(n) time in

total [73]. Note that any line segment s ⊂ P intersects at most three of the weak visibility polygons.

The method of Hershberger and Suri [50] makes a Steiner triangulation with stabbing number

O(log n) for a polygon with n vertices. Using their method in the second stage we compute a Steiner

triangulation with stabbing number O(log Vmax) of each weak visibility polygon VP. This produces

a decomposition of each weak visible polygon into triangles with stabbing number O(log Vmax).
Based on Lemma 4.10 we have OPT = Ω(log Vmax), so this is a O(1)-factor approximation.

However, there is one problem: the decomposition is not necessarily a Steiner triangulation, because

the Steiner triangulation of some polygon VP may introduce Steiner vertices on a window that are

not used on the other side of the window. Hence, we adapt the algorithm as follows. Before applying

the method of Hershberger and Suri to the visibility polygons, we first replace each window by a

thin diamond, as shown in Figure 4.11. The decomposition of the visibility polygons can now add

Steiner vertices on the edges of the diamonds, so the diamonds must be further decomposed.

Consider a diamond ∆, and let n∆ be the number of Steiner vertices on the boundary of ∆. We

move each vertex slightly outwards, so ∆ becomes a convex polygon (with n∆ +4 vertices) none of

whose edges is collinear. Since we now have a convex polygon, we can easily compute a non-Steiner

triangulation (in linear time) whose stabbing number is O(log n∆). Note that any segment inside P
can intersect at most three visibility polygons and at most two diamonds. Since the stabbing number

of each visibility polygon is O(log Vmax), each edge of the diamond has O(log Vmax) vertices on it.

This implies that n∆ = O(log Vmax) for any diamond ∆. We get the following theorem.

Theorem 4.11 Let P be a simple polygon with n vertices. Then we can compute a Steiner triangu-

lation of P with stabbing number O(OPT ) in O(n) time, where OPT is the minimum stabbing

number of any Steiner triangulation of P .
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4.4 Concluding remarks

We have studied the problem of finding a decomposition with minimum stabbing number for a simple

polygon. We gave a 3-approximation algorithm for the rectilinear version of the problem (which

was based on an optimal algorithm for histograms) and we gave an O(1)-approximation algorithm

for the non-rectilinear case. We have not been able to construct an exact polynomial-time algorithm

for either problems, but the problems are not known to be NP-complete either. Establishing the

computational complexity of the problem is thus the first open problem. Another interesting open

problem is to study the case of polygons with holes.
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Chapter 5

Piecewise-Linear

Approximations of Uncertain

Functions

Chapter summary. We study the problem of approximating a function F: R → R by a piecewise-

linear function F when the values of F at {x1, . . . , xn} are given by a discrete probability distribution.

Thus, for each xi we are given a discrete set yi,1, . . . , yi,mi
of possible function values with

associated probabilities pi,j such that Pr[F(xi) = yi,j ] = pi,j . We define the error of F as

error(F,F) = maxn
i=1 E[|F(xi) − F(xi)|]. Let m =

∑n
i=1 mi be the total number of potential

values over all F(xi). We obtain the following two results: (i) an O(m) time algorithm that,

given F and a maximum error ǫ, computes a function F with the minimum number of links such

that error(F,F) 6 ǫ; (ii) an O(n4/3+δ +m log n) time algorithm that, given F, an integer value

1 6 k 6 n and any δ > 0, computes a function F of at most k links that minimizes error(F,F).
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5.1 Introduction

Motivation and problem statement. Fitting a function to a given finite set of points sampled

from an unknown function F: R → R is a basic problem in mathematics. Typically one is given

a class of “simple” functions—linear functions, piecewise linear functions, quadratic functions,

etcetera—and the goal is to find a function F from that class that fits the sample points best. One

way to measure how well F fits the sample points is the uniform metric, defined as follows. Suppose

that F is sampled at x1, . . . , xn, with x1 < · · · < xn. Then the error of F according to the uniform

metric is max |F(xi) − F(xi)|. This measure is also known as the l∞ or the Chebychev error

measure.

The problem of finding the best approximation F under the uniform metric has been studied from an

algorithmic point of view, in particular for the case where the allowed functions are piecewise linear.

There are then two optimization problems that can be considered: the min-k and the min-ε problem.

In the min-k problem one is given a maximum error ǫ > 0 and the goal is to find piecewise-linear

function F with error at most ε that minimizes the number of links. In the min-ǫ problem one is

given a number k > 1 and the goal is to find a piecewise-linear function with at most k links that

minimizes the error.

The min-k problem was solved in O(n) time by Hakimi and Schmeichel [46]. They also gave an

O(n2 log n) algorithm for solving the min-ε problem. This was later improved to O(n2) by Wang et

al. [82]. Goodrich [44] then managed to obtain an O(n log n) algorithm.

In this chapter we also study the problem of approximating a sampled function by a piecewise-linear

function, but we do this in the setting where the function values F(xi) at the sample points are

not known exactly. Instead we have a discrete probability distribution for each F(xi), that is, we

have a discrete set yi,1, . . . , yi,mi
of possible values with associated probabilities pi,j such that

Pr[F(xi) = yi,j ] = pi,j . We call such a function an uncertain function. The goal is now to find

a piecewise-linear function F with at most k links that minimizes the expected error (the min-ǫ
problem) or a piecewise-linear function F with error at most ε that minimizes the number of links

(the min-k problem).

There are several possibilities to define the expected error. We use the uniform metric and define our

error measure in the following natural way.

error(F,F) = max
{

E[|F(xi)− F(xi)|] : 1 6 i 6 n
}

.

This error is not equal to error2(F,F) = max{|E[F(xi)] − F(xi)| : 1 6 i 6 n}. Indeed, to

minimize |E[F(xi)]− F(xi)| one should take F(xi) = E[F(xi)] leading to an error of zero at xi.

Hence, we feel that error(F,F) is more appropriate than error2(F,F). (Note that approximating F
under error measure error2 boils down to approximating the function G : R → R with G(xi) =
E[F(xi)].)

Related work. The problem of approximating a sampled function can be seen as a special case

of line simplification. The line-simplification problem is to approximate a given polygonal curve

P = p1, p2, . . . , pn by a simpler polygonal curve Q = q1, q2, . . . , qk. The problem comes in many

flavors, depending on the restrictions that are put on the approximation Q, and on the error measure

error(P,Q) that defines the quality of the approximation. A typical restriction is that the sequence

of vertices of Q be a subsequence of the vertices of P , with q1 = p1 and qk = pn; the unrestricted

version, where the vertices q1, q2, . . . , qk can be chosen arbitrarily, has been studied as well. (In this
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chapter we do not restrict the locations of the breakpoints of our piecewise-linear function.) Typical

error measures are the Hausdorff distance and the Fréchet distance [11].

The line-simplification has been studied extensively. The oldest and probably best-known algorithm

for line simplification is the so-called Douglas-Peucker algorithm [32], dating back to 1973. This

algorithm achieves good results in practice, but it is not guaranteed to give optimal results. Over

the past 20 years or so, algorithms giving optimal results have been developed for many line-

simplification variants [1, 9, 7, 22, 44, 46, 51, 64, 81]. Although both function approximation and

line-simplification are well-studied problems, and there has been ample research on uncertain data in

other contexts, the problem we study has, to the best of our knowledge, not been studied so far.

Our results. We start by studying the min-k problem. As it turns out, this problem is fairly easily

reduced to the problem of computing a minimum-link path that stabs a set of vertical segments.

The latter problem can be solved in linear time [46], leading to an algorithm for the min-k problem

running in O(m) time, where m =
∑n

i=1 mi. We then turn our attention to the much more

challenging min-ε problem, where we present an algorithm that, for any fixed δ > 0, runs in

O(n4/3+δ +m log n) time. Our algorithm uses similar ideas as the algorithm of Goodrich [44], but

it requires several new ingredients to adapt it to the case of uncertain functions. For the important

special case k = 1—here we wish to find the best linear function to approximate F—we obtain a

faster algorithm for the min-ε problem, running in O(m logm) time.

5.2 The min-k problem

We start by studying the properties of error(F,F). First we define an error function Ei(y) for every

value xi:

Ei(y) = E[|F(xi)− y|].
Observe that Ei(F(xi)) is the expected error of F at xi, and error(F,F) = maxn

i=1 Ei(F(xi)). The

following lemma shows what Ei(y) looks like. For simplicity we assume yi,1 6 · · · 6 yi,mi
for

1 6 i 6 n.

Lemma 5.1 For any i, the function Ei(y) is a convex piecewise-linear function with mi + 1 links.

Proof. To simplify the presentation, define yi,0 = −∞ and yi,mi+1 = +∞, and we set pi,0 =
pi,mi+1 = 0. Now fix some j with 0 6 j 6 mi, and consider the y-interval [yi,j , yi,j+1]. Within

this interval we have

Ei(y) = E[|F(xi)− y|]
=

∑j
ℓ=1 pi,ℓ(y − yi,ℓ) +

∑mi

ℓ=j+1 pi,ℓ(yi,ℓ − y)

=
(

∑j
ℓ=1 pi,ℓ −

∑mi

ℓ=j+1 pi,ℓ
)

· y −
(

∑j
ℓ=1 pi,ℓyi,ℓ −

∑mi

ℓ=j+1 pi,ℓyi,ℓ
)

= ajy + bj ,

where

aj =

j
∑

ℓ=1

pi,ℓ −
mi
∑

ℓ=j+1

pi,ℓ and bj = −





j
∑

ℓ=1

pi,ℓyi,ℓ −
mi
∑

ℓ=j+1

pi,ℓyi,ℓ



 .
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Figure 5.1 The function Ei(y).

Hence, Ei(y) is a piecewise-linear function with mi + 1 links. Moreover, since a0 = −1 6 a1 6

· · · 6 ami
= 1, it indeed is convex. It is not difficult to see that the first and last links of Ei, when

extended, meet exactly in the point (E[F(xi)], 0); see Fig. 5.1. (Actually these two links, when

extended, form the graph of the function g(y) = |E[F(xi)]− y|, so they correspond to the error at

xi as given by error2.) ✷

Now consider the min-k problem, and let ε be the given bound on the maximum error. Because Ei(y)
is a convex function, there exists an interval [ui, gi] such that Ei(y) 6 ε if and only if y ∈ [ui, gi];
see Fig. 5.1. The interval [ui, gi] can be computed in O(mi) time. When there exists an i such that

[ui, gi] is empty, we report that there is no F approximating F within error ε. Otherwise, the problem

is reduced to finding a function F with a minimum number of links stabbing every vertical segment

xi × [ui, gi]. This problem can be solved in linear time [46], leading to the following theorem.

Theorem 5.2 Let F: R → R be an uncertain function whose values are given at n points {x1, . . . , xn}
and let m be the total number of possible values at these points. For a given ε, a piecewise-linear

function F with a minimum number of links such that error(F,F) 6 ε can be computed in O(m)
time.

Remark 5.3 Above we computed the intervals [ui, gi] in O(mi) time in a brute-force manner.

However, we can also compute the values ui and gi in O(logmi) time using binary search. Then,

after computing the functions Ei in O(m) time in total, we can construct the segments xi × [ui, gi]
in O(

∑

i logmi) = O(n logm) time. Thus, after O(m) preprocessing, the min-k problem can be

solved in O(n logm) time. This can be used to speed up the algorithm from the next section when

n = o(m/ logm). For simplicity we do not consider this improvement in the next section.

5.3 The min-ε problem

We now turn our attention to the min-ε problem. Let k be the maximum number of links we are

allowed to use in our approximation. For any ε > 0, define K(ε) to be the minimum number of

links of any approximation F such that error(F,F) 6 ε. Note that K(ε) can be computed with
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the algorithm from the previous section. Clearly, if ε1 < ε2 then K(ε1) > K(ε2). Hence, K(ε)
is a non-increasing function of ε and K(ε) 6 n. Our goal is now to find the smallest ε such that

K(ε) 6 k. Let’s call this value ε∗. Because K(ε) is non-increasing, the idea is to use a binary search

to find ε∗, with the algorithm from the previous section as decision procedure. Doing this in an

efficient manner is not so easy, however. We will proceed in several phases, zooming in further and

further to the value ε∗, as explained next.

Our algorithm maintains an active interval I containing ε∗. Initially I = [0,∞). A basic subroutine

is to refine I on the basis of a set S of ε-values, whose output is the smallest interval containing ε∗

whose endpoints come from the set S ∪ {endpoint of I}. The subroutine ShrinkActiveInterval runs

in O(|S| log |S|+m log |S|) time.

ShrinkActiveInterval(S, I)

Sort S to get a sorted list ε1 < ε2 < · · · < εh. Add values ε0 = −∞ and εh+1 = ∞.

Do a binary search over ε0, . . . , εh+1 to find an interval [εj , εj+1] containing ε∗; here

the basic test during the binary search—namely whether ε∗ 6 εl, for some εl—is

equivalent to testing whether K(εl) 6 k; this can be done in O(m) time with the

algorithm from the previous section. Finally, return I ∩ [εj , εj+1].

The first phase. In the previous section we have seen that each error function Ei is a convex

piecewise-linear function with mi breakpoints. Let Ei = {Ei(yi,j) : 1 6 j 6 mi} denote the set of

error-values of the breakpoints of Ei, and let E = E1 ∪ · · · ∪ En. The first phase of our algorithm

is to call ShrinkActiveInterval(E, [0,∞)) to find two consecutive values εj , εj+1 ∈ E such that

εj 6 ε∗ 6 εj+1. Since |E| = m, this takes O(m logm) time.

Recall that for a given ε, the approximation F has to intersect the segment xi × [ui, gi] in order for

the error to be at most ε at xi. Now imagine increasing ε from εj to εj+1. Then the values ui and

gi change continuously. In fact, since Ei is a convex piecewise-linear function and εj and εj+1 are

consecutive values from E, the values ui and gi change linearly, that is, we have

ui(ε) = aiε+ bi and gi(ε) = ciε+ di

for constants ai, bi, ci, di that can be computed from Ei. As ε increases, ui decreases and gi
increases—thus ai < 0 and ci > 0—and so the vertical segment xi × [ui, gi] is growing. After the

first phase we have I = [εj , εj+1] and the task is to find the smallest ε ∈ [εj , εj+1] such that there

exists a k-link path stabbing all the segments.

Intermezzo: the case k = 1. We first consider the second phase for the special but important

case where k = 1. This case can be considered as the problem of finding a regression line for

uncertain points except that our error is not the squared distance. Thus we want to approximate

the uncertain function F by a single line ℓ : y = ax + b that minimizes the error. The line ℓ
stabs a segment xi × [ui, gi] if ℓ is above (xi, ui) and below (xi, gi). In other words, we need

axi + b > aiε+ bi and axi + b 6 ciε+ di. Hence, the case k = 1 can be handled by solving the

following linear program with variables a, b, ε:

Minimize ε
Subject to xia+ b− aiε > bi for all 1 6 i 6 n

xia+ b− ciε 6 di for all 1 6 i 6 n
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Figure 5.2 (a) The paths πu(ε) and πg(ε). (b) The visibility cone of p.

Since a 3-dimensional linear program can be solved in linear expected time [16], we get the following

theorem.

Theorem 5.4 The line ℓ minimizing error(F, ℓ) can be computed in O(m logm) expected time.

The second phase. As mentioned earlier, our algorithm uses ideas from the algorithm that

Goodrich [44] developed for the case of certain1 functions. Next we sketch his algorithm and explain

the difficulties in applying it to our problem.

For a certain function F, the error functions Ei(y) are cones whose bounding lines have slope −1
and +1, respectively. This implies that, using the notation from above, we have ui(0) = gi(0),
and ai = −1, and ci = 1 for all i. For a given ε, we define U(ε) to be the polygonal chain

(x1, u1(ε)), . . . , (xn, un(ε)) and G(ε) to be the polygonal chain (x1, g1(ε)), . . . , (xn, gn(ε)).
(Note that: the minimum-link path of error at most ε stabbing all segments xi × [ui, gi] does

not have to stay within the region bounded by U(ε) and G(ε).) Let πu(ε) be the Euclidean shortest

path from (x1, u1(ε)) to (xn, un(ε)) that is below G(ε) and above U(ε)—see Fig. 5.2(a) for an

illustration. Similarly, let πg(ε) be the Euclidean shortest path from (x1, g1(ε)) to (xn, gn(ε)) that

is below G(ε) and above U(ε). The paths πu(ε) and πg(ε) together form a so-called hourglass,

which we denote by H(ε). An edge e ∈ H(ε) is called an inflection edge if one of its endpoints

lies on U(ε) and the other one lies on G(ε). Goodrich [44] showed that there is a minimum-link

function F with error ε such that each inflection edge is contained in a link of F and in between two

links containing inflection edges the function is convex or concave. (In other words, the “zig-zags”

of F occur exactly at the inflection edges.)

Goodrich then proceeds by computing all values of ε at which the set of inflection edges changes;

these are called geodesic-critical values of ε. Note that the moments at which an inflection edge

1We use the term certain function for a function with exactly one possible value per sample point, that is,

when no uncertainty is involved.
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changes are exactly the moments at which the hourglass H(ε) changes. The number of geodesic-

critical values is O(n) and they can be found in O(n log n) time [44]. After finding these geodesic-

critical values, a binary search is applied to find two consecutive critical values εj , εj+1 such that

εj 6 ε∗ 6 εj+1. Then the inflection edges that F must contain are known, and from this F can be

computed using parametric search.

The main difference between our setting and the setting of Goodrich is that the points (xi, ui(ε))—
and, similarly, the points (xi, gi(ε))—do not move at the same speed. As a result the basic lemma

underlying the efficiency of the approach, namely that there are only O(n) geodesic-critical values

of ε, no longer holds. The following lemma shows that the number of such values can actually be

quadratic.

Lemma 5.5 There is an instance of n vertical segments xi × [ui(ε), gi(ε)] where the (xi, ui(ε))’s
and (xi, gi(ε))’s are moving at constant (but different) velocities such that the number of geodesic-

critical events is Ω(n2).

Proof. The example is presented in Fig. 5.3.(a). First we explain the locations of the points and then

describe their velocities. First put the two points (xn/2, un/2(ε)) = (n/2, b) and (xn/2, gn/2(ε)) =
(n/2, b+ c) for some b and c greater than 0. Then place two points (xn, un(ε)) = (n, b+ c− n/2)
and (xn, gn(ε)) = (n, b+n/2). Put two other points (xn−1, un−1(ε)) = (n−1, b+ c−n/2+1)
and (xn−1, gn−1(ε)) = (n − 1, b + n/2 − 1). This means that the line ℓ1 which passes through

(xn, un(ε)) and (xn−1, un−1(ε)) goes through (xn/2, gn/2(ε)) as well. Similarly (xn/2, un/2(ε))
is on the line ℓ2 passing through (xn, gn(ε)) and (xn−1, gn−1(ε)). (The lines are shown as dashed

lines in Fig. 5.3).

Next place all the points (xn/2+1, un/2+1(ε)), . . . , (xn−2, un−2(ε)) such that the set of segments

(xi, ui(ε))(xi+1, ui+1(ε)) for, n/2 6 i < n, forms a convex chain below the line ℓ1. Similarly put

(xn/2+1, gn/2+1(ε)), . . . , (xn−2, gn−2(ε)) such that the set of segments (xi, gi(ε))(xi+1, gi+1(ε))
for n/2 6 i < n forms a convex chain above ℓ2.

As the remaining points, put the points (xn/2−i, un/2−i(ε)) = (n/2− i, b+ c+ i+ c
∑i−1

j=1 j +

i
∑i−1

j=1 j − ε), and the points (xn/2−i, gn/2−i(ε)) = (n/2− i, un/2−i(ε) + 1+ ε) for odd values

of i (i 6 n/2).

Then put the points (xn/2−i, gn/2−i(ε)) = (n/2− i, b− i− c
∑i−1

j=1 j − i
∑i−1

j=1 j + ε) and the

points (xn/2−i, un/2−i(ε)) = (n/2 − i, gn/2−i(ε) − 1 − ε) for even values of i (i 6 n/2). The

overall structure for ε = 0 is shown in the Fig. 5.3.a. The Euclidean shortest path πu(0) is shown as

the bold gray line. We show for this set of points πu(ε) changes Ω(n2) as the value of ε increases.

Now consider the point (xn/2−1, un/2−1(ε)), with ε = c+ 2 this point reaches ℓ2—see Fig. 5.3.b.

It is easy to see that for ε = c+2 the value of un/2−2(ε) is b−c−2 and the point is on ℓ2. At ε = 0
the shortest path πu(0) passes through (xn/2−1, un/2−1(ε)). When ε increases from 0 to c + 2,

the points (xn−1, u(ε)), . . . , (xn/2, u(ε)) are added to πu(ε) one by one. Thus, there would be

n/2− 1 changes to πu(ε). At ε = c+ 2 the point (xn/2−2, un/2−2(ε)) reaches ℓ2 and at this time

πu(ε) passes through it. For ε = 2c+ 6 the point (xn/2−2, un/2−2(ε)) reaches ℓ1—see Fig. 5.3.b.

At the same time (xn/2−3, un/2−3(ε)) reaches ℓ1. By increasing ε from c+2 to 2c+6 again πu(ε)
changes n/2− 1 times, since the points (xn−1, u(ε)), . . . , (xn/2, u(ε)) are removed from it one by

one.

Similarly it can be shown that while each of the points (xn/2−i, un/2−i(ε)) for odd values of i and

(xn/2−i, gn/2−i(ε)) for even values of i are on the πu(ε), the shortest path πu(ε) changes n/2− 1
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Figure 5.3 The lower bound example. (a) The moment at which the first critical

event happens. (b) At this time we already had n/4 critical events.

(c) The second point has already made n/4 critical events.

times. This means that πu(ε) changes Ω(n2) and the lemma holds. ✷

The fact that the number of geodesic-critical values of ε is Ω(n2) is not the only problem we face.

The other problem is that detecting these events becomes more difficult in our setting. When all

points on U(ε) and on G(ε) move with the same speed, then these events occur only when two

consecutive edges of πu(ε) become collinear or when two consecutive edges of πg(ε) become

collinear. When the points have different speeds, however, this is no longer the case. In Fig. 5.2,

for example, the hourglass H(ε) can change when (x2, g2(ε)), (x4, g4(ε)) and (x6, g6(ε)) become

collinear (which could happen when (x4, g4(ε)) moves up relatively slowly).

Below we show how to overcome these two hurdles and obtain an algorithm with subquadratic

running time.

We start with a useful observation. Let Ψ(ε) be the simple polygon whose boundary consists of

the chains G(ε) and U(ε), and the vertical segments x1 × [u1(ε), g1(ε)] and xn × [un(ε), gn(ε]).
Let G(ε) be the visibility graph of Ψ(ε), that is, G(ε) is the graph whose nodes are the vertices of

Ψ(ε) and where two nodes are connected by an edge if the corresponding vertices can see each other

inside Ψ(ε). As ε increases and the vertices of Ψ(ε) move, G(ε) can change combinatorially, that is,

edges may appear or disappear.
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Lemma 5.6 The visibility graph G(ε) changes O(n2) times as ε increases from 0 to ∞. Moreover,

if G(ε) does not change when ε is restricted to some interval [ε1, ε2], then H(ε) does not change

either when ε is in this interval.

Proof. First we observe that any three vertices of Ψ(ε) become collinear at most once, because each

vertex moves with constant velocity and has constant x-coordinate. Indeed, three points p, q, r are

collinear when (py − qy)/(px − qx) = (py − ry)/(px − rx), and when px, qx, rx are constant and

py, qy, ry are linear functions of ε, then this equation has one solution (or possibly infinitely many

solutions, which means the points are always collinear).

Next we show that every edge e of G, once it disappears, cannot re-appear. Define ũi = (xi, ui) and

g̃i = (xi, gi). Assume that e = (ũi, ũj) for some i, j; the case where one or both of the endpoints

of e are on G(ε) is similar. None of the vertices of G(ε) can stop ũi and ũj from seeing each other,

since all ũi’s move down and all g̃i’s move up. Hence, the only reason for ũi and ũj to become

invisible to each other is that some vertex ũl, with i < l < j, crosses e. For ũi and ũj to become

visible again, ũl would have to cross e again, but this is impossible since ũi, ũj , ũj can become

collinear at most once. It follows that each edge can appear and disappear at most once, and since

there are O(n2) edges in total, G changes O(n2) times.

The second part of the lemma immediately follows from the fact that the shortest paths πu(ε)
and πg(ε) cannot “jump” as ε changes continuously, because shortest paths in a simple polygon

are unique. Hence, these shortest paths—and, consequently, H(ε)—can only change when G(ε)
changes. ✷

Computing all combinatorial changes of G still results in an algorithm with running time Ω(n2).
Next we show that it suffices to compute O(n4/3+δ) combinatorial changes of G in order to find

an interval [ε1, ε2] such that ε∗ ∈ [ε1, ε2] and G does not change in this interval. (Recall that ε∗

denotes the minimum error that can be achieved with k links, and that we thus wish to find).

Obtaining stable visibility cones. Let I be the active interval resulting from the first phase of

our algorithm. We now describe an approach to quickly find a subset of the events where G changes,

which we can use to further shrink I.

Let ℓ be a vertical line splitting the set of vertices of Ψ into two (roughly) equal-sized subsets. We

will concentrate on the visibility edges whose endpoints lie on the different sides of ℓ; the approach

will be applied recursively to deal with the visibility edges lying completely to the right or completely

to the left of ℓ. For a vertex p of Ψ(ε) we define σ(p, ε), the visibility cone of p in Ψ(ε), as the cone

with apex p that contains all rays emanating from p that cross a point on ℓ that is visible from p
within Ψ(ε). A crucial observation is that for a vertex p to the left of ℓ and a vertex q to the right of

ℓ, we have that (p, q) is an edge of G(ε) if and only if p ∈ σ(q, ε) and q ∈ σ(p, ε).

As the vertices of Ψ move, σ(p, ε) changes continuously but its combinatorial description (the

vertices defining its sides) changes at discrete times. Notice that the bottom side of σ(p, ε) passes

through a vertex of the lower boundary of Ψ(ε) lying to the same side of ℓ as p. More precisely, if

U(p, ℓ) denotes the set of vertices on the lower boundary of Ψ(ε) that lie between ℓ and the vertical

line through p, then the lower side of σ(p, ε) is tangent to the upper hull of U(p, ℓ)—see Fig. 5.2(b).

Similarly, if G(p, ℓ) denotes the set of vertices on the upper boundary of Ψ(ε) that lie between ℓ
and the vertical line through p, then the upper side of σ(p, ε) is tangent to the lower hull of G(p, ℓ).
The following lemma shows how many times the lower hull of a set of points changes when all of
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them move vertically upwards; by symmetry, the lemma also applies to the number of changes to the

upper hull of points moving downwards.

Lemma 5.7 Suppose n points in the plane move vertically upward, each with its own constant

velocity. Then the number of combinatorial changes to the lower hull is O(n). Furthermore, all

event times at which the lower hull changes can be computed in O(n log3 n) time.

Proof. Let {p1, . . . , pn} be the set of points moving vertically upwards with constant velocities,

ordered from left to right. Since the points move with constant velocities, any three points become

collinear at most once. As in the proof of Lemma 5.6, this implies that once a point disappears from

the lower hull, it cannot re-appear. Hence, the number of changes to the lower hull is O(n).

To compute all event times, we construct a balanced binary tree T storing the points {p1, . . . , pn}
in its leaves in an ordered manner based on their x-coordinates. At each node ν of T , we maintain

a kinetic data structure to track LH(ν), the lower hull of the points stored in the subtree rooted at

ν. Let νr and νl be the right and left child of node ν in T . Then LH(ν) is formed by portions of

LH(νr) and LH(νl) and the common tangent of LH(νr) and LH(νl). This implies that in order to

track all changes to the lower hull of the whole point set, it suffices to track for each node ν the

changes to common tangent of LH(νr) and LH(νl). We thus maintain for each node ν a certificate

that can be used to detect when the tangent changes. This certificate involves at most six points:

the two points determining the current tangent and the at most four points (two on LH(νr) and two

on LH(νl)) adjacent to these points. The failure times of the O(n) certificates are put into an event

queue. When a certificate fails we update the corresponding tangent, and we update the failure time

of the certificate (which means updating the event queue). A change at ν may propagate upwards

in the tree—that is, it may trigger at most O(log n) changes in ascendants of ν. Hence, handling a

certificate failure takes O(log2 n) time. Since the number of changes at each node ν is the number

of points stored at the subtree rooted at ν, we handle at most O(n log n) events in total. Each event

takes O(log2 n) time, and so we can compute all events in O(n log3 n) time. ✷

Our goal is to shrink the active interval I to a smaller interval such that the visibility cones of the

points are stable, that is, do not change combinatorially. Doing this for each p individually will still

be too slow, however. We therefore proceed as follows.

Recall that we split Ψ into two with a vertical line ℓ. Let R be the set of vertices to the right of ℓ.
We show how to shrink I so that the cones of the points p ∈ R are stable. Below we only consider

the top sides of the cones, which pass through a vertex of G(ε); the bottom sides can be handled

similarly.

We construct a binary tree TG,R on the points in G(ε) ∩ R, based on their x-coordinates. For a

node ν, let P (ν) denote its canonical subset, that is, P (ν) denotes the set of points in the subtree

of ν. Using Lemma 5.7 we compute all event times—that is, values of ε—at which the lower hull

LH(P (ν)) changes, for each node ν. This takes O(n log4 n) time in total and gives us a set S of

O(n log n) event times. We then call procedure ShrinkActiveInterval(S, I) to further shrink I,

taking O(n log2 n+m log n) time. In the new active interval, none of the maintained lower hulls

changes combinatorially. This does not mean, however, that the top sides of the cones are stable. For

that we need some more work.

Recall that the top side of σ(p, ε) is given by the tangent of p to LH(G(p, ℓ)), where G(p, ℓ) is the

set of points on the G(ε) in between p and ℓ (with respect to their x-coordinates). The set G(p, ℓ) can

be formed from O(log n) canonical subsets in TG,R. Each canonical subset P (ν) gives a candidate
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tangent for p, namely the tangent from p to LH(P (ν)). Even though the lower hulls, LH(P (ν)), are

stable, the tangents from p to the lower hulls are not. Next we describe how to shrink the active

interval, so that these tangents become stable, and we have O(log n) stable candidates.

Consider a canonical subset P (ν) and let p1, . . . , ph be the vertices of LH(P (ν)), ordered from left

to right. An important observation is that, as ε increases and the points move, the tangent from p
to LH(P (ν)) steps from vertex to vertex along p1, . . . , ph, either always going forward or always

going backwards. (This is true because p can become collinear with any lower-hull edge at most

once.) We can therefore proceed as follows. For each point p and each of its canonical subsets,

we compute in constant time at what time p and the middle edge of the lower hull of the canonical

subset become collinear. Finding the middle edge can be done using binary search, if we store the

lower hulls LH(P (ν)) as a balanced tree. Since we have n points and each of them is associated

with O(log n) canonical subsets, in total we have O(n log n) event times. We put these into a set S
and call ShrinkActiveInterval(S, I). In the new active interval the number of vertices of each lower

hull to which p can be tangent has halved. We keep on shrinking I recursively, until we are left with

an interval I such that, for each p and any canonical subset relevant for p, the tangent from p to the

lower hull is stable. In total this takes O(n log2 n+m log n) time.

Note that within I we now have O(log n) stable candidate tangent lines for each p. We then

compute all O(log2 n) times at which the candidate tangent lines swap (in their circular order

around p), collect all O(n log2 n) event times, and call ShrinkActiveInterval once more, taking

O(n log3 n+m log n) time.

After this, we are left with an interval I such that the top side of the cone of each p ∈ R is stable. In

a similar way we can make sure that the bottom sides are stable, and that the top and bottom sides of

the points to the left of ℓ are stable. We get the following lemma.

Lemma 5.8 In O(n log3 n+m log n) time we can shrink the active interval I so that in the new

active interval all the cones defined with respect to ℓ are stable.

We denote the set of edges of G crossing ℓ by E(ℓ). Next we describe a randomization algorithm to

shrink the active interval I such that in the new active interval, the edges of E(ℓ) are stable. After

this, we recurse on the part of Ψ to the left of ℓ and on the part to the right, so that the whole visibility

graph becomes stable.

As already mentioned, (p, q) is an edge of E(ℓ) if and only if p ∈ σ(q, ε) and q ∈ σ(p, ε). Thus

E(ℓ) changes when a point p becomes collinear with a side of σ(q, ε) for some q. Without loss of

generality we assume p ∈ R and q ∈ L. Thus we have a set H of at most n half-lines originating

from points in L, where each half-line is specified by two points of L, and a set of n/2 points from R,

and we want to compute the event times at which a point of R and a half-line of H become collinear.

Again, explicitly enumerating all these event times takes Ω(n2) time, so we have to proceed more

carefully. To this end we use a variant of random halving [62], which can be made deterministic

using the expander approach [54]. We start with a primitive tool which is used in our algorithm.

Lemma 5.9 For any ε1 and ε2, and any δ > 0, we can preprocess H and R in O(n4/3+δ) time into

a data structure that allows the following: count in O(n4/3+δ) time all events (that is, all the times

at which a half-line in H and a point in R become collinear) lying in [ε1, ε2], and select in O(log n)
time one of these events uniformly at random.

Proof. (Sketch of proof) Consider a half-line l ∈ H and a point p ∈ R. They become collinear at a
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time in [ε1, ε2] if and only if either p(ε1) is below l(ε1) and p(ε2) is above l(ε2), or p(ε1) is above

l(ε1) and p(ε2) is below l(ε2). Therefore we need a data structure to report for all l ∈ H the points

of R lying to a given side of l(ε1) or l(ε2) . We construct a multilevel partition tree over points of

R at times ε1 and ε2 (one level dealing with ε1, the other dealing with ε2), each of whose nodes is

associated with a canonical subset of R. The total size of all canonical subsets is O(n4/3+δ). For

a query line l, the query procedure selects O(n1/3+δ) pairwise disjoint canonical subsets whose

union consists of exactly those points of R at different sides of l at times ε1 and ε2. Based on this

we create a set of pairs {(Ai, Bi)} with
∑

(|Ai|+ |Bi|) = O(n4/3+δ) where Ai is a subset of R
and Bi is the subset of H and each p ∈ Ai and l ∈ Bi become collinear at some time in [ε1, ε2].
First we select a pair (Ai, Bi) at random, where the probability of selecting (Ai, Bi) is proportional

to |Ai| ∗ |Bi|. Then we select an element uniformly at random from Ai and an element uniformly at

random from Bi. ✷

Based on Lemma 5.9 we proceed as follows. Let I = [ε1, ε2] be the current active interval. Let N
be the number of event times in I; we can determine N using Lemma 5.9. Then select an event

time ε3 uniformly at random from the event times in I, again using Lemma 5.9, and we either shrink

I to [ε1, ε3] or to [ε3, ε2] in O(m) time. We recursively continue shrinking I until the set of events

inside I is O(n4/3); the expected number of rounds is O(log n). Once N = O(n4/3) we list all

event times, and do a regular binary search.

After this we are left with an active interval I such that the set A(ℓ) of visibility edges crossing ℓ is

stable. We recurse on both halves of Ψ to get the whole visibility graph stable. Putting everything

together we get the following result.

Lemma 5.10 For any δ > 0 in O(n4/3+δ + m logm) expected time we can compute an active

interval I containing ε∗ where the visibility graph G(ε) is stable.

As observed before, the fact that the visibility graph is stable during the active interval I = [ε1, ε2]
implies that the set of inflection edges is stable. This means we can compute all inflection edges

during this interval by computing in O(n) time the shortest paths πu(ε1) and πg(ε1). Once this has

been done, we can proceed in exactly the same way as Goodrich [44] to find ε∗. Given ε∗ we can

find a k-link path of error ε∗ by solving the min-k problem for ε∗. This leads to our main result.

Theorem 5.11 Let F: R → R be an uncertain function whose values are given at n points

{x1, . . . , xn} and let m be the total number of possible values at these points. For a given k,

and any δ > 0, we can compute in O(n4/3+δ +m log n) time a piecewise-linear function F with at

most k links that minimizes error(F,F) 6 ε.



Chapter 6

Concluding Remarks

In this thesis we studied the design of algorithms for making optimal geometric (data) structures.

In particular, we studied three structures from this perspective: BSP trees (a widely used space-

partitioning structure), rectilinear r-partitions (which can be used to design R-trees), and polygon

decompositions (both for arbitrary simple polygons and for rectilinear simple polygons). We

considered the optimality of these structures with respect to size (for BSPs) and stabbing number

(for rectilinear r-partitions and polygon decompositions). All of these data structures have been

studied extensively before and several worst-case optimal algorithms have been proposed for them.

However, the existing algorithms did not guarantee solutions that are optimal for the given input.

Hence, we decided to study them from a different point of view, namely instance-optimality. In other

words, we view the construction of these structures as an optimization problem. The main question

we tried to answer in this thesis was the following: given a specific geometric structure (like BSP,

rectilinear r-partition, . . . ) and a cost function (like size, crossing number, . . . ), is it possible to

find an algorithm that, given an input instance, constructs a data structure which is optimal or close

to optimal with respect to that input instance? In other words, instead of worst-case optimal data

structures which have been proposed for all of these data structures, we tried to find instance-optimal

data structures. Below we summarize our contributions in this domain, and discuss some directions

for further research.

In Chapter 2 of the thesis, we started our research on finding optimal geometric data structures by

considering BSPs. We showed that finding an optimal auto-partition is NP-hard, but it is still open

if finding an optimal free or restricted BSP is NP-hard or not. Our NP-hardness proof also showed

that even to find out if a set of segments admits an auto-partition without cuts is NP-hard. This is not

true for free and restricted BSPs, where we can decide in O(n2) if a BSP without cuts exists for a

set of segments or not. This implies that to prove NP-hardness of finding optimal free or restricted

BSPs we may need to follow another approach. The main question that we tried to answer is still

open: is it possible to approximate an optimal auto-partition for a set of line segments in the plane?

The same question can be considered for other types of BSPs. We also studied the relation between

the number of cuts in an optimal free BSP and an optimal restricted BSP for a set of line segments

in the plane. Our study shows that the number of cuts in an optimal restricted BSP is at most twice

the number of cuts in an optimal free BSP. Thus, when searching for an approximation to compute

optimal BSPs one can focus on finding optimal restricted BSPs and this gives a 2-approximation for
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making free BSPs. It might be interesting to find a relation between the number of cuts in an optimal

auto-partition to the number of cuts in an optimal free or restricted BSP.

It is known that computing an optimal rectilinear BSP for a set of axis-parallel segments in the

plane can be done using dynamic programming in O(n5) time [19]. An interesting question is

whether there are other restricted input sets for which one can compute an optimal BSP in polynomial

time. For example, can we efficiently compute an optimal auto-partition for a set of c-oriented line

segments? and what is the complexity of computing an optimal BSP for a set of disks. Another

direction of further research is to consider a different optimization criterion. For example, what is the

complexity of computing a BSP of minimum depth? Again, for the axis-parallel case this can be done

in O(n5) time [19], but for the general case this problem has not been studied so far. Considering

BSPs of low stabbing number would be another natural problem. Finally, computing optimal BSPs

can of course also be studied in 3- and higher-dimensional space.

After studying BSPs, we turned our attention to rectilinear r-partitions in Chapter 3 of the thesis.

Again the main goal was to come up with an instance-optimal algorithm. In this case the criterion

that we wanted to optimize was the (rectilinear) stabbing number of the partition. We proved that the

problem for a set of n points is NP-hard when r is considered as part of the input. Our proof shows

that finding a constant approximation factor less than 6/5 is also impossible unless P = NP. We also

proposed an exact algorithm with polynomial running time for the case when r is a constant. we gave

a faster 2-approximation algorithm for constant r, but unfortunately even this algorithm is too slow

to be of practical use. Thus, it would be interesting to find a faster approximation algorithm. Another

interesting question is whether a PTAS exists for constant r. (As mentioned above, for general r
the problem cannot be approximated with 6/5 unless P=NP.) We showed that considering rectilinear

r-partitions with only disjoint rectangles does not give a good approximation factor, so the disjoint

rectilinear r-partitions should not be considered for searching an approximation or PTAS. We also

performed an experimental investigation on the problem of finding optimal rectilinear r-partitions.

In particular, we tested four different heuristics. The result turned out to be that a new kd-tree variant,

which we called the windmill kd-tree gives the best results. However, the fact that this windmill

kd-tree results in good R-trees in practice is still unclear. The windmill kd-tree tries to minimize

the stabbing number of axis-aligned lines. In practice, however, the query regions are not full lines

but rectangles. The boundary of these rectangles is formed by horizontal and vertical segments, and

the length of these segments is short compared to the input set. So it might be that the windmill

kd-tree works well for long and skinny rectangles, but its performance for a set of fat query regions is

unclear and needs more investigation. Another open and interesting problem is to try to find optimal

rectilinear r-partitions with respect to a set of given query regions. Then, we can try to minimize

the maximum or average stabbing number. We can also try to minimize the stabbing number of a

complete R-tree, instead of one level, but it seems to be more difficult. The rectilinear r-partitions

are a special case of simplicial partitions. Nothing is known about the complexity of finding an

optimal simplicial partition. Obviously, finding the optimal simplicial partition or an approximation

for it, is an interesting topic for future research.

Next, we considered the problem of partitioning a simple polygon. We studied rectangular partitions

for rectilinear polygons and Steiner triangulations for simple polygons. Here the criterion to be

optimized was the stabbing number of the resulting partition. We proposed a 3-approximation for

finding optimal rectangular partitions for rectilinear polygons. Our algorithm is based on finding an

optimal partition for a histogram. Then we gave an O(1)-approximation for Steiner triangulation of

a simple polygon. We did not manage to find a polynomial-time exact algorithm for the problem, but

we could not find an NP-hardness proof either. Thus, the first open problem would be to find out
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the complexity of these problems. Our approach to find O(1)-approximation for optimal Steiner

triangulation is by partitioning the simple polygon into a set of edge visible polygons. After that

we then find good Steiner triangulations for each of these edge visible polygons. Thus, an open

problem is to try to find optimal or close to optimal Steiner triangulations for these edge visible

polygons. Another important open problem in this area is solving both of these problems for the

case of polygons with holes. Proving NP-hardness of the problem in the presence of holes could

be easier than the case of simple polygons. As mentioned above, we have given a polynomial-time

optimal algorithm for the case of histograms. Another direction of research could be to try and extend

the class of polygons for which we have a polynomial-time solution, for example to x-monotone

rectilinear polygons or orthoconvex rectilinear polygons.

Finally, we considered another type of optimization problems: how to best approximate a function F
with another function with fewer links. This problem has been considered in several papers before.

However, we were (as far as we know) the first to study the problem in uncertain model where

we are given a set of values x1, . . . , xn—the x-coordinates of the breakpoints of the function—

and for each xi we are given a set yi,1, . . . , yi,mi
of potential values for F(xi) together with the

associated probabilities pi,j . We solved both min-k and min-ε problems for this uncertain model. An

interesting question is the following: given an ε > 0 and an uncertain function F defined over a set

X = {x1, . . . , xn}, whether it is possible or not to find a subset Q ⊂ X of size depending on ε such

that for any line ℓ, error(F, ℓ) is at most (1 + ε) times error error(F, ℓ) over set Q. In other words

an important open problem is to find out whether exists a core-set of X or not. Another interesting

direction of further research is to solve same problem for the case where the approximation function

is not required to be piecewise linear but some (low-degree) polynomial.
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[80] C. D. Tóth. Binary plane partitions for disjoint line segments. In Proc. 25th Symposium on

Computational Geometry, pages 71–79, 2009.

[81] G. T. Toussaint. On the complexity of approximating polygonal curves in the plane. In Proc.

International Symposium on Robotics and Automation., 1985.

[82] D. P. Wang, D. P. Huang, H. S. Chao, and R. C. T. Lee. Plane sweep algorithms for polygonal

approximation problems with applications. In Proc. 4th International Symposium on Algorithms

and Computing, 1993.

[83] Y. Zhou and S. Suri. Analysis of a bounding box heuristic for object intersection. In Proc. 10th

Annual Symposium on Discrete Algorithms, pages 830–839, 1999.



94 References



Summary

Optimal geometric data structures

Spatial data structures form a core ingredient of many geometric algorithms, both in theory and in

practice. Many of these data structures, especially the ones used in practice, are based on partitioning

the underlying space (examples are binary space partitions and decompositions of polygons) or

partitioning the set of objects (examples are bounding-volume hierarchies).

The efficiency of such data structures—and, hence, of the algorithms that use them—depends on

certain characteristics of the partitioning. For example the performance of many algorithms that

use binary space partitions (BSPs) depends on the size of the BSPs. Similarly, the performance

of answering range queries using bounding-volume hierarchies (BVHs) depends on the so-called

crossing number that can be associated with the partitioning on which the BVH is based. Much

research has been done on the problem of computing partitioning whose characteristics are good

in the worst case. In this thesis, we studied the problem from a different point of view, namely

instance-optimality. In particular, we considered the following question: given a class of geometric

partitioning structures—like BSPs, simplicial partition, polygon triangulations, . . . —and a cost

function—like size or crossing number—can we design an algorithm that computes a structure

whose cost is optimal or close to optimal for any input instance (rather than only worst-case optimal).

We studied the problem of finding optimal data structures for some of the most important spatial

data structures.

As an example having a set of n points and an input parameter r, It has been proved that there are

input sets for which any simplicial partition has crossing number Ω(
√
r). It has also been shown that

for any set of n input points and the parameter r one can make a simplicial partition with stabbing

number O(
√
r). However, there are input point sets for which one can make simplicial partitions

with lower stabbing number. As an example when the points are on a diagonal, one can always make

a simplicial partition with stabbing number 1.

We started our research by studying BSPs for line segments in the plane, where the cost function

is the size of the BSP. A popular type of BSPs for line segments are the so-called auto-partitions.

We proved that finding an optimal auto-partition is NP-hard. In fact, finding out if a set of input

segments admits an auto-partition without any cuts is already NP-hard. We also studied the relation

between two other types of BSPs, called free and restricted BSPs, and showed that the number of cuts

of an optimal restricted BSP for a set of segments in R
2 is at most twice the number of cuts of an

optimal free BSP for that set. The details are being represented in Chapter 2 of the thesis.
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Then we turned our attention to the so-called rectilinear r-partitions for planar point sets, with the

crossing number as cost function. A rectilinear r-partition of a point set P is a partition of P into r
subsets, each having roughly |P |/r points. The crossing number of the partition is defined using

the bounding boxes of the subsets; in particular, it is the maximum number of bounding boxes that

can be intersected by any horizontal or vertical line. We performed some theoretical as well as

experimental studies on rectilinear r-partitions. On the theoretical side, we proved that computing

a rectilinear r-partition with optimal stabbing number for a given set of points and parameter r is

NP-hard. We also proposed an exact algorithm for finding optimal rectilinear r-partitions whose

running time is polynomial when r is a constant, and a faster 2-approximation algorithm. Our last

theoretical result showed that considering only partitions whose bounding boxes are disjoint is not

sufficient for finding optimal rectilinear r-partitions. On the experimental side, we performed a

comparison between four different heuristics for constructing rectilinear r-partitions. The so-called

windmill kd-tree gave the best results. Chapter 3 of the thesis describes all the details of our research

on rectilinear r-partition.

We studied another spatial data structure in Chapter 4 of the thesis. Decomposition of the interior

of polygons is one of the fundamental problems in computational geometry. In case of a simple

polygon one usually wants to make a Steiner triangulation of it, and when we have a rectilinear

polygon at hand, one typically wants to make a rectilinear decomposition for it. Due to this reason

there are algorithms which make Steiner triangulations and rectangular decompositions with low

stabbing number. These algorithms are worst-case optimal. However, similar to the two previous data

structures, there are polygons for which one can make decompositions with lower stabbing numbers.

In Chapter 4 we proposed a 3-approximation for finding an optimal rectangular decomposition

of a rectilinear polygon. We also proposed an O(1)-approximation for finding optimal Steiner

triangulation of a simple polygon.

Finally, in Chapter 5 of the thesis, we considered another optimization problem, namely how to

approximate a piecewise-linear function F : R → R with another piecewise-linear function with

fewer pieces. Here one can distinguish two versions of the problem. The first one is called the min-k
problem; the goal is then to approximate the function within a given error ε such that the resulting

function has the minimum number of links. The second one is called the min-ε problem; here the

goal is to find an approximation with at most k links (for a given k) such that the error is minimized.

These problems have already been studied before. Our contribution is to consider the problem for

so-called uncertain functions, where the value of the input function F at its vertices is given as a

discrete set of different values, each with an associated probability. We show how to compute an

approximation that minimizes the expected error.



Curriculum Vitae

Amirali Khosravi was born on the 31st of October 1980 in Tehran, Iran. He graduated from the Tabriz

branch of the National School for Development of Exceptional Talents in Mathematics and Physics

in 1998. He received his Bachelor degree in computer engineering from Amirkabir University of

Technology in 2003. Then, he got his Master degree in computer engineering from Sharif University

of Technology in 2005. From Nov. 2007 to Sep. 2011 he was a Ph.D. candidate in the Algorithms

Group of Department of Mathematic and Computer Science of the Technische Universiteit Eindhoven

(TU/e).



Titles in the IPA Dissertation Series since 2005

E. Dolstra. The Purely Functional Soft-

ware Deployment Model. Faculty of Science,

UU. 2006-01

R.J. Corin. Analysis Models for Security Pro-

tocols. Faculty of Electrical Engineering, Math-

ematics & Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computational Complex-

ity of Evolving Systems. Faculty of Science,

UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal

Specification and Analysis of Hybrid Systems.

Faculty of Mathematics and Computer Sci-

ence and Faculty of Mechanical Engineering,

TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of UML

Models: Tool Support and Compositionality.

Faculty of Mathematics and Natural Sciences,

UL. 2006-05

M. Hendriks. Model Checking Timed Au-

tomata - Techniques and Applications. Faculty

of Science, Mathematics and Computer Science,

RU. 2006-06
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