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ABSTRACT 

Aim of this paper is reformulation of global image thresholding problem as a well-founded statistical 

method known as change-point detection (CPD) problem. Our proposed CPD thresholding algorithm does 

not assume any prior statistical distribution of background and object grey levels. Further, this method is 

less influenced by an outlier due to our judicious derivation of a robust criterion function depending on 

Kullback-Leibler (KL) divergence measure. Experimental result shows efficacy of proposed method 

compared to other popular methods available for global image thresholding. In this paper we also propose 

a performance criterion for comparison of thresholding algorithms. This performance criteria does not 

depend on any ground truth image. We have used this performance criterion to compare the results of 

proposed thresholding algorithm with most cited global thresholding algorithms in the literature. 
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1. INTRODUCTION 

A grey-level digital image is a two dimensional signal LI →→→→ΖΖΖΖ××××ΖΖΖΖ: , where L={ li∈  and 

i=1,2,…,M} is the set of M grey-levels. The problem of automatic thresholding is to estimate an 

optimal threshold t0 which segments the image into two meaningful sets, viz. background 

B={bb(x,y)=1| I(x,y)<t0 } and foreground F={bf(x,y)=1| I(x,y)≥ t0} or the opposite. The function 

I(x,y) can take any random value li∈L; so, sampling distribution of grey levels becomes an 

important deciding factor for t0. In many image processing applications, automating the process 

of optimal thresholding is extremely important for low-level segmentation or even final 

segmentation of object and background. 

In general, automatic thresholding algorithms are divided into two groups, viz. global and local 

methods. Global methods estimate a single threshold for the entire image; local methods find an 

adaptive threshold for each pixel depending on the characteristics of its neighborhood. Global 

methods are used if the image is considered as a mixture of two or more statistical distributions. 

In this paper, we address the global thresholding methods guided by the image histogram. Most of 

the cases global thresholding methods try to estimate the threshold (t0) iteratively by optimizing a 

criterion function [1]. Some other methods attempt to estimate optimal t0 depending on histogram 

shape [2, 3], image attribute such as topology [5] or some clustering techniques [4, 8, 20]. 

Comprehensive surveys discussing various aspects of thresholding methods can be found in the 

references [1, 6, 7]. 
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Many of these classical and recent schemes perform remarkably well for images with matching 

underlying assumptions but fail to yield desired results otherwise. Some of the explicit or implicit 

reasons for their failure could be: (i) assumption of some standard distribution (e.g. Gaussian) 

[19], in reality though, foreground and background classes can have arbitrary asymmetric 

distributions, (ii) use of non-robust measures for computing criterion functions which get 

influenced by outliers. Further, the effectiveness of these algorithms greatly decreases when the 

areas under the two classes are highly unbalanced. Some of the methods depend on user specified 

constant (e.g. Renyi or Tsallis entropy based methods) [17, 18], greatly compromising their 

performance without its appropriate value. 

This paper proposes an algorithm for addressing these drawbacks using a statistical technique 

known as change-point detection (CPD). For the last few decades, models of change-point 

detection are successfully applied by researchers in statistics and control theory for detecting 

abrupt changes in the statistical behavior of an observed signal or time series [9]. The general 

principle of change-point detection considers an observed sequence of independent random 

variables {Yk}1…n with a probability density function (pdf) pθ(y) depending on a parameter θ. If 

any change occurs in the sequence then it is assumed that parameter θ takes a value θ0 before any 

change and at some unknown time t0 alters to θ1 (≠θ0). The main problem of statistical change-

point detection is to decide the change in parameter and also the time of change. The theory of 

CPD is used in this paper to decide the global threshold in an image depending on the change in 

the histogram. 

Further, in section 4 of this paper, we propose a new performance index for the evaluation of 

thresholding algorithms. It depends on the structural difference between the shapes of background 

and foreground. The advantage of this performance index is that it does not depend on any ground 

truth image. We use this performance index to compare different thresholding algorithms 

including ours. 

Rest of the paper is organized as follows: Section 2 provides a short introduction to the problem 

of statistical change-point detection, section 3 formulates and derives the global thresholding as a 

change-point detection problem, section 4 describes our proposal for thresholding performance 

criteria, section 5 presents the experimental results and compares the results with various often 

cited global thresholding algorithms, and finally section 6 summarizes main ideas in this paper. 

2. THE CHANGE-POINT DETECTION (CPD) PROBLEM 

The Change-point detection (CPD) problem can be classified into two broad categories: real-time 

or online and retrospective or offline change-point detection. The first targets applications where 

the instantaneous response is desired such as robot control; on the other hand, retrospective or 

offline change-point detection is used when longer reaction periods are allowed e.g. image 

processing problems [10]. The later technique is likely to give more accurate detection since the 

entire sample distribution is accessible. Since the image and the corresponding histogram are 

available to us, we concentrate on offline change-point detection in this paper. We also assume 

that there is only one change point throughout the given observations {yk}1…n. When required, this 

assumption can easily be relaxed and extended to multiple change point detection that can be 

applied in multi-level threshold detection problems. 

2.1. Problem Statement 

When taking an offline point of view about the observations y1, y2…, yn with corresponding 

probability distribution functions F1, F2, …, Fn, belong to a common parametric family F(φ), 

where φ∈ R
p
, p>0. Then the change point problem is to test the null hypothesis (H0) about the 

population parameter φj,  j = 1,2, …, n: 
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where θ0 ≠ θ1 and k is an unknown time of change. 

These hypotheses together disclose the characteristics of change point inference, determining if 

any change point exists in the process and estimating the time of change t0 = k. The likelihood 

ratio corresponding to the hypotheses H0 and H1 is given by 

 
where  and  are pdfs before and after the change occurs and  is the overall probability 
density. When the only unknown parameter is t0, its maximum likelihood estimate (MLE) is given 
by the following statistic 

 

 

2.2. Offline Estimation of the Change Time 

When the problem is to estimate the change time (t0) in the sequence of observations {yj}1...n and 

if we assume the existence of a change point with the same presumption as in the last section. 

Therefore, considering equation (2) and (3) and the fact that  is a constant for a given data, 

the corresponding MLE estimate is 

 

where  is a maximum log-likelihood estimate of t0. Rewriting equation (4) as 

 

As  remains constant for a given observation, estimation of  is simplified as 

       
  

Therefore, the MLE of the change time t0 is the value which maximizes the sum of log-likelihood 

ratio corresponding to all k possible values given by equation (6). 

3. CHANGE-POINT DETECTION FORMULATION OF GLOBAL 

THRESHOLDING  

3.1. Assumptions 

Let (χ, βχ, Pθ)θ∈∈∈∈Θ be the statistical space of discrete grey-levels associated with a random variable 

Y:ℤℤℤℤxℤℤℤℤ→ℤℤℤℤ, where βχ is the σ-field of Borel subsets A ⊂⊂⊂⊂ χ and {Pθ}θ∈∈∈∈Θ is a family of probability 

distributions defined on the measurable space (χ, βχ) with parameter space Θ, an open subset of 
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ℝ
q, q>0.We consider a finite population Π of all gray-level images with N elements that could be 

classified into M categories or classes L={l1, ..., lM}, i.e. each sample point in the sample image 

can take any random gray-level values from the set L. 

3.2. Change-Point Detection Formulation 

Since we are mainly interested in discrete gray-level data, we consider the multinomial 

distribution model. Let ℘℘℘℘={Ei}, i=1,...,M be a partition of χ. The formula Prθ(Ei) = pi(θ), i = 1, . . 

., M, defines the probability of the li
th gray-level in the discrete statistical model. Further we 

assume {y1,. . .,yN} to be a random sample from the population described by the random variable 

Y, representing the gray-level of a pixel. And let , where IE is the index function. 

Then we can approximate pi(θ)≈Ni/N, i=1,…, M. Estimating θ by maximum likelihood method 

consists of maximizing the joint probability distribution for fixed n1, . . . , nM, 

 
 

or equivalently maximizing the log-likelihood function 

 

         
Therefore, referring to equation (4), problem of estimating the threshold by MLE can be stated as 

 

      
    

where unknown parameter θ =θ0 before the change and θ= θ1 after the change. Now, equation (9) 

can be expanded as 

      
 

The first term within the bracket on the right side of equation (10) is a constant and the last term 

is independent of j, i.e. it cannot influence the MLE. So, eliminating these terms from equation 

(10) and simplifying we get 

 

      
    

Multiplying and dividing N on right side of equation (11) we get 

      
    

assuming pi(θ)≈ni/N equation (12) can be written as 
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The expression in (13) under the summation denotes Kullback-Leibler (KL) divergence between 

the density  and , where  and  denotes the pdfs above and below the 

threshold location j; therefore equation (13) can be written as 

      

Since total sum  is independent of j, i.e. a constant for a given observation, a 

sample image, therefore equation (14) can be rewritten as 

 
     

Hence, equation (15) provides the maximum likelihood estimation of the threshold t0. Equation 

(15) can be restated as the following proposition: 

Proposition 1: In a mixture of distributions, the maximum likelihood estimate of change-point is 

found by minimizing the Kullback-Leibler divergence of the probability mass across successive 

thresholds. 

In spite of this striking property, KL divergence is not a ‘metric’ since it is not symmetric. An 

alternative symmetric formula by “averaging” the two KL divergences is given as [11] 

     
  

An attractive property of KL divergence is its robustness i.e. KL divergence is little influenced 

even when one component of mixture distribution is considerably skewed. A proof of robustness 

can be found for generalized divergence measures in [11, 12]. 

 

This method can be easily extended to find multiple thresholds for several mixture distributions 

by identifying multiple change-points simultaneously. 

3.3. Implementation 

Section Let us consider an image I:ℤxℤ�L, whose pixels assume M gray-levels in the set L={l1, 

l2,…, lM }. The empirical distribution of the image can be represented by a normalized histogram 

p(li)=ni/N, where ni is the number of pixels in ith gray-level and N is the total number pixels in the 

image. 

Now, suppose we are grouping the pixels into two classes B and F (background and object) by 

thresholding at the level k. Histogram of gray-levels can be found for the classes B and F; let us 

denote them as pB(li)and pF(li). Following statistics are calculated for the level k. 
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and finally,  

           
      

The minimum value of CPD(k) for all values of k in the range [1,…, M] gives an optimal 

estimate of threshold t0. 

4. THRESHOLDING PERFORMANCE CRITERIA 

The objective of the global thresholding algorithm is to divide the image into two binary images 

generally called background and foreground (object). Most of the histogram-based thresholding 

algorithms try to devise a criterion function which produces a threshold to separate the shapes and 

patterns of the foreground and background as much as possible. A good thresholding algorithm 

can be judged by how well it sets apart the object and the background binary images, i.e. how 

much dissimilarity exists between the foreground and the background. Since the background and 

foreground images are binary images dissimilarity between them can be measured by any binary 

distance measures. Based on this observation, we propose a threshold evaluation criterion, which 

tries to find the dissimilarity between the patterns and shapes in foreground and background. 

A number of binary similarity and distance measures have been proposed in different areas, a 

comprehensive survey of them can be found in Choi et al. [13]. In order to understand the 

distance measure used in our work, it is helpful to refer to the following contingency table (Table 

1): 
Table 1. Binary contingency table 

 

 
Foreground 

Background 
      1               0 

1 a b 

0 c d 

The cell entries in Table 1 are the number of pixel locations for which the two binary images 

agree or differ. For example, cell entry ‘a’ is the total count of pixel locations where both binary 

images take a value one. Hence, b + c denote the total count where foreground and background 

pixels differ (Hamming distance) and a+d is the total count where they agree. 

In order to extract the shapes and patterns present in the foreground (F) and background (B) 

images, we use binary morphological gradient. The binary Morphological gradient is the 

difference between the eroded and dilated images. Obviously, any other edge or texture detection 

algorithm for binary images can be also used to extract the objects present in foreground and 

background. 

In this paper, we use a simple binary distance measure known as Normalised Manhattan distance 

(DNM) given by 

 

 

where Fg and Bg denote Binary Morphological gradients of foreground (F) and background(B) 

respectively. The range of this distance measure is the interval [0, 1]. It is expected that well-

segmented image will have DNM close to 1, while in the worst case DNM =0. The advantage of this 

algorithm is that it does not require any ground truth image. 
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5. EXPERIMENTAL RESULTS WITH DISCUSSION 

To validate the applicability of proposed Change-Point Detection (CPD) thresholding algorithm, 

we provide experimental results and compare the results with existing algorithms. The first row of 

Figure 1 shows test images that are labeled from left to right as Dice, Rice, Object, Denise, Train, 

and Lena respectively. 

TABLE 2: Threshold evaluation criterion (DNM) for the test images (A) Dice, (B) Rice, (C) Object, (D) 

Denise, (E) Train, and (F) Lena 

 

 
 

The images have deliberately been so selected that the difference of areas between foreground 

and background is hugely disproportionate. This gives us an opportunity to test the robustness of 

CPD algorithm. To compare the results, we selected five most popular thresholding algorithms, 

namely, Kittler-Illingworth [14], Otsu [15], Kurita [16], Sahoo [17] and Entropy [18]. 

In Figure 1 third row onwards show the outputs of different thresholding algorithms. The last 

row shows the output of the proposed CPD thresholding algorithm. Due to substantial skewness 

in the distributions of gray-levels in object or background, most of the algorithms confused 

foreground with background. But results in the last row clearly show that CPD works 

significantly better in all cases. 

Table 2 shows optimal thresholds of five selected algorithms and the CPD algorithm using our 

proposed performance criteria. It is clear that CPD performs reasonably well. For example, 

consider the Denise image and Train image, Kittler-Illingworth thresholding totally fails to 

distinguish the object from the background due to its assumption of Gaussian distribution for both 

foreground and background [19]. Otsu’s and Kurita’s method yield almost same output due to 

their common assumptions. Corresponding histograms are also reproduced in Figure 2 marked 

with threshold locations of all the six algorithms above for reference. The threshold locations 

show that CPD algorithm is very little influenced by the asymmetry of object of background 

distributions. 

6. CONCLUSIONS 

In this paper we propose a novel global image thresholding algorithm based on Statistical 

Change-Point detection (CPD), which is derived based on a symmetric version of Kullback-

Leibler divergence measure. The experimental results clearly show this algorithm is largely 

unaffected by disproportionate dispersal of object and background scene and also very little 
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influenced by the skewness of distributions of object and background compared to other well-

known algorithms. We also propose a thresholding performance criterion using dissimilarity 

between foreground and background binary images. Advantage of this performance criterion is 

that it does not require any ground truth image. 

 

Figure 1.  Result of thresholding algorithms on tested images: Row-1: Original Images; Row-2: Shapes of 

histograms; Row-3: Kittler; Row-4: Otsu; Row-5: Kurita; Row-6: Sahoo; Row-7: Entropy: Row-8: CPD 

Threshold. 
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Figure 2: Histogram of (a) Denise and (b) Train image with threshold locations 
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