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Optimal Guaranteed Cost Sliding Mode Control

of Interval Type-2 Fuzzy Time-Delay Systems
Hongyi Li, Jiahui Wang, Ligang Wu, Hak-Keung Lam and Yabin Gao

Abstract

The paper is concerned with the optimal guaranteed cost sliding mode control problem for interval

type-2 (IT2) Takagi-Sugeno (T-S) fuzzy systems with time-varying delays and exogenous disturbances.

The time-varying weight coefficients reflecting the uncertain parameters hidden in membership functions

are handled via adaptive method. A new integral sliding surface is presented based on system output.

By designing a novel adaptive sliding mode controller, system perturbation or model error can be

compensated, and the reachability of the sliding surface can be guaranteed with the ultimate uniform

boundedness of the closed-loop system. Optimal conditions of an H2 guaranteed cost function and an

H∞ performance index are established for the resulting time-delay control system. Finally, simulation

results are provided to illustrate the advantages and effectiveness of the proposed control scheme.

Keywords: Interval type-2 fuzzy systems; Sliding mode control; Guaranteed cost control; Time-delay

systems.

I. INTRODUCTION

Takagi-Sugeno (T-S) fuzzy model [1], [2] is acknowledged to be effective in representing a complex

nonlinear plant. T-S fuzzy model uses several local linear systems connected by membership functions

to describe the nonlinear systems. Based on T-S fuzzy systems, stability analysis and synthesis results
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have been reported for classes of nonlinear systems, such as uncertain systems [3]–[6], jumping systems

[7], time-delay systems [8], stochastic systems [9] and networked control systems [10]. However, the

control approaches of the T-S fuzzy systems based on type-1 fuzzy sets (called type-1 fuzzy systems) are

not well in dealing uncertainties existing in membership functions. Recently, interval type-2 (IT2) T-S

fuzzy models [11], [12] were proposed based on type-2 fuzzy sets. IT2 fuzzy systems use the idea of

well-defined lower and upper membership functions (LUMFs) to deal with uncertain parameters existing

in membership functions. It has been demonstrated that IT2 T-S fuzzy systems are more universal, and

the control synthesis results based on IT2 fuzzy models possess less conservativeness comparing to type-1

T-S fuzzy systems [12]. Some typical control approaches on the basis of IT2 T-S fuzzy systems have

been reported [13]–[15]. For example, a sampled-data controller for IT2 fuzzy systems with actuator fault

was designed in [16]. The work in [17] dealt with the model reduction problem for uncertain nonlinear

systems via IT2 fuzzy model approach. Trajectory stabilization of a computer simulated model car with

uncertain velocity was dealt with in [18] via type-2 fuzzy control systems.

In terms of the uncertain parameters of membership function, there still exist additional uncertainties

including external disturbance, modeling error and complex system perturbation. In order to compensate

the uncertainties and disturbances, several control methods [19]–[26] have been proposed. Among of

these results, sliding mode control (SMC) has been recognized as a forceful robust control approach. It

has attracted significant attention and successfully applied in a wide of practical systems [27]–[29]. Using

SMC strategy to a control system, strong robustness for uncertainties and fast response of system stability

can be achieved. To point a few, a second order sliding mode observer in [30] was designed for multi-

cell converters formulated as a type of hybrid system. The work in [31] utilized the SMC approach to

resolve the stabilization problem for a class of uncertain nonlinear systems described by type-1 T-S fuzzy

models. By using the SMC strategy, an IT2 fuzzy SMC was incorporated in [32] in order to compensate

for undesired mechanical couplings and to match the resonant frequencies for application in single axis

micro-electromechanical systems vibratory gyroscopes. The adaptive SMC problem for IT2 T-S fuzzy

systems has been solved in [33]. However, there are few results about the IT2 T-S fuzzy time-delay

systems controlled by SMC strategy when considering the guaranteed cost performance index. The topic

of SMC with guaranteed cost performance for the IT2 T-S fuzzy time-delay systems is interesting and

challenging, which motivates this study.

Based on the aforementioned discussion, the optimal guaranteed cost SMC problem for a class of

IT2 fuzzy time-delay systems with H∞ performance is studied in this paper. Firstly, IT2 T-S fuzzy

model is used to represent the nonlinear system with uncertainties. H2 guaranteed cost function and
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H∞ performance index are established for the resulting time-delay system. Secondly, an integral sliding

surface is designed, and the desired H2 guaranteed cost constraints with H∞ constraints are analyzed

using Lyapunov stability theory. Finally, a novel sliding mode controller is proposed to guarantee that the

closed-loop system is uniformly ultimately bounded (UUB). The advantages of the proposed results in

this paper can be summarized as: 1) parameter uncertainties, time-delay in states and system perturbation

or model error are considered in the plant represented by IT2 T-S fuzzy model, 2) optimization algorithms

of SMC in terms of guaranteed cost and H∞ performance indices for the IT2 fuzzy time-delay systems

are provided, and 3) a new sliding mode controller via output-feedback control approach is designed to

guarantee that the closed-loop system is UUB.

The rest of the paper is organized as follows. Section II describes the IT2 T-S fuzzy plant with time-

delay and uncertainties, and presents the H2 guaranteed cost function and H∞ performance index. In

Section III, the new sliding surface and sliding mode controller via output-feedback control method are

designed, and the optimal schemes of guaranteed-cost-based SMC and H∞-based SMC are detailed. In

Section IV, a simulation example is presented. Section V concludes the paper.

Notation. The notion L2 [0,∞) is used for vector-valued functions and its L2 norm is defined as

||w (t) || =
√∫∞

0 wT (t)w (t) dt. The superscripts “T ” and “−1” stand for the matrix transpose and

inverse, respectively. The symbols “∗” and “I” denote the transposed elements in the symmetric positions

of a matrix, and an identity matrix with appropriate dimensions, respectively. X > 0 (X < 0) means

matrix X is positive (negative) definite. λmin (X) denotes the smallest eigenvalue of the matrix X , and

trace (X) is the trace of matrix X . ‖·‖ and ‖·‖1 represent the Euclidean norm and 1-norm (sum of

absolute values), respectively. sgn (·) is the symbolic function.

II. PROBLEM FORMULATION

The following IT2 fuzzy systems are considered to represent a nonlinear plant with uncertainties.

Fuzzy Rule i : IF f1 (θ (t)) is M i
1 and · · · and fj (θ (t)) is M i

j and · · · and fs (θ (t)) is M i
s, THEN

ẋ (t) = Aix (t) +Adix (t− d (t)) +Biu (t) +Div (t) ,

y (t) = Cix (t) ,

z2 (t) = Eix (t) + Edix (t− d (t)) + Fiw (t) ,

z∞ (t) = Ēix (t) + Ēdix (t− d (t)) + F̄iw (t) ,

x (t) = ϕ (t) , −d̄ ≤ t ≤ 0,

(1)

where M i
j is the IT2 fuzzy set of i-th rule, fj (θ(t)) is the j-th measurable premise variable, i =

1, 2, · · · , p, j = 1, 2, · · · , s, p is the number of the fuzzy rules, and s is the number of the fuzzy sets.
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x (t) ∈ Rn and u (k) ∈ Rm stand for the system state vector and the control input to be designed,

respectively. v (t) ∈ Rg stands for a family of uncertainties, such as system perturbation or model error,

which satisfies the following structure

‖v (t)‖ ≤ δ + η ‖g (x (t) , y (t))‖ ,

where δ and η are determined by the complex structure of the uncertainties v (t), and g (x (t) , y (t)) is

a known function. z2 (t) ∈ Rl is the desired output with H2 guaranteed cost performance (introduced in

(9)), and z∞ (t) ∈ Rl is the desired output with H∞ disturbance attenuation performance (introduced in

(10)). y (t) ∈ Rn is the desired controlled output. w (t) ∈ Rh denotes external disturbances. The time

delay d (t) is a time-varying continuous function that satisfies

0 ≤ d (t) ≤ d̄, ḋ (t) ≤ τ < 1, (2)

where d̄ and τ are constants. ϕ (t) denotes the initial condition for −d̄ ≤ t ≤ 0, which is a constant

scalar or differentiable function [34]. Ai ∈ Rn×n, Adi ∈ Rn×n, Bi ∈ Rn×m, Di ∈ Rn×g, Ci ∈ Rn×n,

Ei ∈ Rl×n, Edi ∈ Rl×n, Fi ∈ Rl×h Ēi ∈ Rl×n, Ēdi ∈ Rl×n and F̄i ∈ Rl×h are known system matrices.

It is assumed that each local linear system in (1) is completely controllable and observable. In this paper,

we use C1 = C2 = · · · = Cp = C for analysis, where C is a known constant matrix. The firing interval

of the i-th rule is as follows:

Ψi (θ (t)) ∈
[
ψ
i
(θ (t)) , ψ̄i (θ (t))

]
, (3)

where

ψ
i
(θ (t)) =

s∏
j=1

µ
M i

j

(fj (θ (t))) ≥ 0, ψ̄i (θ (t)) =

s∏
j=1

µ̄M i
j

(fj (θ (t)))

in which µ
M i

j

(fj (θ (t))) ∈ [0, 1] and µ̄M i
j

(fj (θ (t))) ∈ [0, 1] stand for the lower and upper membership

functions, respectively. It indicates the property that µ̄M i
j

(fj (θ (t))) ≥ µ
M i

j

(fj (θ (t))), which causes

ψ̄i (θ (t)) ≥ ψ
i
(θ (t)) for all i and t ≥ 0. Then, the established IT2 T-S fuzzy model in (1) can be

rewritten as follows:

G :



ẋ (t) =
p∑
i=1

ψi (θ (t)) [Aix (t) +Adix (t− d (t)) +Biu (t) +Div (t)] ,

z2 (t) =
p∑
i=1

ψi (θ (t)) [Eix (t) + Edix (t− d (t)) + Fiw (t)] ,

z∞ (t) =
p∑
i=1

ψi (θ (t))
[
Ēix (t) + Ēdix (t− d (t)) + F̄iw (t)

]
,

x (t) = ϕ (t) , −d̄ ≤ t ≤ 0,

(4)
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with a linear measurable output y (t) = Cx (t), where ψi (θ (t)) is the grade of membership of the i-th

local system, which is defined as

ψi (θ (t)) = υi (θ (t))ψ
i
(θ (t)) + ῡi (θ (t)) ψ̄i (θ (t)) ≥ 0, (5)

with

0 ≤ υi (θ (t)) ≤ 1, 0 ≤ ῡi (θ (t)) ≤ 1, (6)
p∑
i=1

ψi (θ (t)) = 1, υi (θ (t)) + ῡi (θ (t)) = 1, (7)

where ψi (θ (t)) in (5) represents the membership function of i-th subsystem, and υi (θ (t)) and ῡi (θ (t))

are weighting coefficient functions which can represent the change of the uncertain parameters (unknown

but time-varying or time-invariant). To design an adaptive sliding mode controller in this paper, the weight

ῡi (θ (t)) of the i-th membership grade function in (5) satisfies the following assumption:

0 ≤ ῡi (θ (t)) ≤ αi ≤ 1, (8)

where αi is the upper bound of ῡi (θ (t)), which are unknown. Moreover, from (7), it follows that

0 ≤ 1− αi ≤ υi (θ (t)) ≤ 1.

Based on the system (4), we will design an adaptive SMC law to compensate all nonlinearities, time-

varying delays and uncertainties, and the following requirements are simultaneously achieved:

(R1) The state trajectories of system (4) (i.e. (1)) are globally driven onto the pre-designed sliding

surface, and subsequently, the sliding motion is asymptotically stable.

(R2) In the case when w (t) = 0, the cost function [34] for the stabilized time-delay system (4) is

Jc =

∫ ∞
t0

‖z2 (t)‖2 dt < β. (9)

where β is a positive scalar denoting the upper bound of the cost function.

(R3) For a determined scalar γ > 0, under zero-initial condition with w (t) 6= 0, the controlled output

z∞ (t) satisfies ∫ ∞
t0

‖z∞ (t)‖2 dt < γ2

∫ ∞
t0

‖w (t)‖2 dt. (10)

The problem addressed above is referred to as the H∞-based guaranteed cost SMC for IT2 fuzzy

systems (4) with time-varying delays and uncertainties. In general, the design of SMC law consists of

two steps: (i) designing a sliding surface such that, in the sliding mode, the system response acts like the

desired dynamics performances, and (ii) synthesizing the SMC law ensuring that the sliding mode can

be reached and the system states maintain the sliding mode thereafter, and simultaneously, the desired
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H2 guaranteed cost performance in (9) and H∞ disturbance attenuation performance in (10) can be

guaranteed.

III. MAIN RESULTS

In this section, we will present the SMC design procedure for system (4). At first, an integral-type

sliding surface is designed based on measurable system output. The sliding surface parameter K is

designed subject to different optimal objective, which involves H2 guaranteed cost constraints and H∞
disturbance attenuation performance. Then, based on the designed sliding surface, an adaptive sliding

mode controller is designed to guarantee that the closed-loop system is UUB.

A. Sliding surface design

We introduce an auxiliary variable x̄ (t) = Uy (t) = UCx (t) with a given constant matrix U ∈

Rn×n and UC is nonsingular. Denote

A (t) ,
p∑
i=1

ψi (θ (t))UCAi, Ad (t) ,
p∑
i=1

ψi (θ (t))UCAdi,

B (t) ,
p∑
i=1

ψi (θ (t))UCBi, D (t) ,
p∑
i=1

ψi (θ (t))UCDi,

Ā (t) ,
p∑
i=1

ψ̄i (θ (t))AiUC, Ād (t) ,
p∑
i=1

ψ̄i (θ (t))AdiUC,

B̄ (t) ,
p∑
i=1

ψ̄i (θ (t))BiKUC, B̂ (t) ,
p∑
i=1

ψ
i
(θ (t)) ‖GUCBi‖ ,

for saving space in the following context. Based on the measurable output of the plant, we choose the

following integral function as sliding surface.

s (t) = GUy (t)−
∫ t

0

p∑
i=1

ψ̄i (θ (t))G [(Ai +BiK)Uy (τ) +AdiUy (τ − d (τ))] dτ, (11)

where G ∈ Rm×n is a known constant matrix satisfying rank(GUC) = m and GUCBi (i = 1,2,· · · ,p)

is nonsingular with GUCBi > 0 or GUCBi < 0 for all i = 1,2,· · · ,p, and K ∈ Rm×n is the sliding

surface parameter to be determined. Based on (4) and (11), we have

ṡ (t) = G
[(

A (t)− Ā (t)− B̄ (t)
)
x (t) +

(
Ad (t)− Ād (t)

)
x (t− d (t))

+ B (t)u (t) + D (t) v (t)] . (12)
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When the state trajectories of the system enter the sliding motion, we know s (t) = 0 and ṡ (t) = 0.

Consequently, according to (12) and ṡ (t) = 0, we can get the equivalent control law:

ueq(t) = (GB(t))−1G
[(

Ā (t) + B̄ (t)−A (t)
)
x (t) +

(
Ād (t)−Ad (t)

)
x (t− d (t))−D (t) v (t)

]
.

Then, by substituting (13) into (4), the following sliding motion dynamics can be obtained.

Gs :



ẋ (t) = As (t)x (t) + Ads (t)x (t− d (t)) ,

z2 (t) = Es (t)x (t) + Eds (t)x (t− d (t)) + Fs (t)w (t) ,

z∞ (t) = Ēs (t)x (t) + Ēds (t)x (t− d (t)) + F̄s (t)w (t) ,

x (t) = ϕ (t) , −d̄ ≤ t ≤ 0,

(13)

where

As (t) ,
p∑
i=1

ψi (θ (t))
[
Bi (GB (t))−1G

(
Ā (t) + B̄ (t)−A (t)

)
+Ai

]
,

Ads (t) ,
p∑
i=1

ψi (θ (t))
[
Bi (GB (t))−1G

(
Ād (t)−Ad (t)

)
+Adi

]
,

Es (t) ,
p∑
i=1

ψi (θ (t))Ei, Eds (t) ,
p∑
i=1

ψi (θ (t))Edi, Fs (t) ,
p∑
i=1

ψi (θ (t))Fi,

Ēs (t) ,
p∑
i=1

ψi (θ (t)) Ēi, Ēds (t) ,
p∑
i=1

ψi (θ (t)) Ēdi, F̄s (t) ,
p∑
i=1

ψi (θ (t)) F̄i.

System Gs shows a complexly fuzzified system dynamics, which also can be served as the sliding motion.

Based on system (13), we will analyze the stability of the sliding motion, and determine the sliding

mode parameter K. The desired guaranteed cost performance and H∞ performance are analyzed in the

following part.

Remark 1: The stability of the fuzzy time-delay system (4) is prerequisite for analyzing the desired

performances. On the other hand, the sliding mode controller is designed to force the trajectories of

the plant (4) onto the predesigned sliding surface, whose stability is determined by the sliding motion

(13). Therefore, the stability of the sliding motion (13) is important for the overall system stability and

performances once the reachability of the sliding surface holds with a sliding mode controller (presented

in (41)).

1) Stability analysis of the sliding motion: For the dynamics of the sliding motion in the first expression

of system Gs in (13), Theorem 1 gives an asymptotic stability criterion based on Lyapunov stability theory.

Theorem 1: The sliding motion in (13) is asymptotically stable if there exist matrices 0 < P = P T ∈

Rm×m, 0 < Q = QT ∈ Rm×m, 0 < Z = ZT ∈ Rm×m, 0 < X11 = XT
11 ∈ Rn×n, 0 < X22 = XT

22 ∈
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Rn×n, X12 ∈ Rn×n, Y ∈ Rn×n, T ∈ Rn×n, U ∈ Rn×n and K ∈ Rm×n such that the following matrix

inequalities (i = 1,2,· · · ,p) hold:

Φi ,


−d̄Z d̄ZG (AiUC +BiKUC) d̄ZGAdiUC

∗ Φ1i Φ2i

∗ ∗ Φ3

 < 0, (14)

where

Φ1i ,
[
(AiUC +BiKUC)T GTPGUC + Y

]
s

+ (GUC)T QGUC + d̄X11,

Φ2i , (GAdiUC)T PGUC − Y + T T + d̄X12, Φ3 , (τ − 1) (GUC)T QGUC − [T ]s + d̄X22.

Proof: For the dynamics of system (13), consider the Lyapunov functional candidate Vs(t) as follows:

Vs(t) = xT (t) (GUC)T PGUCx (t) +

∫ t

t−d(t)
xT (s) (GUC)T QGUCx (s) d (s)

+

∫ 0

−d̄

∫ t

t+θ
ẋT (s) (GUC)T ZGUCẋ (s) d (s) d (θ) . (15)

Based on the above statement, we have

V̇s(t) = 2ẋT (t) (GUC)T PGUCx (t) + xT (t) (GUC)T QGUCx (t)

−
(

1− ḋ (t)
)
xT (t− d (t)) (GUC)T QGUCx (t− d (t))

+d̄ẋT (t) (GUC)T ZGUCẋ (t)−
∫ t

t−d̄
ẋT (s) (GUC)T ZGUCẋ (s) d (s)

≤ 2
[(

Ā (t) + B̄ (t)
)
x (t) +GĀd (t)x (t− d (t))

]T
GTPGUCx (t)

+xT (t) (GUC)T QGUCx (t)− (1− τ)xT (t− d (t)) (GUC)T QGUCx (t− d (t))

+d̄ẋT (t) (GUC)T ZGUCẋ (t)−
∫ t

t−d̄
ẋT (s) (GUC)T ZGUCẋ (s) d (s) . (16)

We introduce free-weighting matrices Y ∈ Rn×n and T ∈ Rn×n with the following equation based on

Leibniz–Newton formula holding:

2
(
xT (t)Y + xT (t− d (t))T

)(
x (t)− x (t− d (t))−

∫ t

t−d(t)
ẋ (t) ds

)
= 0. (17)

For matrices X =

 X11 X12

∗ X22

 > 0 and Ψ > 0 with Z > 0, we know that

d̄ςT (t)Xς (t)−
∫ t

t−d(t)
ςT (t)Xς (t) d (s) ≥ 0, (18)∫ t

t−d(t)
ζT (s, t) Ψζ (s, t) ds ≥ 0 (19)
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always hold, where ς (t) ,
[
xT (t) xT (t− d (t))

]T
, ζ (s, t) ,

[
ẋT (s) xT (t) xT (t− d (t))

]T
,

and

Ψ ,


(GUC)T ZGUC Y T

∗ X11 X12

∗ ∗ X22

 .
Then adding (17)–(19) to V̇s(t) in (16) yields:

V̇s(t) ≤ 2
[(

Ā (t) + B̄ (t)
)
x (t) + Ād (t)x (t− d (t))

]T
GTPGUCx (t)

+xT (t) (GUC)T QGUCx (t)− (1− τ)xT (t− d (t)) (GUC)T QGUCx (t− d (t))

+xT (t) ΩT
(
d̄Z
)−1

Ωx (t)−
∫ t

t−d̄
ẋT (s) (GUC)T ZGUCẋ (s) d (s)

+2xT (t)Y x (t)− 2xT (t)Y x (t− d (t))−
∫ t

t−d(t)
2xT (t)Y ẋ (s) ds

+2xT (t− d (t))Tx (t)− 2xT (t− d (t))Tx (t− d (t))

−
∫ t

t−d(t)
2xT (t− d (t))T ẋ (s) ds+ d̄ςT (t)Xς (t)−

∫ t

t−d(t)
ςT (s)Xς (s) ds

+

∫ t

t−d(t)
ζT (s, t) Ψζ (s, t) ds

≤
p∑
i=1

ψ̄i (θ (t)) ςT (t)
[
Θi + ΩT

i

(
d̄Z
)−1

Ωi

]
ς (t) , (20)

where

Θi ,

 Φ1i Φ2i

∗ Φ3

 , Ωi ,
[
d̄ZG (AiUC +BiKUC) d̄ZGAdiUC

]
. (21)

By Schur complement, we know condition Φi < 0 in (14) is equivalent to Θi+ΩT
i

(
d̄Z
)−1

Ωi < 0, which

implies V̇s(t) < 0 for ς (t) 6= 0. Therefore, the sliding motion (with the output z2 (t) when w (t) = 0) is

asymptotically stable if the conditions (14) have a feasible solution.

Remark 2: In terms the form of inequality (14), there exists complex couplings with the matrix K.

For a solvable solution via convex approach, we can give the matrices P and Z to receive a feasible

solution in the form of linear convex. Similar problems in Theorems 2–4 below can be coped with by

this concise approach.

2) Analysis of H2 guaranteed cost performance: When the state trajectories of the plant in (4) are

forced to be driven onto the designed sliding surface by the sliding mode controller presented in (41), the

desired H2 performance index (respectively, the optimal H∞ disturbance attenuation performance index)

can be designed based on the stabilized sliding motion in (13). According to the required H2 guaranteed
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cost performance in (9) for system (4), Theorem 2 provides a condition of optimizing H2 guaranteed

cost performance.

Theorem 2: According to the fuzzy system (13) with w (t) = 0, if there exist matrices P , Q, Z, X11,

X12, X22, Y , T , U , K as illustrated in Theorem 1 and positive definite matrices Υ1 ∈ Rn×n, Υ2 ∈ Rn×n,

Υ3 ∈ Rn×n such that:
−Il 0l×m Ei Edi

∗ −d̄Z d̄ZG (AiUC +BiKUC) d̄ZGAdiUC

∗ ∗ Φ1i Φ2i

∗ ∗ ∗ Φ3

 < 0, (22)

 −Υ1 a
1

2 (GUC)T P

∗ −P

 ≤ 0, (23)

 −Υ2 b
1

2 (GUC)T Q

∗ −Q

 ≤ 0, (24)

 −Υ3 c
1

2 (GUC)T Z

∗ −Z

 ≤ 0, (25)

then the system (13) is asymptotically stable, and the optimal H2 guaranteed cost bound defined in (9)

is

Jc =

∫ ∞
t0

zT2 (t) z2 (t) dt < trace (Υ1) + trace (Υ2) + trace (Υ3) = β. (26)

Furthermore, the optimal guaranteed cost bound βmin can be obtained from the minimization problem

min trace (Υ1) + trace (Υ2) + trace (Υ3) , s.t. (22)–(25). (27)

Proof: Recalling
p∑
i=1

ψi(θ(t)) = 1, we introduce the following inequality based on Lemma 2 in [34].

p∑
i=1

ψi (θ (t))XT
i

p∑
j=1

ψj (θ (t))Xj ≤
p∑
i=1

ψi (θ (t))XT
i Xi. (28)

Considering Lyapunov function Vs(t) in (15) for system (13), and the following performance index

J2 = V̇s (t) + zT2 (t) z2 (t) .

Based on the inequality in (28), we have

J2 ≤
p∑
i=1

ψ̄i (θ (t)) ςT (t)
[
Θi + ΩT

i

(
d̄Z
)−1

Ωi

]
ς (t)

+

p∑
i=1

ψi (θ (t)) (Eix (t) + Edix (t− d (t)))T
p∑
j=1

ψj (θ (t)) (Ejx (t) + Edjx (t− d (t)))
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≤
p∑
i=1

ψ̄i (θ (t)) ςT (t)
[
Θi + ΩT

i

(
d̄Z
)−1

Ωi

]
ς (t)

+

p∑
i=1

ψ̄i (θ (t)) (Eix (t) + Edix (t− d (t)))T (Eix (t) + Edix (t− d (t)))

= ςT (t)

p∑
i=1

ψ̄i (θ (t)) Φ̃iς (t) . (29)

According to Schur complement, we know Φ̃i < 0 in (29) is equivalent to (22), which means J2 =

V̇s(t) + zT∞ (t) z2 (t) < 0 for all ς (t) 6= 0. Furthermore, the condition (22) is equivalent to (14) in

Theorem 1, the asymptotically stability of the sliding motion in (13) can be guaranteed with Vs (t)→ 0

when t→∞. Hence, we have∫ ∞
t0

(
V̇s (t) + zT2 (t) z2 (t)

)
dt = Vs (∞)− Vs (t0) +

∫ ∞
t0

zT2 (t) z2 (t) dt < 0,

i.e.

Jc =

∫ ∞
t0

||z2 (t) ||22dt < Vs (t0) . (30)

Additionally, when the initial condition ϕ (t) is a constant, it implies that ϕ̇ (t) ≡ 0 for all t ∈
[
−d̄, 0

]
.

When ϕ (t) is a differentiable function, ϕ̇ (t) is not relative to the differential (13) because it is invalid

before zero interval. Overall, Vs (t0) < β holds, where β is defined as (26). Therefore, the cost function

is bounded by β given in (26). Let

a = ϕT (t0)ϕ (t0) ,

b =

∫ t0

−d(t0)
ϕT (τ)ϕ (τ) d (τ) ,

c =

∫ t0

−d̄

∫ t0

t
ϕ̇T (τ) ϕ̇ (τ) d (τ) d (t) .

Recalling the conditions in (23)–(25), according to Schur complement, it follows

a
1

2 (GUC)T PGUCa
1

2 ≤ Υ1, (31)

b
1

2 (GUC)T QGUCb
1

2 ≤ Υ2, (32)

c
1

2 (GUC)T ZGUCc
1

2 ≤ Υ3. (33)

Then using the property trace(MN) = trace(NM) with (31)–(33), we have

ϕT (t0) [(GUC)T PGUC]−1ϕ (t0) = trace(a[(GUC)T PGUC]−1)

= trace(a
1

2 [(GUC)T PGUC]−1a
1

2 )

≤ trace (Υ1) , (34)

DRAFT



12∫ t0

−d(t0)
ϕT (τ) [(GUC)T QGUC]−1ϕ (τ) d (τ) = trace(b[(GUC)T QGUC]−1)

= trace(b
1

2 [(GUC)T QGUC]−1b
1

2 )

≤ trace (Υ2) , (35)∫ t0

−d̄

∫ t0

t
ϕ̇T (τ) [(GUC)T ZGUC]−1ϕ̇ (τ) d (τ) d (t) = trace(c[(GUC)T ZGUC]−1)

= trace(c
1

2 [(GUC)T ZGUC]−1c
1

2 )

≤ trace (Υ3) . (36)

Consequently, the H2 guaranteed cost function is bounded by

Jc =

∫ ∞
t0

zT2 (t) z2 (t) dt < Vs (t0) ≤ trace (Υ1) + trace (Υ2) + trace (Υ3) . (37)

Meanwhile, when an optimizer is applied to solve the minimization problem in (27), an optimal guaranteed

cost bound βmin can be obtained with βmin = trace (Υ1) + trace (Υ2) + trace (Υ3). It completes the

proof.

Remark 3: Theorem 2 directly gives the minimum H2 guaranteed cost bound. Actually, from the proof

of Theorem 2, the desired guaranteed cost bound can be Vs (t0) in (30) without optimization design. The

utilization of guaranteed cost bound design has been developed in many systems, detailed presentations

can be found in [35]–[37], etc.

3) Analysis of H∞ disturbance attenuation performance: Considering the required H∞ performance

in (10) for system (4), we give the condition of optimizing H∞ disturbance attenuation level in the

following theorem.

Theorem 3: The plant (4) can achieve the H∞ performance in (10) with an optimal disturbance

attenuation level γ > 0, if there exist matrices P , Q, Z, X11, X12, X22, Y , T , K as illustrated in

Theorem 1 such that the following optimization problem has a feasible solution.

min γ∗ s.t. Γi < 0 with γ∗ = γ2, i = 1, 2, · · · , p, (38)

where

Γi ,



−Il 0l×m Ēi Ēdi F̄i

∗ −d̄Z d̄ZG (AiUC +BiKUC) d̄ZGAdiUC 0r×h

∗ ∗ Φ1i Φ2i 0n×h

∗ ∗ ∗ Φ3 0n×h

∗ ∗ ∗ ∗ −γ2Ih


,

and Φ1i, Φ2i and Φ3 are defined in (14).
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Proof: First, it is easily found that Γi < 0 is equivalent to the condition (14), which is an asymptotic

stability criterion of the sliding motion. Then considering the system in (13) under the zero initial

condition, we establish the following index for H∞ performance analysis:

J∞ = V̇s(t) + zT∞ (t) z∞ (t)− γ2wT (t)w (t) .

Following the Lyapunov function Vs(t) expressed in (15) for system Gs when w (t) 6= 0, we have

J∞ = V̇s(t) + zT∞ (t) z∞ (t)− γ2wT (t)w (t)

≤
p∑
i=1

ψ̄i (θ (t)) ςT (t)
[
Θi + ΩT

i

(
d̄Z
)−1

Ωi

]
ς (t)

+

p∑
i=1

ψi (θ (t))
(
Ēix (t) + Ēdix (t− d (t)) + F̄iw (t)

)T
×

p∑
j=1

ψj (θ (t))
(
Ējx (t) + Ēdjx (t− d (t)) + F̄jw (t)

)
− γ2wT (t)w (t)

≤ −γ2wT (t)w (t) +

p∑
i=1

ψ̄i (θ (t))
(
Ēix (t) + Ēdix (t− d (t)) + F̄iw (t)

)T
×
(
Ēix (t) + Ēdix (t− d (t)) + F̄iw (t)

)
+

p∑
i=1

ψ̄i (θ (t)) ςT (t)
[
Θi + ΩT

i

(
d̄Z
)−1

Ωi

]
ς (t)

= ς̄T (t)

p∑
i=1

ψ̄i (θ (t)) Φ̄iς̄ (t) ,

where

Φ̄i ,


Φ1i Φ2i 0n×h

∗ Φ3 0n×h

∗ ∗ −γ2Ih

+ Ω̄T
i

(
d̄Z
)−1

Ω̄i + ΞTi Ξi, Ξi ,
[
Ēi Ēdi F̄i

]
,

Ω̄i ,
[
d̄ZG (AiUC +BiKUC) d̄ZGAdiUC 0m×l

]
, ς̄ (t) ,

[
ςT (t) wT (t)

]T
.

According to Schur complement, we have Γi < 0 in (38) is equivalent to Φ̄i < 0, which means J∞ =

V̇s(t) + zT∞ (t) z∞ (t) − γ2wT (t)w (t) < 0. Considering the H∞ performance in (10) under the zero

initial condition with Vs (∞) ≥ 0, we have∫ ∞
t0

(
V̇s(t) + zT∞ (t) z∞ (t)− γ2wT (t)w (t)

)
dt

= Vs (∞)− Vs (0) +

∫ ∞
t0

(
zT∞ (t) z∞ (t)− γ2wT (t)w (t)

)
dt

= Vs (∞) +

∫ ∞
t0

(
zT∞ (t) z∞ (t)− γ2wT (t)w (t)

)
dt < 0,
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which means ∫ ∞
t0

(
zT∞ (t) z∞ (t)− γ2wT (t)w (t)

)
dt < −Vs (∞) ≤ 0. (39)

From (39), we know that the requirement (R3) can be achieved. This completes the proof.

4) Analysis of optimal H∞-based guaranteed cost performance: When the requirements (R2) and

(R3) are both desired, the following theorem gives a sufficient criterion based on the results above.

Theorem 4: The plant (4) can achieve the optimal H∞ performance in (10) with guaranteed cost

performance in (9), if there exist matrices matrices P , Q, Z, X11, X12, X22, Y , T , K such that the

optimization problem

min trace (Υ1) + trace (Υ2) + trace (Υ3) + γ∗, (40)

s.t. (22)–(23) and (38) with γ∗ = γ2

has feasible solutions for all i = 1,2,· · · ,p. Moreover, the optimal guaranteed cost is bounded by βmin =

trace (Υ1) + trace (Υ2) + trace (Υ3) and the optimal H∞ disturbance attenuation level is γmin =
√
γ∗.

Proof: The proof is similar to the proofs of Theorem 2 and Theorem 3, and is omitted because of

space limitation.

B. Adaptive sliding mode controller design

This section gives the desired adaptive sliding mode controller to stabilize the IT2 fuzzy systems (4).

The reachability of the sliding mode for the IT2 fuzzy system (4) is analyzed. The following theorem

gives a sliding mode controller for system (4). Define δ̃ (t) = δ̂ (t) − δ, η̃ (t) = η̂ (t) − η and α̃i (t) =

α̂i (t)−αi, where δ̂ (t), η̂ (t) and α̂i (t) are adaptive parameters that estimate unknown parameters δ, η and

αi, respectively.

Theorem 5: The feasible sliding surface has been obtained by Theorem 1, then the following controller

of the closed-loop system (4) is designed that the sliding surface in (11) and all signals are UUB.

u (t) =

 −us (t)− 1
||sT (t)GUC||B̂

−1 (t)GUC (GUC)T s (t)ua (t) , if ||sT (t)GUC|| 6= 0;

−us (t) , if ||sT (t)GUC|| = 0,
(41)

with

us (t) , µB̂−1 (t) sgn (s (t)) ,

ua (t) ,
1

||sT (t)GUC||
||sT (t)G

p∑
i=1

ψ̄i (θ (t)) (Ai +BiK)Uy (t) ||
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+
1

||sT (t)GUC||
||sT (t)G

p∑
i=1

ψ̄i (θ (t))AdiUy (t− d (t)) ||

+

p∑
i=1

ψ̄i (θ (t)) ||Ai (UC)−1 Uy (t) ||+
p∑
i=1

ψ̄i (θ (t)) ||Adi (UC)−1 Uy (t− d (t)) ||

+

p∑
i=1

ψ̄i (θ (t)) ||Di||(δ̂ (t) + η̂ (t) ||g (x (t) , y (t)) ||) +

p∑
i=1

ψ̄i (θ (t)) α̂i (t) ,

and the adaptive laws

˙̂
δ (t) = −λ1ε1δ̂ (t) + λ1||sT (t)GUC||||

p∑
i=1

ψ̄i (θ (t))Di||, (42)

˙̂η (t) = −λ2ε2η̂ (t) + λ2||sT (t)GUC||||
p∑
i=1

ψ̄i (θ (t))Di||||g (x (t) , y (t)) ||, (43)

˙̂αi (t) = Proj[0,1] {φi (t)}

=

 0, if α̂i (t) = 0 and φi (t) < 0, or if α̂i (t) = 1 and φi (t) > 0,

φi (t) , otherwise,
(44)

where Proj {·} is the projection operator [38], whose role is to project the estimates to the interval [0,1],

φi (t) , qiψ̄i (θ (t)) α̂i (t) ||sT (t)GUC||, µ, λ1, λ2, ε1, ε2 and qi are positive scalars with 0 ≤ α̂i (0) ≤ 1

(i = 1,2,· · · ,p).

Proof: Choose the following Lyapunov function:

V (t) =
1

2

(
sT (t) s (t) +

1

λ1
δ̃2 (t) +

1

λ2
η̃2 (t) +

p∑
i=1

1

qi
α̃2
i (t)

)
. (45)

As GUCBi > 0 or GUCBi < 0 for all i = 1,2,· · · ,p, then it follows:

−||ψi (θ (t))GUCBi|| ≤ −||ψi (θ (t))GUCBi||. (46)

When ||sT (t)GUC|| 6= 0, with the controller in (41) and the adaptive laws (42)–(44) for system (4)

based on (46), it follows

V̇ (t) = sT (t) ṡ (t) +
1

λ1
δ̃ (t)

˙̂
δ (t) +

1

λ2
η̃ (t) ˙̂η (t) +

p∑
i=1

1

qi
α̃i (t) ˙̂αi (t)

= sT (t)

{
GUC

p∑
i=1

ψi (θ (t)) (Aix (t) +Adix (t− d (t)) +Biu (t) +Div (t))

− G
p∑
i=1

ψ̄i (θ (t)) [(Ai +BiK)UCx (t) +AdiUCx (t− d (t))]

}

−ε1δ̃ (t) δ̂ (t)− ε2η̃ (t) η̂ (t) + ||sT (t)GUC||
p∑
i=1

ψ̄i (θ (t)) α̃i (t) α̂i (t)
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≤ sT (t)GUC

p∑
i=1

ψi (θ (t)) (Aix (t) +Adix (t− d (t)))

−||sT (t)GUC||

[
p∑
i=1

ψ̄i (θ (t)) α̂i (t) +

p∑
i=1

ψ̄i (θ (t)) ||Aix (t) ||

+

p∑
i=1

ψ̄i (θ (t)) ||Adix (t− d (t)) ||+
p∑
i=1

ψ̄i (θ (t)) ||Di||(δ̂ (t) + η̂ (t) ||g (x (t) , y (t)) ||)

+
1

||sT (t)GUC||
||sT (t)G

p∑
i=1

ψ̄i (θ (t)) (Ai +BiK)UCx (t) ||

+
1

||sT (t)GUC||
||sT (t)G

p∑
i=1

ψ̄i (θ (t))AdiUCx (t− d (t)) ||

]

+||sT (t)GUC||||
p∑
i=1

ψi (θ (t))Di||(δ + η||g (x (t) , y (t)) ||)

+||sT (t)G

p∑
i=1

ψ̄i (θ (t)) (Ai +BiK)UCx (t) ||

+||sT (t)G

p∑
i=1

ψ̄i (θ (t))AdiUCx (t− d (t)) || − ε1δ̃ (t) δ̂ (t)− ε2η̃ (t) η̂ (t)

+||sT (t)GUC||||
p∑
i=1

ψ̄i (θ (t))Di||(δ̃ (t) + η̃ (t) ||g (x (t) , y (t)) ||)

+||sT (t)GUC||
p∑
i=1

ψ̄i (θ (t)) α̃i (t) α̂i (t)− µ||s (t) ||1. (47)

Substituting (5) and (7) into (47) and considering 1− α̃i (t) = 1− α̂i (t) + αi > 0 and

||
p∑
i=1

ψi (θ (t))Di|| ≤
p∑
i=1

ψi (θ (t)) ||Di|| ≤
p∑
i=1

ψ̄i (θ (t)) ||Di||,

we obtain

V̇ (t) ≤ −||sT (t)GUC||
p∑
i=1

ψ̄i (θ (t)) α̂i (t) (1− α̃i (t))− ε1

(
δ̂ (t)− 1

2
δ

)2

−ε2

(
η̂ (t)− 1

2
d

)2

+
ε1

4
δ2 +

ε2

4
η2 − µ||s (t) ||1

≤ −µ||s (t) ||1 +
ε1

4
δ2 +

ε2

4
η2. (48)

Therefore, from (48), applying the terminology and result in [39], we know that the ultimate uniform

boundedness of system (4) can be achieved under the controller (41). The proof is completed.

Remark 4: Theorem 5 gives the control input of plant (4). When the plant is stabilized by the controller

(41), the desired H2 guaranteed cost performance, the H∞ disturbance attenuation performance and even
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the H∞-based guaranteed cost performance can be achieved once there exist feasible solutions of the

conditions in Theorems 2–4. Meanwhile, the optimal problems presented in Theorems 2–4 indicate

the optimal level of the desired performances, respectively. The presented optimal SMC schemes are

alternative according to the practical situation for engineering applications.

IV. SIMULATION RESULTS

In this section, we will provide the inverted pendulum model shown in Fig. 1 to demonstrate the

effectiveness and superiority of the proposed results.

()t

u

mg

M g

2L

Fig. 1. Inverted pendulum system.

To test the superiority of the designed sliding mode control law subject to the desired guaranteed cost

performance, a type-2 fuzzy controller [12] is compared. The dynamics of the inverted pendulum [12] is

described as

θ̈ (t) =
3g sin (θ (t))− 3ampL(θ̇ (t))2 sin (2θ (t)) /2− 3a cos (θ (t))u (t)

4L− 3ampL cos2 (θ (t))
, (49)

where θ (t) denotes the angular displacement of the pendulum, 2L = 1 m is the length of the pendulum,

the gravity acceleration is g = 9.8 m/s2, mp denotes the mass of the pendulum, mc denotes the mass

of the cart, a = 1/ (mp +mc), and u (t) denotes the force applied to the cart. We define x (t) =

[ x1 (t) x2 (t) ]T = [ θ (t) θ̇ (t) ]T . Then the state space equation of the dynamics can be expressed

by

ẋ (t) =

 0 1

f1 (t) 0

x (t) +

 0

f2 (t)

u (t) , (50)
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where

f1 (t) =
sin(x1 (t))

(
g − ampLx

2
2 (t) cos(x1 (t))

)
x1 (t)

(
4L/3− ampLx2

2 (t) cos2(x1 (t))
) ,

f2 (t) =
−a cos(x1 (t))

4L/3− ampL cos2(x1 (t))
.

Assume that the uncertain parameters mp and mc satisfy mpmin = 1 kg ≤ mp ≤ mpmax = 2 kg

and mcmin = 2 kg ≤ mc ≤ mcmax = 3 kg, respectively. The following four-rule IT2 fuzzy model is

used to describe the inverted pendulum with a desired output z2 (t) and z∞ (t) considering state delay

x (t− d (t)), model uncertainties v (t) and external disturbances w (t).

Fuzzy Rule i : IF f1(t) is M i
1 and f2(t) is M i

2, THEN
ẋ (t) = (1− σ)Aix (t) + σAix (t− d (t)) +Biu (t) +Div (t) ,

z2 (t) = (1− σ)Eix (t) + σEix (t− d (t)) + Fiw (t) ,

z∞ (t) = (1− σ) Ēix (t) + σĒix (t− d (t)) + F̄iw (t) ,

(51)

where

A1 = A2 =

 0 1

f1 min 0

 , A3 = A4 =

 0 1

f1 max 0

 , B1 = B3 =

 0

f2 min

 ,

B2 = B4 =

 0

f2 max

 , E1 = Ē1 =

 15 24

−300 0.6

 , E2 = Ē2 =

 15 24

−300 0.6

 ,

E3 = Ē3 =

 15 24

−300 0.6

 , E4 = Ē4 =

 15 24

−300 0.6

 , D1 =

 0

0.02

 ,

D2 =

 0

0.04

 , D3 =

 0

0.02

 , D4 =

 0

0.04

 , F1 = F̄1 =

 0.5 2.5

0.05 −7.5

 ,

F2 = F̄2 =

 0.5 2.5

0.1 −7.5

 , F3 = F̄3 =

 0.5 2.5

0.05 −7.5

 , F4 = F̄4 =

 0.5 2.5

0.1 −7.5

 .

σ = 0.1 denotes the delay coefficient, d (t) = 0.1 + 0.1 sin (t), v (t) ≤ 0.02 + 0.01||y2 (t) ||. f1 min =

9.2902, f1 max = 23.5200, f2 min = −0.6667, and f2 max = −0.0792 by considering a proper workplace

with x1 ∈ [−3π/8, 3π/8] and x2 ∈ [−3, 3] for the inverted pendulum. The lower and upper membership

functions are chosen in Table I. Besides, we set υi (θ (t)) = q1 sin2 (t) (ῡi (θ (t)) = 1 − υi (θ (t))) for

i = 1, 2, 3, 4, which satisfy
∑4

i=1 ψi (t) = 1 to describe the parametric uncertainties.

Assume an external disturbance w(t) = [ 0.1 sin(t) e−2t ]T and a measurable output y (t) = Cx (t)
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TABLE I

LOWER AND UPPER MEMBERSHIP FUNCTIONS

Lower membership functions Upper membership functions

µ
M1

1

(x1) = 1− e−(x2
1/1.5) µM1

1
(x1) = 0.25e−(x2

1/0.3)

µ
M2

1

(x1) = µ
M1

1

(x1) µM2
1
(x1) = µM1

1
(x1)

µ
M3

1

(x1) = 1− µM1
1
(x1) µM3

1
(x1) = 1− µ

M1
1

(x1)

µ
M4

1

(x1) = µ
M3

1

(x1) µM4
1
(x1) = µM3
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with C =

 0.1 0

0 1

. In the following part, we compare the proposed SMC approach with a type-

2 fuzzy control by considering plant under two cases: the H∞ disturbance attenuation performance

without guaranteed cost constraint and the H∞ disturbance attenuation performance with guaranteed cost

constraint.

Case I: H∞ disturbance attenuation performance without guaranteed cost constraint

i. Interval type-2 fuzzy control approach

Applying the method in [14], we use the following fuzzy controller to control the system (51) with

time-delay

u (t) =

2∑
i=1

ϕi (θ (t))Kix (t) , (52)

where θ (t) and ϕi (θ (t)) are defined in [14]. In terms of the H∞ performance, we obtain a feasible

solution K1 = [ 277.7 6.8 ], K2 = [ 270.3 6.6 ] and γmin = 7.9086. The simulation results are shown

in Figs. 2–4 in black dashdot line. Fig. 2 and Fig. 3 show the state responses of the close-loop system

(51), respectively. Fig. 4 illustrates the response of the control force.

ii. SMC approach

Based on the given system matrices, we choose

G = [ 0.1 0.1 ], U =

 0.3 0.04

5.0 0.045

 .
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According to Theorem 3 with P = 2 and Z = 1, we obtain the matrix K = [ 94.2 −27.8 ], and

γmin = 7.9101. Under the designed adaptive sliding mode controller in (41), where µ = 0.01, λ1 = 2,

λ2 = 1, ε1 = 1.4, ε2 = 1.2, q1 = q2 = q3 = q4 = 100.0, δ̂ (0) = 0.01, η̂ (0) = 0.01, α̂1 (0) = 0.2,

α̂2 (0) = 0.4, α̂3 (0) = 0.6 and α̂4 (0) = 0.8, the responses of the closed-loop system (51) are obtained,

which are shown in Figs. 2–4 (pink solid lines). Fig. 2 and Fig. 3 describe the state responses of the

closed-loop system, respectively. Obviously, the stability of the inverted pendulum system is better under

the presented SMC approach. The control force is depicted in Fig. 4.

Case II: H∞ disturbance attenuation performance with guaranteed cost constraint

i. Interval type-2 fuzzy control approach

Considering the guaranteed cost function constraint, according to the method in [14], we obtain the

controller gains K1 = [ 549.5 16.4 ], K2 = [ 343.9 9.0 ] and γmin = 7.9093, βmin = 0.1764. For

the system (51) considering desired H∞ disturbance attenuation performance level γmin with guaranteed

cost constraint index βmin, we use the type-2 fuzzy controller (52) to control the inverted pendulum, the

simulation results are shown in Figs. 5–7. The state responses of the closed-loop system (51) are shown

with black dashdot line in Fig. 5 and Fig. 6. Fig. 7 describes the controller force.

ii. SMC approach

Considering desired H∞ disturbance attenuation performance with guaranteed cost constraint, accord-

ing to Theorem 4 with the same given parameters, we obtain K = [ 129.5 69.6 ] and γmin = 7.9086,

βmin = 0.1081. Using the designed adaptive sliding mode controller (41), the responses characteristics

of the closed-loop system (51) are shown with pink solid lines in Fig. 5 and Fig. 6. Fig. 7 describes

the controller force. Therefore, the SMC approach to the IT2 fuzzy time-delay systems with external

disturbances is better than type-2 fuzzy control when consideringH∞ disturbance attenuation performance

and H2 guaranteed cost performance in simulations.

Remark 5: Additionally, in order to compare the presented SMC approach with guaranteed cost con-

straint with the presented SMC approach without guaranteed cost constraint, we take the state response

x1 from Fig. 2 and Fig. 5 into a frame, and similarly x2 from Fig. 3 and Fig. 6 into a frame. The

compared results are shown in Fig. 8 and Fig. 9, from which we can find the presented SMC approach

with guaranteed cost constraint is performed better than the presented SMC approach without guaranteed

cost constraint.
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H∞-based SMC without guaranteed cost constraint

H∞-based fuzzy control without guaranteed cost constraint

Fig. 2. State response x1(t) of the closed-loop system.
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Fig. 3. State response x2(t) of the closed-loop system.
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H∞-based SMC without guaranteed cost constraint
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Fig. 4. Control force of u(t).
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H∞-based SMC with guaranteed cost constraint
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Fig. 5. State response x1(t) of the closed-loop system.
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H∞-based SMC with guaranteed cost constraint
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Fig. 6. State response x2(t) of the closed-loop system.
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Fig. 7. Control force of u(t).
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Fig. 8. State response x2(t) of the closed-loop system.
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Fig. 9. Control force of u(t).

V. CONCLUSION

In this paper, the optimal H∞ guaranteed cost SMC problem has been solved for a class of IT2 fuzzy

systems with time-varying delays and uncertainties. A new sliding surface has been designed in terms of

different constraints. Then, by the designed sliding surface, the optimal H2 guaranteed cost performance

and H∞ performance of the plant have been analyzed. A novel adaptive sliding mode controller via

output-feedback strategy has been presented to guarantee the reachability of the pre-specified sliding

surface and ultimate uniform boundedness of the closed-loop system. Optimal schemes of guaranteed-

cost-based SMC andH∞-based SMC have been provided. Finally, the utilization of the inverted pendulum

system has demonstrated the effectiveness of the control schemes proposed in this paper. However, the

phenomenon of chatting can not be completely eliminated, which still be a research topic about how to

reduce the chattering in the future studies. The recent techniques to reducing chattering in sliding mode

control can be found in [40], [41].
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