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Many static techniques proposed to detect memory errors

+ Can guarantee absence of errors

- Can be hard to understand and fix detected errors

- Does not help programmer write safe-by-construction code

Dynamic approaches to memory safety

+ Widely used in managed languages

- But only transforms vulnerability into program crash

- Run-time overhead
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Key Idea: Program synthesis to guarantee memory safety

1 Programmer specifies which parts of the program should be

guarded

2 Our technique synthesizes correct and optimal guards that
guarantee memory safety

Optimal means as weak and as simple as possible

Example:

if(???) {R} else { /* handle error */}

4 / 16



Solution Overview

prog.c

Constraint

generation

Constraint

solving

 

1 Constraint Generation:

5 / 16



Solution Overview

prog.c

Constraint

generation

Constraint

solving

 

1 Constraint Generation:

Represent unknown guards using

placeholders

5 / 16



Solution Overview

prog.c

Constraint

generation

Constraint

solving

 

1 Constraint Generation:

Represent unknown guards using

placeholders

Perform dual forward and backward

analysis to generate constraint for each

unknown

5 / 16



Solution Overview

prog.c

Constraint

generation

Constraint

solving

 

1 Constraint Generation:

Represent unknown guards using

placeholders

Perform dual forward and backward

analysis to generate constraint for each

unknown

2 Constraint Solving:

5 / 16



Solution Overview

prog.c

Constraint

generation

Constraint

solving

 

1 Constraint Generation:

Represent unknown guards using

placeholders

Perform dual forward and backward

analysis to generate constraint for each

unknown

2 Constraint Solving:

An extended abduction algorithm for

solving constraint system with multiple

unknowns

5 / 16



Solution Overview

prog.c

Constraint

generation

Constraint

solving

 

1 Constraint Generation:

Represent unknown guards using

placeholders

Perform dual forward and backward

analysis to generate constraint for each

unknown

2 Constraint Solving:

An extended abduction algorithm for

solving constraint system with multiple

unknowns
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Constraint Generation Overview

{

   ...

}

if(??)

{

   ...

}

At synthesis point, compute

postcondition φ of code above ??

Compute precondition ψ that ensures

memory safety of code guarded by ??

Condition to guarantee memory safery:

φ∧?? |= ψ
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Key Insight: Abduction

Solution: Abductive inference

Given facts F and desired outcome O , find

simple explanatory hypothesis E such that

F ∧ E |= O and SAT(F ∧ E )

F ≡ postcondition φ before ??

O ≡ memory safety precondition ψ

E ≡ Solution for ??
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Cannot directly use abduction because

constraints have multiple unknowns

New iterative, stratification-based

algorithm for solving constraint system

Uses abduction as a helper procedure

Resulting solution is Pareto-optimal

Cannot improve solution for one

unknown without making others worse
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Example Cont.

Second Step: Compute what

needs to hold at ?? to ensure
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⇒ precondition ψ
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Example Cont.

Solve abduction problem

φ ∧ ?? |= ψ where

φ :
argv+ = argc ∧

argv− ≥ 1 ∧ optind ≥ 0

ψ :
optind + 1 < argv+∧
optind + 1 ≥ −argv−

Solution: argc − optind > 1

int main(int argc, 

   char** argv)

{
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programs

Two key ingredients:

Constraint generation: Generates VCs with placeholders using

dual forward and backward reasoning

Constraint solving: New abduction-based algorithm for finding

optimal solutions for placeholders representing unknown guards

Experimental validation of our approach

15 / 16



Questions?

16 / 16


