
Optimal Guard Synthesis

for Memory Safety

Tom Dillig, Isil Dillig Swarat Chaudhuri

Memory Safety Errors

Memory safety errors cause

many program errors

2 / 16

Memory Safety Errors

Memory safety errors cause

many program errors

In C and C++ perennial

source of security

vulnerabilities

2 / 16

Memory Safety Errors

Memory safety errors cause

many program errors

In C and C++ perennial

source of security

vulnerabilities

In Java, C# program

crashes due to exceptions

2 / 16

Preventing Memory Safety Errors

Many static techniques proposed to detect memory errors

3 / 16

Preventing Memory Safety Errors

Many static techniques proposed to detect memory errors

+ Can guarantee absence of errors

3 / 16

Preventing Memory Safety Errors

Many static techniques proposed to detect memory errors

+ Can guarantee absence of errors

- Can be hard to understand and fix detected errors

3 / 16

Preventing Memory Safety Errors

Many static techniques proposed to detect memory errors

+ Can guarantee absence of errors

- Can be hard to understand and fix detected errors

- Does not help programmer write safe-by-construction code

3 / 16

Preventing Memory Safety Errors

Many static techniques proposed to detect memory errors

+ Can guarantee absence of errors

- Can be hard to understand and fix detected errors

- Does not help programmer write safe-by-construction code

Dynamic approaches to memory safety

3 / 16

Preventing Memory Safety Errors

Many static techniques proposed to detect memory errors

+ Can guarantee absence of errors

- Can be hard to understand and fix detected errors

- Does not help programmer write safe-by-construction code

Dynamic approaches to memory safety

+ Widely used in managed languages

3 / 16

Preventing Memory Safety Errors

Many static techniques proposed to detect memory errors

+ Can guarantee absence of errors

- Can be hard to understand and fix detected errors

- Does not help programmer write safe-by-construction code

Dynamic approaches to memory safety

+ Widely used in managed languages

- But only transforms vulnerability into program crash

3 / 16

Preventing Memory Safety Errors

Many static techniques proposed to detect memory errors

+ Can guarantee absence of errors

- Can be hard to understand and fix detected errors

- Does not help programmer write safe-by-construction code

Dynamic approaches to memory safety

+ Widely used in managed languages

- But only transforms vulnerability into program crash

- Run-time overhead

3 / 16

Key Idea: Use Program Synthesis

Key Idea: Program synthesis to guarantee memory safety

4 / 16

Key Idea: Use Program Synthesis

Key Idea: Program synthesis to guarantee memory safety

1 Programmer specifies which parts of the program should be

guarded

Example:

if(???) {R} else { /* handle error */}

4 / 16

Key Idea: Use Program Synthesis

Key Idea: Program synthesis to guarantee memory safety

1 Programmer specifies which parts of the program should be

guarded

2 Our technique synthesizes correct and optimal guards that
guarantee memory safety

Optimal means as weak and as simple as possible

Example:

if(???) {R} else { /* handle error */}

4 / 16

Solution Overview

prog.c

Constraint

generation

Constraint

solving

1 Constraint Generation:

5 / 16

Solution Overview

prog.c

Constraint

generation

Constraint

solving

1 Constraint Generation:

Represent unknown guards using

placeholders

5 / 16

Solution Overview

prog.c

Constraint

generation

Constraint

solving

1 Constraint Generation:

Represent unknown guards using

placeholders

Perform dual forward and backward

analysis to generate constraint for each

unknown

5 / 16

Solution Overview

prog.c

Constraint

generation

Constraint

solving

1 Constraint Generation:

Represent unknown guards using

placeholders

Perform dual forward and backward

analysis to generate constraint for each

unknown

2 Constraint Solving:

5 / 16

Solution Overview

prog.c

Constraint

generation

Constraint

solving

1 Constraint Generation:

Represent unknown guards using

placeholders

Perform dual forward and backward

analysis to generate constraint for each

unknown

2 Constraint Solving:

An extended abduction algorithm for

solving constraint system with multiple

unknowns

5 / 16

Solution Overview

prog.c

Constraint

generation

Constraint

solving

1 Constraint Generation:

Represent unknown guards using

placeholders

Perform dual forward and backward

analysis to generate constraint for each

unknown

2 Constraint Solving:

An extended abduction algorithm for

solving constraint system with multiple

unknowns

Guarantees Pareto-optimality

5 / 16

Constraint Generation Overview

{

 ...

}

if(??)

{

 ...

}

At synthesis point, compute

postcondition φ of code above ??

6 / 16

Constraint Generation Overview

{

 ...

}

if(??)

{

 ...

}

At synthesis point, compute

postcondition φ of code above ??

Compute precondition ψ that ensures

memory safety of code guarded by ??

6 / 16

Constraint Generation Overview

{

 ...

}

if(??)

{

 ...

}

At synthesis point, compute

postcondition φ of code above ??

Compute precondition ψ that ensures

memory safety of code guarded by ??

Condition to guarantee memory safery:

φ∧?? |= ψ

6 / 16

Key Insight: Abduction

Solution: Abductive inference

7 / 16

Key Insight: Abduction

Solution: Abductive inference

Given facts F and desired outcome O , find

simple explanatory hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

7 / 16

Key Insight: Abduction

Solution: Abductive inference

Given facts F and desired outcome O , find

simple explanatory hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

F ≡ postcondition φ before ??

7 / 16

Key Insight: Abduction

Solution: Abductive inference

Given facts F and desired outcome O , find

simple explanatory hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

F ≡ postcondition φ before ??

O ≡ memory safety precondition ψ

7 / 16

Key Insight: Abduction

Solution: Abductive inference

Given facts F and desired outcome O , find

simple explanatory hypothesis E such that

F ∧ E |= O and SAT(F ∧ E)

F ≡ postcondition φ before ??

O ≡ memory safety precondition ψ

E ≡ Solution for ??

7 / 16

Constraint Solving

..
.

Cannot directly use abduction because

constraints have multiple unknowns

8 / 16

Constraint Solving

..
.

Cannot directly use abduction because

constraints have multiple unknowns

New iterative, stratification-based

algorithm for solving constraint system

8 / 16

Constraint Solving

..
.

Cannot directly use abduction because

constraints have multiple unknowns

New iterative, stratification-based

algorithm for solving constraint system

Uses abduction as a helper procedure

8 / 16

Constraint Solving

..
.

Cannot directly use abduction because

constraints have multiple unknowns

New iterative, stratification-based

algorithm for solving constraint system

Uses abduction as a helper procedure

Resulting solution is Pareto-optimal

8 / 16

Constraint Solving

..
.

Cannot directly use abduction because

constraints have multiple unknowns

New iterative, stratification-based

algorithm for solving constraint system

Uses abduction as a helper procedure

Resulting solution is Pareto-optimal

Cannot improve solution for one

unknown without making others worse

8 / 16

Example

Code snippet from Unix

Coreutils with protected

memory access

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

9 / 16

Example

Code snippet from Unix

Coreutils with protected

memory access

Convention: For pointer p:

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

9 / 16

Example

Code snippet from Unix

Coreutils with protected

memory access

Convention: For pointer p:

p+ represents distance to end

of memory block

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

9 / 16

Example

Code snippet from Unix

Coreutils with protected

memory access

Convention: For pointer p:

p+ represents distance to end

of memory block

p− represents distance from

beginning of memory block

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

9 / 16

Example Cont.

First Step: Compute what is
known at ?? ⇒ postcondition φ

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

10 / 16

Example Cont.

First Step: Compute what is
known at ?? ⇒ postcondition φ

From language semantics:

argv+ = argc ∧ argv− = 0

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

10 / 16

Example Cont.

First Step: Compute what is
known at ?? ⇒ postcondition φ

From language semantics:

argv+ = argc ∧ argv− = 0

From computing the

strongest postcondition:

argv+ = argc ∧
argv− ≥ 1 ∧ optind ≥ 0

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

10 / 16

Example Cont.

Second Step: Compute what

needs to hold at ?? to ensure

memory safety

⇒ precondition ψ

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

11 / 16

Example Cont.

Second Step: Compute what

needs to hold at ?? to ensure

memory safety

⇒ precondition ψ

Buffer access:

optind + 1 < argv+∧
optind + 1 ≥ −argv−

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

11 / 16

Example Cont.

Solve abduction problem

φ ∧ ?? |= ψ where

φ :
argv+ = argc ∧

argv− ≥ 1 ∧ optind ≥ 0

ψ :
optind + 1 < argv+∧
optind + 1 ≥ −argv−

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

12 / 16

Example Cont.

Solve abduction problem

φ ∧ ?? |= ψ where

φ :
argv+ = argc ∧

argv− ≥ 1 ∧ optind ≥ 0

ψ :
optind + 1 < argv+∧
optind + 1 ≥ −argv−

Solution: argc − optind > 1

int main(int argc,

 char** argv)

{

 if(argc<=1) return -1;

 argv++; argc--;

 optind=0;

 while(...) {

 optind++;

 if(*) {argv++;

 argc--;}

 }

 if(??) {

 argv[optind+1]=...;

 }

}

12 / 16

Experiments

Evaluated technique on the Unix

Coreutils and parts of OpenSSH

13 / 16

Experiments

Evaluated technique on the Unix

Coreutils and parts of OpenSSH

Removed conditionals used to

prevent memory safety errors

13 / 16

Experiments

Evaluated technique on the Unix

Coreutils and parts of OpenSSH

Removed conditionals used to

prevent memory safety errors

Used our new technique to

synthesize the missing guards

13 / 16

Experiments Cont.

14 / 16

Summary

New synthesis-based approach for writing memory safe

programs

15 / 16

Summary

New synthesis-based approach for writing memory safe

programs

Two key ingredients:

15 / 16

Summary

New synthesis-based approach for writing memory safe

programs

Two key ingredients:

Constraint generation: Generates VCs with placeholders using

dual forward and backward reasoning

15 / 16

Summary

New synthesis-based approach for writing memory safe

programs

Two key ingredients:

Constraint generation: Generates VCs with placeholders using

dual forward and backward reasoning

Constraint solving: New abduction-based algorithm for finding

optimal solutions for placeholders representing unknown guards

15 / 16

Summary

New synthesis-based approach for writing memory safe

programs

Two key ingredients:

Constraint generation: Generates VCs with placeholders using

dual forward and backward reasoning

Constraint solving: New abduction-based algorithm for finding

optimal solutions for placeholders representing unknown guards

Experimental validation of our approach

15 / 16

Questions?

16 / 16

