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Abstract— This paper presents a calibration method for
eye-in-hand systems in order to estimate the hand-eye and the
robot-world transformations. The estimation takes place in terms
of a parametrization of a stochastic model. In order to perform
optimally, a metric on the group of the rigid transformations
SE(3) and the corresponding error model are proposed for
nonlinear optimization. This novel metric works well with both
common formulations AX=XB and AX=ZB, and makes
use of them in accordance with the nature of the problem. The
metric also adapts itself to the system precision characteristics.
The method is compared in performance to earlier approaches.

I. INTRODUCTION

This work concerns the use of visual sensors at the end-

effector of robot manipulators/arms. In particular, hand-eye

calibration consists of identifying the unknown position and

orientation (pose) of the camera frame SC with respect to

(w.r.t.) the robot end-effector frame (also known as hand or

Tool Center Point TCP frame) ST , when the camera is rigidly

mounted on the robot hand – see Fig. 1.

There is a strong need for an accurate hand-eye calibration.

The reasons are twofold: i) to map sensor-centered measure-

ments into the robot/world frame and ii) to allow for an

accurate prediction of the pose of the sensor on the basis of the

arm motion – in fact these are often complementary aspects

of the same problem.

When performing hand-eye calibration on the basis of both

the pose of ST w.r.t. the robot base frame SB bT
t, and the pose

of SC w.r.t. the world/object frame S0 0T
c, there are two main

approaches in order to estimate the hand-eye transformation:

1) Move the hand and observe/perceive the movement of

the eye: or AX = XB, where A is the robot TCP motion

t1T
t2, B the induced camera motion c1

T c2, and X is the

hand-eye transformation tT
c to be determined. This is the

classical approach. Early solutions regard the rotational part

of this equation decoupled from the translational one, yielding

uncomplex, fast, but error-prone formulations, since rotation

estimation errors propagate to the translational part. Seminal

articles are Shiu and Ahmad 1989 [1] (least squares fitting

of rotation, then translation, using angle-axis representation)

and Tsai and Lenz 1989 [2] (similar to [1] with closed-

form solution). Zhuang and Roth 1991 [3] simplified the

formulation introducing quaternions for the estimation of the

rotational part, in the same way as Chou and Kamel 1991 [4],

who make use of the singular value decomposition (SVD).

Chen 1991 [5] for the first time does not decouple rotational

and translational terms by using the screw theory. Wang 1992
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Fig. 1. Stereo camera mounted at the top of the DLR Light-Weight Robot 3.

in [6] compares [1] and [2] resulting in a slight advantage

for the latter. Zhuang and Shiu 1993 [7] apply nonlinear

optimization for both parts, minimizing a similar expression to

Frobenius norms of homogeneous matrices of transformation

errors. They additionally offer the possibility to disregard the

camera orientation for the estimation. A similar approach was

presented by Fassi and Legnani 2005 [8]. Park and Martin

1994 [9] perform nonlinear optimization in the same way, but

again in the detached formulation. Lu and Chou 1995 [10]

introduce the eight-space formulation based on quaternions,

linearly optimizing both parts at the same time using the SVD.

Horaud and Dornaika 1995 [11] nonlinearly optimize both

the rotational (formulated with quaternions) and the transla-

tional parts one-to-one. Wei, Arbter, and Hirzinger 1998 [12]

nonlinearly minimize algebraic distances performing simulta-

neous hand-eye and camera calibration. Daniilidis 1999 [13]

introduces the dual quaternions – an algebraic representation

of the screw theory to describe motions. This enables the

author to find a fast SVD-based joint solution for rotation

and translation within linear formulation. Bayro-Corrochano

et al. 2000 [14] in the same way produce a SVD-based linear

solution of the coupled problem by the use of motors within

the geometric algebra framework. Andreff et al. 2001 [15]

do the job properly, employing this particular formulation for

X-from-motion applications – cf. Section II-C. They get rid of

the nonlinear orthogonality constraint in SO(3)1 by increasing

the dimensionality of the rotational part and manage to for-

mulate the problem as a single homogeneous linear system.

1SO(3) is the Special Orthogonal group of 3×3 matrices or rotation group
for 3D space.
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2) Simultaneous estimation of the hand-eye transformation

and the pose of the robot in the world: or AX =ZB, where

A is the pose of the camera frame SC w.r.t. S0 0T
c, B

the pose of the robot TCP ST w.r.t. SB bT
t, and X and

Z are the eye-hand and world-base transformations to be

determined, i.e. cT
t and 0T

b respectively. To the best of our

knowledge it was Wang in 1992 [6] who first submitted this

formulation explicitly for hand-eye calibration. Surprisingly,

none of the further approaches refer to him in this context2.

Zhuang et al. 1994 [16] apply quaternions in order to get a

simple linear solution of the rotational part by the use of the

SVD. Rémy et al. 1997 [17] nonlinearly optimize both parts

by minimizing reprojected 3D Euclidean error distances in S0.

Dornaika and Horaud 1998 [18] solve the rotational problem

linearly with quaternions and also nonlinearly optimize both

parts by one-to-one minimizing of Frobenius norms and two

penalty functions – see Section III. Other approaches integrate

the hand-eye calibration with the intrinsic camera calibration

and minimize the Root Mean Square (RMS) of the image

frame errors.

The optimization criteria for both approaches are often sub-

optimal and no attention is paid to proper parametrizations.

Since the purpose of model-based3 calibration is the accurate

parametrization of the system model, maximum accuracy

optimal calibration is achieved when minimizing model fitting

errors with regard to the actually erroneous elements. Here we

propose a metric on the group of rigid transformations SE(3)
for this purpose.

Moreover, with the exception of [17], a thorough com-

parison of these very different approaches is missing. This

paper shows the most accurate algorithms along with the one

presented here – for both approaches – and justifies their

application in relation to the nature of the problem.

This paper is organized as follows: Section II states the

hand-eye calibration problem and its most relevant formu-

lations. Next Section III presents a novel metric on SE(3)
in order to optimally solve these problems. In addition,

other representative solutions are exposed. The ideas given

in Sections II and III are implemented in Sections IV and

V. Section VI recapitulates and presents an outlook on future

work.

II. PROBLEM DESCRIPTION

Let bT
t be the homogeneous transformation relating the

pose of the base frame SB to the pose of the TCP frame ST .

bT
t results from the calibrated forward kinematic model of

the robot, the encoder readings of every joint, and possibly

its control parameters. Let again 0T
c be the homogeneous

transformation relating the pose of the object/world frame S0

2Wang mainly compared the algorithms in [1] and [2], but at the same time
he also produced this second family of solutions. Wang himself criticizes his
class A calibration procedure since it yields biased results unless an error-free

0T
b is specified. He actually fails to realize the necessity of estimating 0T

b

at the same time in order to avoid measurement innacuracies or mistakes and
uses ad hoc external measurements for getting it.

3Approaches that do not rely on a physical model of the system may
actually perform on ocassions better if they are purposefully calibrated.
We therefore add the adjective model-based to the procedures in this work.

to the pose of the camera frame SC (regardless of whether

we use mono or stereo vision). 0T
c stems from the absolute

extrinsic parameters of the camera calibration process, cf. [19].

There remain two unknown transformations tT
c and 0T

b to

be estimated. The latter does not require frequent recalibration,

since manipulators are not usually shifted. On the contrary,

the rigid pose of the camera frame SC w.r.t. the TCP frame

ST has to be calibrated more often, since the camera(s) may

be removed or rotated. These transformations should not be

measured by hand since the different frames are located inside

the manipulator or the sensor.

In order to uniquely determine tT
c (and perhaps 0T

b),

at least n = 3 stations – specifically two movements with

nonparallel rotation axes – are required (refer to [2], [5]).

A. Solution #1: AX =ZB

Next is presented the direct formulation of the predictive

parametric model described in the last section. It enables us

to predict values (e.g. bT
t) on the basis of a parametric re-

presentation of the world (e.g. cT
t). These predictions, jointly

with actual measurements, make it possible to refine optimally

on this parametric representation of the world – see Section III.

This first formulation directly reproduces the rigid transfor-

mations in the loop camera-TCP-base-world-camera:

0T
c
cT

t = 0T
b
bT

t
⇋

SC
cT t

−→ ST

0T c
x ր

x
bT t

S0
0T b

−→ SB

(1)

and evades further modeling (e.g. perspective projection or

detailed joint/link information). It introduces a significant

constraint in order to ensure that both cT
t and 0T

b are

consistent with the actual system. The equation is usually

decomposed into its rotational and translational parts:

0R
c
cR

t = 0R
b
bR

t

0R
c
ct

t + 0t
c = 0R

b
bt

t + 0t
b

}
. (2)

The solution has been calculated in different ways – refer

to [6], [16]–[18].

B. Solution #2: AX =XB

Due to the fact that cT
t is more often required than 0T

b,

most approaches eliminate the latter by writing Eq. (1) at two

different instants i and j yielding the well-known hand-eye

equation:

ci
T cj

cT
t = cT

t
ti

T tj
⇋

0T
cj cT t, (0T

b)
−−−−−→ bT

tj

ci
T cj

x ր
x

ti
T tj

0T
ci cT t, (0T

b)
−−−−−→ bT

ti

(3)

or
ci

Rcj
cR

t = cR
t
ti

Rtj

ci
Rcj

ct
t + ci

tcj = cR
t
ti

ttj + ct
t

}
(4)

first formulated in [1], [2]. This problem was geometrically

analyzed recently in [8]. When writing ci
T cj = cT

t
ti

T tj
tT

c

it becomes clear that ci
T cj and ti

T tj are the same rigid

transformation assessed in different frames of reference.
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The solution has been calculated in different ways – refer to

[1]–[15]. If necessary, the dual equation 0i
T 0j

0T
b = 0T

b
bi
T bj

(where S0 moves w.r.t. SC and SB w.r.t. ST ) also enables the

estimation of 0T
b.

C. Choice of formulation

The above equations do not hold exactly in the case of

noise and n > 3 stations due to the erroneous rigid-body

transformations bT
ti and 0T

ci (or ti
T tj and ci

T cj ). The

proper optimal way of accurately estimating tT
c and 0T

b

is thus optimally correcting these erroneous measurements at

every station i=1..n depending on both their geometric error

models and the predictions/estimations from the formulae.

The maximum likelihood method (ML) selects the model

(e.g. tT
c) for which the probability of the observed data

(e.g. bT
ti) is highest or, in other words, for which its in-

compatibility with the model is minimized. For Gaussian

error distributions, a typical cost function is the sum of

covariance-weighted squared predictions of these particular

errors. The resulting model parameters then have zero bias,

lowest variance, and maximum probability if flat prior [20].

In the next section a metric for rigid-body transformation

errors is presented. Experiments on the real systems FaroArm

Gold [21] and ARTtrack2 [22] have actually shown zero-mean

Gaussian distributions4 if this error metric is applied to the

transformation bT
t – see Section V. These errors are naturally

much larger than the ones in 0T
c and therefore the latter shall

not be considered [2]. These experiments make it clear, that for

this common eye-in-hand framework it is possible to optimally

correct bT
ti by minimizing a sum of covariance-weighted

squared prediction errors within the AX = ZB formulation

in order to optimally estimate tT
c and bT

0.

In the case of the AX =XB formulation this method does

not hold anymore, since ti
T tj and ci

T cj do not necessarily

show Gaussian errors in this metric, but rather nonlinear

functions of them. However, we propose this formulation

for visual pose-from-motion problems (as in [15]). Here the

motion ci
T cj may actually produce Gaussian errors in this

metric and moreover much larger than the ones in ti
T tj so

that the latter may be ignored. Research in this direction shall

be conducted in the near future.

III. MINIMIZING ON SE(3)

In this section a distance metric on the Euclidean group

of rigid-body motions SE(3) is presented. Elements in this

group are represented as a couple (R, t) where R ∈ SO(3)=
{R∈ℜ3×3 : RtR= I, det(R)=1} and t∈ℜ3. The problem

of finding a metric for SE(3) can be presented in terms of a

real valued objective function O : (SO(3) ×ℜ3)→ℜ which

measures the suitability of the unknowns to fit the data.

For the hand-eye calibration problem many choices for a

metric exist, but none directly referred to the actually erro-

neous transformations bT
ti and 0T

ci. Next some significant

approaches are presented – they shall be assessed within the

Sections IV and V:

4The metric in translation error actually shows χ2 distribution in its
squared form.

a) The residuals in linear optimization methods usually re-

present angles, rotation matrix elements, quaternion distances,

etc. – or rather, nonlinear algebraic transformations of them.

b) A relevant metric is the one of Horaud and Dornaika in

[11]. They optimize nonlinearly for cT
t within the AX =XB

formulation as follows:

{q, t}⋆ =arg min
q,t

(f(q, t) + λ(1 − q ∗ q̄)2)

with

f(q, t) = λ1

∑n−1
i=1 || v′

i − q ∗ vi ∗ q̄ ||2 +

λ2

∑n−1
i=1 ||q∗ti

tti+1 ∗q̄ − (ci
Rci+1−I)t−ci

tci+1 ||2

with weights λ1 =λ2 =1 and λ=2·106. The latter factor guar-

antees the consistency of the quaternion q representing cR
t.

vi and v′
i are the eigenvectors associated with the unitary

eigenvalues of ti
Rti+1 and ci

Rci+1 respectively. This objective

function OH has the form of a sum of squares of nonlinear

functions and can be minimized e.g. with the Levenberg-

Marquardt algorithm. This method considerably improved the

accuracy relative to earlier work.

c) Dornaika and Horaud apply in [18] a different metric

for the AX =ZB formulation:

{tT
c, 0T

b}⋆ = arg min
tT

c, 0T b

(
f(tT

c, 0T
b) +

λ3 || tR
c
cR

t−I ||2 +λ4 ||0R
b
bR

0−I ||2
)

with

f(tT
c, 0T

b) = λ1

∑n
i=1 ||0R

c
cR

t−0R
b
bR

t ||2 +

λ2

∑n
i=1 ||0R

c
ct

t+0t
c−0R

b
bt

t−0t
b ||2

again with weights λ1 = λ2 = 1 and λ3 = λ4 = 106. This

objective function OD minimizes the Frobenius norm of a

residual matrix in its rotational part.

d) Daniilidis in [13] presents a unified and fast way of

formulating with dual-quaternions – algebraic counterparts of

screws – for both the rotational and the translational parts.

In part this method attempts to avoid the weighting problem

by using the compact formulation ǎ = q̌b̌¯̌q for AX = XB,

which can be solved linearly with SVD.

However, it is worth noting the absence of any posi-

tion/orientation weighting possibility – or at least criteria for

it – in order to aim purposefully at optimal total estimators.

In addition, parametrization issues have a strong influence in

their usage: variable scaling (the choice of ‘units’ relating

meaningfully to the problem structure) and, more generally,

preconditioning (the choice of linear combinations of parame-

ters to use) are crucial for convergence and unfortunately play

an unexpected role in the weighting issue.

We next describe a sound objective function O based on

an error metric on SE(3). For the first time it attempts to

solve the next purposes: i) to optimally reduce actual system

errors, ii) to allow for a natural weighting of the rotational and

translational components, and iii) the algorithm to be able to

autonomously adjust the latter. In addition, it sorts well with

both the AX = XB and the AX = ZB formulations.
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A. Metric for rotation error

Any rigid body transformation can be modeled as a rotation

in SO(3) by an angle θ about an axis p through the origin,

followed by a translation t in ℜ3. The rotation can thus be

represented by three independent parameters – the rotation

angle θ and two angles {α, β} defining the axis of rotation p.

Residual error rotations such as ∆tR̃ = tR̃
b

bR̂
t

where bR̃
t

is measured (e.g. read from joint encoders) and bR̂
t

estimated

by e.g. Eq. (1) present small angles θ. Experiments5 show to

a great extent arbitrary (randomly distributed) axes of rotation

for these residual rotations. Based on these experiments and

for general application, the axes of rotation are considered

here irrelevant. In addition, data-driven over-special models

tend to give biased results. We therefore propose

Orot
i =∆tθi =± arccos

((
trace(∆tR̃i) − 1

)/
2

)
=∆bθi .

This geometrically-defined metric6 for SO(3) gauges the

residual rotation error and proves to be frame-invariant. In [6]

the similar metric Orot′

i =N (bR̃
ti

, bR̂
ti

) = 2 sin(|∆tθi|/2) is

introduced for purposes of calibration accuracy assessment.

B. Metric for translation error

To find a metric on the Euclidean space does not seem

complicated, since the Euclidean distance is its natural metric.

However, the metric for the translation residual error of a

rotationally erroneous rigid-body motion cannot be a single

Euclidean residual distance, since this measure is not frame-

invariant, e.g. tĩ
t = bt̂

ti
− bt̃

ti
differs from bĩ

t = tî
t
b
− tĩ

t
b

if

{∆tθi =∆bθi >0} provided that {|| tĩ
t ||>0 ∨ || bĩ

t ||>0}.

In absence of further model information, we choose the

equitable balance between these two symmetrical Euclidean

distances as a metric for translational residual error:

Otra
i = ( || tĩ

t || + || bĩ
t || ) / 2 .

C. Combination of both metrics

In Section II-C it is stated that by means of the minimi-

zation of the sum of covariance-weighted squared prediction

errors with zero-mean Gaussian error distributions, the ML

method estimates the optimal model (e.g. tT
c). Thus the total

transformation error cost function results:

Oi =
(Orot

i )2

⋆σ2
rot

+
(Otra

i )2

⋆σ2
tra

where ⋆σ2
rot and ⋆σ2

tra are the 2nd moments of the independent

Gaussian probability density functions (pdfs) in rotation and

translation error. Eventually for the AX =ZB formulation:

{tT
c, bT

0}⋆ = arg min
tT c, bT 0

( ∑n
i=1

(Orot
i )2

⋆σ2
rot

+
(Otra

i )2

⋆σ2
tra

)

= arg min
tT c, bT 0

( ∑n
i=1 (Orot

i )2+
(Otra

i )2

(⋆σtra/⋆σrot)2

)

5 Experiments on pose accuracy for both the FaroArm Gold [21] and the
ARTtrack2 [22] systems were performed by comparing their readings with the
absolute extrinsic parameters from a stereo camera calibration algorithm.

6The trace of a rotation matrix R is independent of the coordinate system
used (as long as it is orthonormal). This implies that the trace is the sum of
the eigenvalues of R, that is 1+(cos(θ)+i sin(θ))+(cos(θ)−i sin(θ)) =
1+2 cos(θ) ⇒ θ=± arccos((r11 + r22 + r33 − 1)/2).

where ⋆σtra/⋆σrot is the position/orientation precision ratio –

this is here the only required parameter for optimal estimation.

In general the weighting of translational and rotational

metrics on SE(3) is said to depend on the eventual task at

hand. Here again this is definitely true, since the hand-eye

calibration task aims primarily at the accurate estimation of

the system parameters. In this way they are estimated at best.

Numerical optimization procedures are to be applied to find

the solutions. This nonlinear optimization method is more

stable against noise since the objective function O=
∑n

i=1 Oi

takes into account proper noise models.

D. Automatic optimal weighting

A further appealing virtue

of this metric is the ability

for it to automatically and

optimally weight its objective

function for itself in case

the optimal 2nd moments of

the error in bT
t are not at

hand. It can be verified that
⋆σ2

rot =
∑n

i=1(
⋆Orot

i )2/n
⋆σ2

tra =
∑n

i=1(
⋆Otra

i )2/n
for {tT

c, bT
0}⋆.
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Fig. 2. Weighting ratio adaption.

Fortunately, non-optimal but approximated model para-

meters {tT
c, bT

0} (e.g. resulting from an optimiza-

tion with arbitrary prior weightings in Oi with e.g.

one-to-one weighting) yield improved weighting para-

meters, so that σ2
rot =

∑n
i=1(O

rot
i )2/n ❀

⋆σ2
rot and

σ2
tra =

∑n
i=1(O

tra
i )2/n ❀

⋆σ2
tra. Both experiments and

simulations suggest that this process in general converges

(see Fig. 2), so that after about 3 iterations the results become

optimal. The work in Ref. [23] implements this algorithm.

IV. SIMULATION RESULTS

Simulations were conducted to compare both solutions

applying the proposed metric, as well as other representative

methods. Simulations facilitate the comparison of estimated

and actual values. In particular, these simulations compare

nonlinear minimization on SE(3) as proposed in the last

section (as from now “SE” for AX = ZB and “se” for

AX =XB) with the 5 well-known methods briefly presented

in Section III: linear least squares solution in rotation (“li”),

nonlinear minimization [11] (“nl”), and dual-quaternion [13]

(“dq”) approaches for AX = XB, and linear least squares

solution in rotation (“LI”) and nonlinear minimization of

Frobenius norms [18] (“FN”) approaches for AX =ZB.

On the one hand, most of these methods lack of a convenient

rotation/translation weighting policy. On the other hand, the

novel metric proposed here is able to perform weighting

automatically. We take advantage of this situation and study

some of these methods in relation to their weighting parame-

ters and, in the case of the method in [11], we introduce a

novel weighting policy in order to boost performance: it aims

simply at bringing both translational (Euclidean distances) and

rotational (quaternion distances) errors to the the same order

of magnitude.
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Fig. 3. Standard deviations of the parameter errors with noise model #1.
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The simulation is conducted as follows: 9 camera stations

were generated at each altitude 0z of 25 and 45 cm w.r.t. S0

with both 0x and 0y ∈ {−30, 0, 30} cm, i.e. n=18 stations

altogether are used for calibration. They all focus on S0.

Since the simulation results are to be presented statistically,

this series was randomly repeated 100 times in the form of

a Monte-Carlo simulation. Nominal, arbitrary, but realistic

values for the unknown transformations tT
c and bT

0 are

generated for every calibration, being the only restriction

||tt
c||=||bt

0||=30 cm. These enable the calculation of the actual

bT
ti transformations. In turn, random errors provide bT̃

t
.

Furthermore, the Monte-Carlo simulations for the methods

nl, FN, SE, and se were repeated 21 times with different

weighting factors. The averaged results show accuracy and

error minimization results.

As previously stated (see Section II-C), the robot arm

pose measurement bT̃
t

is expected to be the main source

of perturbation. Here two different noisy models are simu-

lated: noise model #1 applies for general time-independent

inaccurate pose data and noise model #2 to general time-

independent inaccurate motion data – which is time-dependent

inaccurate pose data since it implies growing pose innacuracy

over time. It will be shown that the latter are best dealt

using the AX = XB formulation, whereas the former

using AX = ZB. In particular, measurement noise was

included for the noise model #1 in orientation7 with ∆tR̃

and ∆bR̃, having rotation angles θ granted to be unbiased,

with Gaussian pdfs with σθ = 0.15 ◦. The axes of rotation p

of these rotation matrices are uniformly distributed, i.e. α ∈
[−90◦, 90◦) with pdf(α) = 180−1 [◦]−1 and β ∈ [−90◦, 90◦)
with pdf(β) ∝ arcsin(β/90) [◦]−1. In position, the Euclidean

residual distances tt̃ and bt̃ also present real Gaussian pdfs

with σt = 0.35 mm, and their directions are again uniformly

distributed. For noise model #2 we use ti
R̃

∆tj

= tj
R̃

ti

ti
R̂

tj

and tĩ
t

∆tj
= tî

t
tj
− tĩ

t
tj

.

7Note that this error model does not completely correspond to the metric
proposed in Section III. Here rotational errors appear both in ST and SB .
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Fig. 4. Standard deviations of the parameter errors with noise model #2.
Optimal values regarding weighting are marked with ’*’.

Robustness analysis in the presence of varying noise levels

were performed. The conclusions are in conformity with prior

works: for usual applications the superiority of an algorithm

does not critically depend on the noise level. So these studies

are not reported here.

A. Accuracy analysis with synthetic data

Next both accuracy and precision8 in the estimation of tT
c

and bT
0 are studied in relation to the employed method, the

error model, and the weighting parameters.

Primarily the simulations reflect the operation of the ML

method as stated in Section II-C: error standard deviations

are much larger than the biases – at least 10 times. In

addition, under mild regularity conditions on the measurement

distributions, the posterior distributions of the ML estimates

converge asymptotically in probability to Gaussians. There-

fore the accuracy analyses performed here focus on the 2nd

moments of the estimation errors.

Figs. 3 and 4 show the standard deviations in position and

orientation estimation for tT
c and 0T

b. The figures totally

differ in the fact that in Fig. 3 the AX = ZB approaches

(upper case) show better performance, whereas in Fig. 4 (tT
c)

the AX =XB approaches (lower case) do. In particular, for

both approaches the methods developed here (SE and se) show

highest precision. In addition, proper weighting proves crucial

to optimal estimation – this applies with novelty to the method

nl in [11] as well as to the ones presented here (SE and se).

Note that without this weighting policy but with λ1 = λ2 =1
(i.e. ratio=100) the nl method would perform worse. Besides,

results with noise model #2 in the right-hand side of Fig. 4

do not show relevant findings, since for this model neither of

the solutions is optimal for the estimation of 0T
b.

Although parametrization and conditioning were taken into

account, in the simulations the dual-quaternion approach does

not work any better than the linear estimation methods do.

This fast method may be appropriate for solving hand-eye

calibration in X-from-motion problems.

8Accuracy refers to the agreement of estimations and actual values,
whereas precision refers to the repeatability of estimations.
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B. Model matching analysis with synthetic calibration data

Figs. 5 and 6 show the 2nd moments of the error metrics

presented in Section III for the same simulations. They help

to understand that: i) linear solutions minimizing rotational

errors (li) represent only one potential extreme solution for the

hand-eye calibration problem, ii) to be able to find the proper

weighting is critical for optimal calibration, iii) approaches for

the solution AX =XB perform poorly with noise model #1
because the error reduction they do get in ti

T tj becomes much

smaller than the reduction the approaches for the solution

AX = ZB get in the error in bT
ti (the opposite applies to

noise model #2).

V. EXPERIMENTAL RESULTS

In this section the performance of the different algorithms

in real systems is presented. The pose of ST w.r.t. SB stems

from readings in the ARTtrack2 system [22]. 0T
c is in turn

provided by a stereo camera calibraton algorithm derived from

the monocular one in [19], refer to [23]. Experiments aim at

verifying correct operation of the methods in real systems. As

in Section IV, the estimation accuracy is evidence of correct

operation. Unfortunately, since ground-truth information is

usually missing in experiments, calibration accuracy may not

be directly assessed. It is possible to indirectly evaluate calibra-

tion performance: this should be done by verifying the system

model matching capability in relation to the calibration results,

since the results that best fit the model stem from an optimal

calibration process [20]. An example for this case is testing

the ability to predict bT
t on the basis of 0T

c and the solutions
⋆
t T̂

c
and ⋆

b T̂
0

in several verification stations – see Section V-B.

Alternatively, it is possible to indirectly evaluate calibration

performance by using some task-dependent metrics9.

9For instance you may evaluate the ability to predict camera poses or
image projections using only measurement data. These practices are un-
desirable since external assessments incorporate task-dependent requirements.
For instance, for a very long link tT

c the camera pose estimation accuracy
may be extremely influenced by the TCP orientation error. In this case
orientation error minimization algorithms would be preferred – but they
certainly do not parameterize the system model properly – recall Section III-C.
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A. Model matching analysis with real calibration data

Following on from the last section, we next observe the

model matching capability of different calibration algorithms

on real experiments in order to relate them to their virtual

counterparts in Section IV. Again, the 2nd moments of the

metrics presented in Section III are presented for an experi-

ment consisting of 10 stations. Results in Fig. 7 resemble to a

great extent Fig. 5 in a slightly different order of magnitude10.

This suggests that the system presents noise model #1. In this

case Section IV points to SE (minimization on SE(3) within

AX =ZB) in order to optimally estimate tT
c and bT

0.
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B. Model matching analysis with real verification data

The last results do not suffice to indirectly evaluate model-

based calibration performance, since the calibration process

purposefully forced this particular data to comply with the

parameterized model. To verify general predictive capability of

10An important attribute of the automatic weighting method exposed in
Section III-D is its independency of the order of magnitude – the only required
parameter being a ratio of the precisions of the system.
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TABLE I

t
bT

c
and b

bT
0

from a previous calibration with 10 stations t
bT

c
and b

bT
0

from a comprehensive calibration with 37 stations

AX=ZB AX=XB AX=ZB AX=XB

SE FN LI se nl dq li SE-t FN-t LI-t se-t nl-t dq-t li-t

σθ 0.210 0.213 0.213 0.227 0.239 0.516 0.270 0.199 0.200 0.200 0.215 0.216 0.341 0.241 [◦]

σt 1.343 1.388 1.386 2.401 2.597 3.735 1.969 1.171 1.217 1.216 1.463 1.390 2.424 1.549 [mm]

Eq. (1), data external to the calibration process was acquired in

the form of 27 additional TCP stations and their corresponding

camera pose estimations. Tab. I presents the 2nd moments of

the metrics in Section III for 27 verification stations with

erroneous bT
t. In the left-hand side the calibration results

tT̂
c

and bT̂
0

from the last section were used. The verification

stations still present low discrepancies between measurements

and predictions. In the right-hand side the results (-t) of an

extensive hand-eye calibration with 37 stations were used. The

latter show slightly better results as expected. This is due to

the few stations used for the former calibration11 as well as to

remaining modeling errors (e.g. camera pose estimation). The

proposed SE-t approach is the least affected in this concern.

Apart from that, all results confirm superior performance for

the SE estimation approach.

VI. CONCLUSION AND FUTURE WORK

This paper presented a calibration method for eye-in-hand

systems. These systems are the most common approach used

to provide autonomy to robot manipulators.

Starting out, this work distinguishes between the two

common solutions of the hand-eye calibration problem.

A novel physically-based metric on SE(3) is presented in

order to optimally estimate within these model formulations.

This metric in turn makes it possible to select the appropriate

formulation in relation to the actual system characteristics.

The metric, together with its experimentally validated error

model, are the starting point in order to perform optimal

estimation in the form of the Maximum Likelihood method –

translational and rotational errors are weighted with the parti-

cular precision characteristics of the manipulator. Furthermore,

the weights are adapted automatically by the algorithm.

Simulations and experiments illustrate the theoretical analy-

sis. Comparison with other methods shows improved perfor-

mance. Specific versions of some representative approaches

were used and in particular a novel weighting policy for the

well-known approach in [11] is presented.

Future work will include further accuracy experiments

as well as the implementation in X-from-motion systems.
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