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Abstract

Taking the stochastic effects on growth rate and harvesting effort into account, we

propose a stochastic delay model of species in two habitats. The main aim of this

paper is to investigate optimal harvesting and dynamics of the stochastic delay

model. By using the stochastic analysis theory and differential inequality technology,

we firstly obtain sufficient conditions for persistence in the mean and extinction.

Furthermore, the optimal harvesting effort and the maximum of expectation of

sustainable yield (ESY) are gained by using Hessian matrix, the ergodic method, and

optimal harvesting theory of differential equations. To illustrate the performance of

the theoretical results, we present a series of numerical simulations of these cases

with respect to different noise disturbance coefficients.

Keywords: stochastic delay model; extinction; persistence in the mean; optimal

harvesting policy

1 Introduction

The population dynamics could be affected by the process of migration among patches.

Due to natural conditions, such as the geology, climate, and hydrology, and the human

factors, which include the development of tourism and the locations of industries, the an-

imal habitats have been divided into some small patches. In recent years, many scholars

studied the persistence and extinction of species with diffusion [–]. The result of []

shows that the stability of periodic solution has some connection with the diffusion co-

efficients. The the references mentioned, the models with diffusion affecting the growth

rate were studied, whereas Allen [] proposed a logistic model with diffusion that affects

density dependence. It can be described by the following formulation:

dxj(t)

dt
= xj(t)[rj – bjxj] +

m
∑

k=,k �=j

Djkxj(t)
[

xk(t) – αjkxj(t)
]

, j = , . . . ,m, ()

where xj (j = , . . . ,m) denotes the density of species x in patch j, rj >  is the growth rate of

xj, bj >  stands for the density-dependent factor in patch j,Djk ≥  represent the diffusion

coefficient from patch k to patch j, and αjk ≥ , j,k = , . . . ,m, are the diffusion boundary

conditions.

It is quite a common phenomenon that the species are always affected by environmental

fluctuations. The population growth usually suffers from the disturbance of ecological en-
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vironment, such as supply of food, climate change, and natural enemies, and the stochas-

ticity can be described by white noise. The stochastic model has attracted the attention of

many researchers, and more studies can be found in [–]. The growth rates affected by

noises can be described by

ri → ri + σiḂi(t), i = , , ()

where σi is the intensity of Bi(t).

To develop and manage the biological resource, it is important to consider the prob-

lem of optimal harvesting. If natural resources management is reasonable, then it can in-

crease sustainable production and equitable profit. Bioeconomic models allow ecological

resources or certain benefits to be suitably exploited. A number of researchers have paid

particular attention to the study of optimal harvesting policy, and a lot of results have been

obtained [–]. However, sometimes the harvesting may also be affected by human-

caused disturbance, such as the price of labor power, crude oil, and goods, which could

also be described as white noise. The proportion coefficient of harvesting can be replaced

by

Ei → Ei + σiḂi(t), i = , , ()

where σi is the intensity of Bi(t), and B(t), B(t), B(t), and B(t) are independent

standard Brownian motions.

In model (), we consider the stochastic effects not only on growth rate but also on

harvesting effort to investigate the optimal harvesting problem of the following stochastic

model:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dx(t) = x(t)[r – E – bx(t)] dt +Dx(t)[e
–dτx(t – τ) – αx(t)] dt

+ σx(t) dB(t) – σx(t) dB(t),

dx(t) = x(t)[r – E – bx(t)] dt +Dx(t)[e
–dτx(t – τ) – αx(t)] dt

+ σx(t) dB(t) – σx(t) dB(t),

()

where Ei ≥  (i = , ) and di (i = , ) respectively denote harvesting effort and death rate

of the species xi, τi ≥  (i = , ) is the time delay caused by the diffusion of the species

xi (i = , ), D is the diffusion coefficient from patch  to patch ,whereas D represents

the diffusion coefficient from patch  to patch , and αi (i = , ) represent the boundary

conditions.

2 Stochastic persistence and extinction

For convenience, we define the following notations:

τ = max{τ, τ},
〈

f (t)
〉

= t–
∫ t



f (s) ds,

〈f 〉∗ = lim sup
t→+∞

t–
∫ t



f (s) ds, 〈f 〉∗ = lim inf
t→+∞

t–
∫ t



f (s) ds,

M = (b + αD)(b + αD), M = (b + αD)(b + αD) –DDe
–(dτ+dτ),
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M = k(b + αD) + kDe
–dτ , M = kDe

–dτ + k(b + αD),

where k = r – E – .σ 
 – .σ 

 and k = r – E – .σ 
 – .σ 

.

To begin with, we introduce some lemmas.

Lemma . ([]) Suppose that X(t) ∈ C(� × [, +∞),R+).

(i) If there exist two positive constants T and η such that

lnX(t) ≤ ηt – η

∫ t



X(s) ds +

m
∑

j=

σjWj(t)

for all t ≥ T , where σj, j = , . . . ,m, are constants, then

⎧

⎨

⎩

〈X(t)〉∗ ≤ η/η a.s. if η ≥ ,

limt→+∞ X(t) =  a.s. if η < .

(ii) If there exist three positive constants T , η, and η such that

lnX(t) ≥ ηt – η

∫ t



X(s) ds +

m
∑

j=

σjWj(t)

for all t ≥ T , then 〈X(t)〉∗ ≥ η/η a.s.

Lemma . For any given initial value x(t) ∈ C([–τ , ],R
+), there exists a function x(t)

that is the unique solution for model () on t ≥ –τ and remains in R
+ with probability .

The proof is similar to that in [] and it is omitted here.

In order to obtain the properties of model (), let us first analyze the following auxiliary

system:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dy(t) = y(t)[r – E – by(t)] dt – αDy

 (t) dt

+ σy(t) dB(t) – σy(t) dB(t),

dy(t) = y(t)[r – E – by(t)] dt +Dy(t)[e
–dτy(t – τ) – αy(t)] dt

+ σy(t) dB(t) – σy(t) dB(t).

()

Lemma . If k = r – E – .σ 
 – .σ 

 > , then any solution y(t) = (y(t), y(t)) of

model () satisfies

lim
t→+∞

〈y〉 =
k

b + αD

a.s. and

⎧

⎨

⎩

limt→+∞ y(t) =  a.s. if M < ,

limt→+∞〈y〉 =
M
M

a.s. if M > .
()

Proof Applying Itô’s formula to system () leads to

d
(

ln y(t)
)

=
[

k – by(t) – αDy(t)
]

dt + σ dB(t) – σ dB(t),

d
(

ln y(t)
)

=
[

k – by(t) +De
–dτy(t – τ) – αDy(t)

]

dt

+ σ dB(t) – σ dB(t).
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Integrating both sides of these two differential equations, we find

ln y(t) – ln y() = kt – (b + αD)

∫ t



y(s) ds + σB(t) – σB(t), ()

ln y(t) – ln y() = kt +De
–dτ

∫ t



y(s – τ) ds

– (b + αD)

∫ t



y(s) ds + σB(t) – σB(t). ()

Dividing both sides of () and () by t, we get

t– ln
y(t)

y()
= k – (b + αD)t

–

∫ t



y(s) ds + t–σB(t) – t–σB(t), ()

t– ln
y(t)

y()
= k +De

–dτ t–
∫ t



y(s – τ) ds – (b + αD)t
–

∫ t



y(s) ds

+ t–σB(t) – t–σB(t)

= k +De
–dτ t–

∫ t



y(s) ds +De
–dτ t–

[∫ 

–τ

y(s) ds –

∫ t

t–τ

y(s) ds

]

– (b + αD)t
–

∫ t



y(s) ds + t–σB(t) – t–σB(t). ()

By Lemma . we derive from () that 〈y〉
∗ ≤ k

(b+αD)
and 〈y〉∗ ≥ k

(b+αD)
. Hence, we

have

lim
t→+∞

〈y〉 =
k

b + αD

a.s. ()

Using limt→+∞ t–Bj(t) = , j = , , and substituting () into () yield

lim
t→+∞

t– ln y(t) =  a.s. ()

Computing ()×De
–dτ + ()× (b + αD) leads to

(b + αD)t
– ln

y(t)

y()
+De

–dτ t– ln
y(t)

y()

=M –M〈y〉 + (b + αD)De
–dτ t–

[∫ 

–τ

y(s) ds –

∫ t

t–τ

y(s) ds

]

+ t–
[

De
–dτ

(

σB(t) – σB(t)
)

+ (b + αD)
(

σB(t)σB(t)
)]

. ()

From () we get

lim
t→+∞

t–
∫ t

t–τ

y(s) ds = lim
t→+∞

t–
[∫ t



y(s) ds –

∫ t–τ



y(s) ds

]

=  a.s. ()

We can find from (), (), and () that, when M < , limt→+∞ y(t) =  a.s., and when

M > , limt→+∞〈y〉 =
M
M

a.s. �
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Similarly, we give another auxiliary system to help us obtain the main results:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dz(t) = z(t)[r – E – bz(t)] dt +Dz(t)[e
–dτz(t – τ) – αz(t)] dt

+ σz(t) dB(t) – σz(t) dB(t),

dz(t) = z(t)[r – E – bz(t)] dt – αDz

(t) dt

+ σz(t) dB(t) – σz(t) dB(t).

()

Similarly to the proof of Lemma ., we get the following:

Lemma . If k = r – E – .σ 
 – .σ 

 > , then any solution z(t) = (z(t), z(t)) of

system () satisfies

⎧

⎨

⎩

limt→+∞ z(t) =  a.s. if M < ,

limt→+∞〈z〉 =
M
M

a.s. if M > ,
and lim

t→+∞
〈z〉 =

k

b + αD

a.s. ()

Moreover, we can derive the following equations:

lim
t→+∞

t– ln z(t) =  a.s. ()

and

lim
t→+∞

t–
∫ t

t–τ

z(s) ds = lim
t→+∞

t–
[∫ t



z(s) ds –

∫ t–τ



z(s) ds

]

=  a.s. ()

From Lemmas .-. we can obtain the following theorem.

Theorem . Suppose that M > . The solution x(t) = (x(t),x(t)) of system () has the

following global asymptotic properties:

(i) If k <  and k < , then both x and x go to extinction almost surely (a.s.), that is,

lim
t→+∞

xi(t) =  a.s., i = , .

(ii) If k >  andM < , then x is persistent in mean a.s., that is,

lim
t→+∞

〈x〉 =
k

b + αD

a.s.,

and x goes to extinction a.s.

(iii) If k >  andM < , then x goes to extinction a.s., and x is persistent in mean a.s.,

that is,

lim
t→+∞

〈x〉 =
k

b + αD

a.s.

(iv) IfM >  andM > , then both x and x are persistent in mean a.s., that is,

lim
t→+∞

〈x〉 =
M

M
, lim

t→+∞
〈x〉 =

M

M
a.s. ()
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Proof By stochastic comparison theorem we get

x(t) ≤ y(t), x(t)≤ y(t). ()

From () and () we can observe that

lim
t→+∞

t– lnx(t) =  ()

and

lim
t→+∞

t–
∫ t

t–τ

x(s) ds = . ()

Similarly, we can also obtain

x(t) ≤ z(t), x(t) ≤ z(t).

Then it follows from () and () that

lim
t→+∞

t– lnx(t) =  ()

and

lim
t→+∞

t–
∫ t

t–τ

x(s) ds = . ()

Applying Itô’s formula to system () yields

d
(

lnx(t)
)

=
[

k – (b + αD)x(t) +De
–dτx(t – τ)

]

dt + σ dB(t) – σ dB(t),

d
(

lnx(t)
)

=
[

k – (b + αD)x(t) +De
–dτx(t – τ)

]

dt + σ dB(t) – σ dB(t).

Integrating both sides of these two differential equations, we get

ln
x(t)

x()
= kt – (b + αD)

∫ t



x(s) ds +De
–dτ

∫ t



x(s – τ) ds

+ σB(t) – σB(t)

= kt – (b + αD)

∫ t



x(s) ds +De
–dτ

∫ t



x(s) ds

+De
–dτ

[∫ 

–τ

x(s) ds –

∫ t

t–τ

x(s) ds

]

+ σB(t) – σB(t), ()

ln
x(t)

x()
= kt – (b + αD)

∫ t



x(s) ds +De
–dτ

∫ t



x(s – τ) ds

+ σB(t) – σB(t)

= kt – (b + αD)

∫ t



x(s) ds +De
–dτ

∫ t



x(s) ds

+De
–dτ

[∫ 

–τ

x(s) ds –

∫ t

t–τ

x(s) ds

]

+ σB(t) – σB(t). ()
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Dividing both sides of () and () by t, we get

t– ln
x(t)

x()
= k – (b + αD)〈x〉 +De

–dτ〈x〉

+De
–dτ t–

[∫ 

–τ

x(s) ds –

∫ t

t–τ

x(s) ds

]

+ t–
(

σB(t) – σB(t)
)

, ()

t– ln
x(t)

x()
= k – (b + αD)〈x〉 +De

–dτ〈x〉

+De
–dτ t–

[∫ 

–τ

x(s) ds –

∫ t

t–τ

x(s) ds

]

+ t–
(

σB(t) – σB(t)
)

. ()

Computing ()× (b + αD) + ()×De
–dτ results in

(b + αD)t
– ln

x(t)

x()
+De

–dτ t– ln
x(t)

x()

=M –M〈x〉 +De
–dτ (b + αD)t

–

[∫ 

–τ

x(s) ds –

∫ t

t–τ

x(s) ds

]

+DDe
–(dτ+dτ)t–

[∫ 

–τ

x(s) ds –

∫ t

t–τ

x(s) ds

]

+ t–
[

(b + αD)
(

σ dB(t) – σ dB(t)
)

+De
–dτ

(

σ dB(t) – σ dB(t)
)]

. ()

Computing ()×De
–dτ + ()× (b + αD) leads to

De
–dτ t– ln

x(t)

x()
+ (b + αD)t

– ln
x(t)

x()

=M –M〈x〉 +DDe
–(dτ+dτ)t–

[∫ 

–τ

x(s) ds –

∫ t

t–τ

x(s) ds

]

+ (b + αD)De
–dτ t–

[∫ 

–τ

x(s) ds –

∫ t

t–τ

x(s) ds

]

+ t–
[

De
–dτ

(

σ dB(t) – σ dB(t)
)

+ (b + αD)
(

σ dB(t) – σ dB(t)
)]

. ()

From the property of limit superior, for sufficiently large t, we can get the following equa-

tions from () and ():

t– lnx(t) ≤ k + ǫ – (b + αD)〈x〉 +De
–dτ〈x〉

∗

+ t–σB(t) – t–σB(t), ()

t– lnx(t)≤ k + ǫ – (b + αD)〈x〉 +De
–dτ〈x〉

∗

+ t–σB(t) – t–σB(t). ()
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Let β = k+ǫ+De
–dτ〈x〉

∗,β = k+ǫ+De
–dτ〈x〉

∗. So () and () can be rewritten

as

t– lnx(t) ≤ β – (b + αD)〈x〉 + t–σB(t) – t–σB(t), ()

t– lnx(t)≤ β – (b + αD)〈x〉 + t–σB(t) – t–σB(t). ()

To prove conclusion (i), we suppose that 〈x〉
∗ > . If ω ∈ {〈x(t,ω)〉

∗ > }, then applying

Lemma . to () results in

〈

x(t,ω)
〉∗

≤
β

b + αD

=
k + ǫ +De

–dτ〈x(t)〉
∗

b + αD

.

For sufficiently large t, substituting () and () into () yields

M
〈

x(t,ω)
〉∗

≤ M + ǫ.

Since M > , the left side of the last inequality is positive. Letting ǫ be small enough, we

would getM ≥ . Actually, since ki <  (i = , ), we obtainM < . This is a contradiction.

Hence, P{〈x(t,ω)〉
∗ > } = , so 〈x(t)〉

∗ =  a.s. Then, using it in () and noting that

k < , we get that limt→+∞ x(t) =  a.s., which is contradicts the supposition 〈x〉
∗ > .

Consequently, we have

〈x〉
∗ =  a.s. ()

We are in the position to prove that limt→+∞ x(t) =  a.s. Since 〈x〉
∗ =  a.s., for suffi-

ciently large t, we can derive from () that

t– lnx(t)≤ k + ǫ – (b + αD)〈x〉 + t–σB(t) – t–σB(t).

Since k < , applying Lemma . to the last inequality, we get limt→+∞ x(t) =  a.s.

Now we are ready to prove (ii). Since k >  and M < , by Lemma . we have

limt→+∞ y(t) =  a.s. Consequently, by (), limt→+∞ x(t) =  a.s. Then model () is sim-

plified as the following single-species model:

dx(t) = x(t)
[

r – E – (b + αD)x(t)
]

dt + σx(t) dB(t) – σx(t) dB(t),

which coincides with the first equation in (). Then applying Lemma . to the last equa-

tion leads to

lim
t→+∞

〈x〉 =
k

b + αD

a.s.

Using Lemma . and (), then we can prove (iii), and the proof is similar to that of (ii).

So the details are omitted.

Let us prove (iv). Substituting (), (), and () into () yields

(b + αD)t
– ln

x(t)

x()

≥ M – ǫ′ –M〈x〉 + t–
[

(b + αD)
(

σ dB(t) – σ dB(t)
)

+De
–dτ

(

σ dB(t) – σ dB(t)
)]

. ()
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Noting thatM > , let ǫ′ be sufficiently small such thatM – ǫ′ > . Consequently, 〈x〉∗ ≥
M–ǫ′

M
. By the arbitrariness of ǫ′ we can observe that

〈x〉∗ ≥
M

M
a.s. ()

It is not hard to find that 〈x〉∗ > . Hence, β > . Otherwise, it is easy to see that 〈x〉∗ = 

from inequality (). Similarly, by using (), (), and () to (), we have

(b + αD)t
– ln

x(t)

x()

≥ M – ǫ′ –M〈x〉 + t–
[

De
–dτ

(

σ dB(t) – σ dB(t)
)

+ (b + αD)
(

σ dB(t) – σ dB(t)
)]

. ()

According to Lemma ., we would get

〈x〉∗ ≥
M

M
>  a.s. ()

So we have β > . Using Lemma ., from () and () we have

〈x〉
∗ ≤

β

b + αD

, 〈x〉
∗ ≤

β

b + αD

.

Consequently,

⎧

⎨

⎩

(b + αD)〈x〉
∗ –De

–dτ〈x〉
∗ ≤ k + ǫ,

–De
–dτ〈x〉

∗ + (b + αD)〈x〉
∗ ≤ k + ǫ.

()

Solving these inequalities and using the arbitrariness of ǫi(i = , ) lead to

〈x〉
∗ ≤

M

M
, 〈x〉

∗ ≤
M

M
a.s.

Then (iv) can be proved by combining these inequalities with () and ().

The proof of Theorem . is complete. �

Remark  Similarly to the proof of the Theorem ., we would get:

(v) If k = , k < , then x is nonpersistent, that is, limt→+∞ t–
∫ t


x(s) ds = , and x

goes to extinction;

(vi) If k < , k = , then x goes to extinction, and x is nonpersistent, that is,

limt→+∞ t–
∫ t


x(s) ds = ;

(vii) If k =  and k = , then both x and x are nonpersistent.

3 Optimal harvesting

From Section  we can observe that both species x and x are persistent inmean ifMi > ,

i = , . Our aim in this section is to gain the optimal harvesting effort such that ESY Y (E) =

limt→+∞

∑
i=E(Eixi(t)) can get the maximum when the species are persistent. We first

introduce some lemmas.
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Lemma . Suppose that x(t) is a solution of model () with any given initial value. For

any q > , there is a K(q) such that

lim sup
t→+∞

E
∣

∣x(t)
∣

∣

q
≤ K(q).

Applying Itô’s formula to et(x
q
 + x

q
), we would get the conclusion. It is similar to Lemma 

of [] and is omitted it here.

Then we can prove the following lemma.

Lemma . If b + αD >De
–dτ , b + αD >De

–dτ , then model () is asymptotically

stable in distribution, that is, as t → +∞, for any ξ (t) ∈ C([–τ , ];R
+), there is a unique

probability measure v(·) such that the transition probability density p(t, ξ , ·) of x(t) con-

verges weakly to v(·).

Proof Let (x(t; ξ ),x(t; ξ ))
T and (x(t; ζ ),x(t; ζ ))

T be two solutions of model () with ini-

tial values ξ (θ ) ∈ C([–τ , ];R
+) and ζ (θ ) ∈ C([–τ , ];R

+), respectively. Applying Itô’s for-

mula to

V (t) =


∑

i=

∣

∣lnxi(t; ξ ) – lnxi(t; ζ )
∣

∣ +De
–dτ

∫ t

t–τ

∣

∣x(s; ξ ) – x(s; ζ )
∣

∣ds

+De
–dτ

∫ t

t–τ

∣

∣x(s; ξ ) – x(s; ζ )
∣

∣ds

leads to

d+V (t) = –


∑

i=

(bi + αiDi)
∣

∣xi(t; ξ ) – xi(t; ζ )
∣

∣dt

+


∑

i=


∑

j=,j �=i

Die
–djτj

∣

∣xj(t; ξ ) – xj(t; ζ )
∣

∣dt

–


∑

i=


∑

j=,j �=i

Die
–djτj

∣

∣xj(t – τj; ξ ) – xj(t – τj; ζ )
∣

∣dt

+


∑

i=


∑

j=,j �=i

Die
–djτj sgn

(

xi(t; ξ ) – xi(t; ζ )
)(

xj(t – τj; ξ ) – xj(t – τj; ζ )
)

dt

≤ –


∑

i=

(bi + αiDi)
∣

∣xi(t; ξ ) – xi(t; ζ )
∣

∣dt

+


∑

i=


∑

j=,j �=i

Die
–djτj

∣

∣xj(t; ξ ) – xj(t; ζ )
∣

∣dt

–


∑

i=


∑

j=,j �=i

Die
–djτj

∣

∣xj(t – τj; ξ ) – xj(t – τj; ζ )
∣

∣dt

+


∑

i=


∑

j=,j �=i

Die
–djτj

∣

∣xj(t – τj; ξ ) – xj(t – τj; ζ )
∣

∣dt
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= –
(

b + αD –De
–dτ

)∣

∣x(t; ξ ) – x(t; ζ )
∣

∣dt

–
(

b + αD –De
–dτ

)∣

∣x(t; ξ ) – x(t; ζ )
∣

∣dt.

Consequently,

E
(

V (t)
)

≤ V () –
(

b + αD –De
–dτ

)

∫ t



E
∣

∣x(s; ξ ) – x(s; ζ )
∣

∣ds

–
(

b + αD –De
–dτ

)

∫ t



E
∣

∣x(s; ξ ) – x(s; ζ )
∣

∣ds.

Since V (t) ≥ , it follows from the last inequality that

(

b + αD –De
–dτ

)

∫ t



E
∣

∣x(s; ξ ) – x(s; ζ )
∣

∣ds

+
(

b + αD –De
–dτ

)

∫ t



E
∣

∣x(s; ξ ) – x(s; ζ )
∣

∣ds ≤ V () < ∞.

In other words, E|xi(t; ξ ) – xi(t; ζ )| ∈ L[, +∞), i = , .

Moreover, from the first equation of model () we have

E
(

x(t)
)

= x() +

∫ t



[

(r – E)E
(

x(s)
)

– (b + αD)E
(

x (s)
)

+De
–dτE

(

x(s)x(s – τ)
)]

ds.

Hence, E(x(t)) is a continuously differentiable function. By Lemma . we can obtain

dE(x(t))

dt
≤ (r – E)E

(

x(t)
)

+De
–dτE

(

x(t)x(t – τ)
)

≤ K∗,

where K∗ is a positive constant. Therefore, E(x(t)) is uniformly continuous. Applying

the same argument to the second equation of model (), we can obtain that E(x(t)) is

uniformly continuous. By the conclusion of [] we can get

lim
t→+∞

E
∣

∣xi(t; ξ ) – xi(t; ζ )
∣

∣ =  a.s., i = , . ()

Note that p(t, ξ , dy) is the transition probability density of the process x(t) and P(t, ξ ,A)

denotes the probability of event x(t; ξ ) ∈ A with the initial value ξ (θ ) ∈ C([–τ , ];R
+). By

Lemma . and Chebyshev’s inequlity it follows from [] that the family of p(t, ξ , dy) is

tight, that is, for any given ǫ∗ > , there is a compact subset K ∈ R
+ such that P(t, ξ ,K) ≥

 – ǫ∗.

Let P(C([–τ , ];R
+)) be the probability measures on C([–τ , ];R

+). For any given two

measures P,P ∈P , we propose the following metric:

dL(P,P) = sup
g∈L

∣

∣

∣

∣

∫

R+

g(x)P(dx) –

∫

R+

g(x)P(dx)

∣

∣

∣

∣

,

where

L =
{

g : C
(

[–τ , ];R
+

)

→ R|
∣

∣g(x) – g(y)
∣

∣ ≤ ‖x – y‖,
∣

∣g(·)
∣

∣ ≤ 
}

.
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For any g ∈ L and t, s > , we get

∣

∣Eg
(

x(t + s; ξ )
)

–Eg
(

x(t; ξ )
)∣

∣

=
∣

∣E
[

E
(

g
(

x(t + s; ξ )
)

|Fs

)]

–Eg
(

x(t; ξ )
)∣

∣

=

∣

∣

∣

∣

∫

R+

E
(

g
(

x(t;φ)
))

p(s, ξ , dφ) –Eg
(

x(t; ξ )
)

∣

∣

∣

∣

≤

∫

R+

∣

∣E
(

g
(

x(t;φ)
))

–E
(

g
(

x(t; ξ )
))∣

∣p(s, ξ , dφ)

≤ p
(

s, ξ ,UC
K

)

+

∫

UK

∣

∣E
(

g
(

x(t;φ)
))

–E
(

g
(

x(t; ξ )
))∣

∣p(s, ξ , dφ),

where UK = {x ∈ R
+ : |x| ≤ K}, and UC

K is the complementary set of UK . Since the fam-

ily of p(t, ξ , dy) is tight, for any given s ≥ , there exists a sufficiently large K such that

p(s, ξ ,UC
K ) < ǫ∗/. By () there exists T >  such that, for t ≥ T , we have

sup
g∈L

∣

∣Eg
(

x(t;φ)
)

–Eg
(

x(t; ξ )
)∣

∣ ≤
ǫ∗


.

Hence, it is easy to find that |Eg(x(t + s; ξ )) – Eg(x(t; ξ ))| ≤ ǫ∗. By the arbitrariness of g ,

we have

sup
g∈L

∣

∣Eg
(

x(t + s; ξ )
)

–Eg
(

x(t; ξ )
)∣

∣ ≤ ǫ∗,

that is,

dL
(

p(t + s, ξ , ·),p(t, ξ , ·)
)

≤ ǫ∗, ∀t ≥ T , s > .

So {p(t, , ·) : t ≥ } is Cauchy in P with metric dL. There is a unique v(·) ∈ P(C([–τ , ];

R
+)) such that limt→ dL(p(t, , ·), v(·)) = . In addition, it follows from () that

lim
t→

dL
(

p(t, ξ , ·),p(t, , ·)
)

= .

Thus,

lim
t→

dL
(

p(t, ξ , ·), v(·)
)

≤ lim
t→

dL
(

p(t, ξ , ·),p(t, , ·)
)

+ lim
t→

dL
(

p(t, , ·), v(·)
)

= .

This completes the proof of Lemma .. �

For simplicity, we define other notations:

B =

(

b + αD –De
–dτ

–De
–dτ b + αD

)

, � = (λ,λ)
T =

[

B
(

B–
)T

+ I
]–

Q,

where Q = (r – .σ 
 – .σ 

, r – .σ 
 – .σ 

)
T , and I is the unit matrix.
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Theorem . Let b +αD >De
–dτ , b +αD >De

–dτ ,M >  and suppose that B– +

(B–)T is positive definite.

(i) If λi ≥ , i = , , and Ei = λi, i = , , we have M > ,M > . Then the optimal

harvesting effort is E∗ = � = [B(B–)T + I]–Q, and the maximum of ESY is

Y ∗ = �TB–(Q –�). ()

(ii) When Ei = λi, i = , , there isMi ≤ , i =  or , or there is λi < , i =  or , then the

optimal harvesting policy does not exist.

Proof Let G = {E = (E,E)
T ∈ R|Mi > ,Ei > , i = , }. When () holds, for every E ∈G,

if the optimal harvesting effort E∗ exists, then it must belong to G.

We are in the position to prove (i). It is easy to note that� ∈G, soG is ont empty. By (),

for any E ∈G, we have

lim
t→+∞

t–
∫ t



ETx(s) ds =


∑

i=

Ei lim
t→+∞

t–
∫ t



xi(s) ds = ETB–(Q – E). ()

According to Lemma ., model () has a unique invariant measure v(·). By Corol-

lary .. in [] we get that v(·) is strongmixing. Moreover, it is ergodic by Theorem ..

in []. Hence, it can be derived from (..) in [] that

lim
t→+∞

t–
∫ t



ETx(s) ds =

∫

R+

ETxv(dx). ()

Let ρ(x) represent the stationary probability density of model (). Then we have

Y (E) = lim
t→+∞


∑

i=

E
(

Eixi(t)
)

= lim
t→+∞

E
(

ETx(t)
)

=

∫

R+

ETxρ(x) dx. ()

Since the invariant measure of model () is unique, then by the one-to-one correspon-

dence between ρ(x) and its corresponding invariant measure we have

∫

R+

ETxρ(x) dx =

∫

R+

ETxv(dx). ()

From ()-() we can get

Y (E) = ETB–(Q – E). ()

Note that � = (λ,λ)
T is the unique solution of the following equation:

dY (E)

dE
=
dET

dE
B–(Q – E) +

d

dE

[

(Q – E)T
(

B–
)T]

E

= B–Q –
[

B– +
(

B–
)T]

E

= . ()
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Hence, � = [B(B–)T + I]–Q. We can see that � is the unique extreme point of Y (E) be-

cause the following Hessian matrix is negative define:

d

dET

[

dY (E)

dE

]

=

(

d

dE

[(

dY (E)

dE

)T])T

=

(

d

dE

[

QT
(

B–
)T

– ET
[

B– +
(

B–
)T]]

)T

= –B– –
(

B–
)T
.

If� ∈G, that is, λi ≥  (i = , ) andMi >  (i = , ), then E∗ = �, and () is themaximum

value of ESY.

Now we are going to prove (ii). Suppose that the optimal harvesting effort Ē∗ = (Ē∗
 , Ē

∗
)

T

exists. So Ē∗ ∈G, that is,Mi|Ei=Ē∗
i ,i=,

> , Ē∗
i ≥ , i = , . In otherwords, if Ē∗ is the optimal

harvesting effort, then Ē∗ must be the unique solution of (). However, � = (λ,λ)
T

is also a solution of (). Hence, λi = Ē∗
i ≥ , i = , , and Mi|Ei=λi ,i=, =Mi|Ei=Ē∗

i ,i=,
> ,

i = , . It is a contradiction with the condition.

This completes the proof of Theorem .. �

4 Numerical simulations and discussion

Taking white noises into account, in this paper, we consider a stochastic delay model of

species in two habitants. Theorem . describes sufficient conditions for persistence in the

mean and extinction, which are derived from the stochastic analysis theory. Furthermore,

an ergodic method is applied to show that the stochastic model has a unique stationary

distribution. We obtain the optimal harvesting effort and the maximum of ESY in The-

orem . by using Hessian matrix method and optimal harvesting theory of differential

equations.

By using the Euler scheme in [] to illustrate the biological significance of the results,

first, it is necessary to discretize model (). Setting the step size △t = . and the delays

τ = , τ = , respectively, the discretized equations with respect to () are sa follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x(k+) = xk + xk[r – E – bxk +De
–dτx(k–) – αDxk]△t

+ σxk(△B)k – σxk(△B)k ,

x(k+) = xk + xk[r – E – bxk +De
–dτx(k–) – αDxk]△t

+ σxk(△B)k – σxk(△B)k ,

where (△Bij)k = Bi((k + )△t) – Bi(k△t), i, j = , ,k = , , , . . . . The discretization form is

the approximate numerical solution related to (). Other parameters are set as follows:

r = ., r = ., b = ., b = ., d = ., d = ., τ = , τ = , α = ., α = .,

with initial values ξ(θ ) = . + . sin θ and ξ(θ ) = . + . cos θ , θ ∈ [–, ].

Notice that

(b) k = –. < , k = –. < ;

(c) k = . > , M = –. < ;

(d)M = . > , M = . > .

In Figure (b), σ = .,σ = .,σ = .,σ = ., the intensity is large enough such

that ki < , i = , , and it causes the species extinction. In Figure (c), σ = .,σ = .

are large such that M < , so noises affect the persistence of species x. When the inten-
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Figure 1 Simulation of the species x1(t), x2(t) under stochastic environment. Some paraments are

taken: r1 = 0.5, r2 = 0.05, E1 = 0.4, E2 = 0.02, b1 = 0.5, b2 = 0.6, D1 = 0.4, D2 = 0.3, d1 = 0.1, d2 = 0.01, τ1 = 2,

τ2 = 1; α1 = 0.4, α2 = 0.3, ξ1(θ ) = 0.3 + 0.03 sinθ , ξ2(θ ) = 0.1 + 0.05 cosθ , θ ∈ [–2, 0].

(a) σ11 = σ12 = σ21 = σ22 ≡ 0; (b) σ11 = 0.3, σ12 = 0.4, σ21 = 0.15, σ22 = 0.2; (c) σ11 = 0.02, σ12 = 0.01, σ21 = 0.3,

σ22 = 0.3; (d) σ11 = 0.02, σ12 = 0.01, σ21 = 0.01, σ22 = 0.02.

sity of the white noise is small, the species can still be persistent just as the deterministic

model; see Figure (d). Hence, it shows that noise with small intensity can allow the species

to preserve the prosperity, whereas noise with large intensity may be a cause of species

extinction.

In Figure (a), notice that D = D ≡  and by computing we can obtain that k =

. > ,k = –. < , andM = –. < ; we can derive fromTheorem . that

x is persistent in the mean and x goes to extinction. On the contrary, let D = . and

D = ., whichmeans that there exists diffusion between patches. Then species in patch 

would move to patch . We see that the parameter k is still negative, but M = .

becomes a positive constant. Therefore, x turns into persistence in the mean (see Fig-

ure (b)). It shows that diffusion is beneficial to the persistence of population.

In Figure , we choose D = .,D = .. By computing we get b + αD = . >

De
–dτ = . and b + αD = . > De

–dτ = .. It is not hard to estimate

that B– + (B–)T is positive definite. From � = [B(B–)T + I]–Q we see � = (λ,λ)
T =

(., .)T . Then we get M = . >  and M = . > . By Theorem . we

obtain

E∗
 = λ = ., E∗

 = λ = .; Y ∗ = �TB–(Q –�) = .,

whereas E is different from E∗, and the ESY satisfies Y (E) < Y ∗.
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Figure 2 Simulation of the species x1(t), x2(t) in two habitants. Some paraments are taken: r1 = 0.5,

r2 = 0.05, E1 = 0.4, E2 = 0.05, b1 = 0.5, b2 = 0.6, d1 = 0.1, d2 = 0.01, α1 = 0.4, α2 = 0.3, σ11 = 0.02, σ12 = 0.01,

σ21 = 0.02, σ22 = 0.02, ξ1(θ ) = 0.3 + 0.03 sinθ , ξ2(θ ) = 0.1 + 0.05 cosθ ,θ ∈ [–2, 0]. (a) D1 = D2 ≡ 0;

(b) D1 = 0.4,D2 = 0.3.

Figure 3 The optimal harvesting effort and the

maximum of ESY. Some paraments are taken: r1
= 0.5, r2 = 0.05, b1 = 0.5, b2 = 0.6, D1 = 0.2, D2 = 0.3,

d1 = 0.2, d2 = 0.5, α1 = 0.4, α2 = 0.3, σ11 = 0, σ12 = 0,

σ21 = 0, σ22 = 0, ξ1(θ ) = 0.3 + 0.03 sinθ , ξ2(θ ) = 0.1

+ 0.05 cosθ , θ ∈ [–2, 0]. Red line is with E1 = E
∗
1

= 0.2451, E2 = E
∗
2 = 0.0369, blue line is with E1 = 0.35,

E2 = 0.02, and green line is with E1 = 0.1, E2 = 0.2.

Based on theoretical analysis and numerical simulations, we present the main results in

this paper:

() Comparing with deterministic models [], our work extends the related results. It

reveals that environment disturbance tends to have negative effects on the

persistence of population. That is to say, if the intensity of noise is sufficiently

large,then the species may suffer extinction, whereas the prosperity of permanence

can be preserved under noise with small intensity.

() The Fokker-Planck equation is a classical method to handle stochastic optimal

harvesting policy []. In this paper, we adopt a new approach, namely ergodic

theory, to deal with the optimal harvesting problem, which can avoid solving the

corresponding Fokker-Planck equation.

() Most of the existing works [, , ] considered the effects of white noise on the

growth rate, whereas we have studied not only environment disturbance on that but

also harvesting effort affected by human and social factors.

The research results of this paper provide theoretic reference for some modern fields,

such as fishery management. It is beneficial for people to make a rational exploitation and

derive maximum profit. Some interesting topics in this direction deserve further devel-

opment. We can consider diffusion coefficients disturbed by white noises or extend the

present work into generalized forms, namely a multidimensional stochastic model. An-
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other interesting problem is that we can consider a more realistic but complicated model

under a stochastic environment with Lévy jumps or Markovian switching.
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