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Consider n populations whose sizes are given by stochastic differential equations driven by m-

dimensional Brownian motion. We study the following problem: what harvesting strategy from the n

populations maximizes the expected total income from the harvest? We formulate this as a (singular)

stochastic control problem and give suf®cient conditions for the existence of an optimal strategy. Our

results lead to the one-at-a-time principle that it is almost surely never optimal to harvest from more

than one population at a time.
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1. Introduction

When two species coexist they compete for a limited supply of food and water. The

conditions under which stable coexistence obtains are of the utmost ecological importance.

Investigations by Gause and Witt (1935) on the basis of the Volterra model with Verhulst

term led to the conclusion that a stable coexistence of two species is possible if the

interaction of each species is more inhibitive of its own kind than it is of the other species.

This conclusion is true in the case where populations roam freely. For example, in Botswana

human settlements are protected from migratory herds of wildlife, and wildlife and livestock

are kept apart by means of fences, game reserves and protected areas.

Wildlife populations now live in restricted habitats which, because of Botswana's semi-

arid climatic conditions, are now subject to highly variable vegetation conditions and lack

of water due to frequent droughts. These factors ultimately affect the carrying capacity of

these areas and hence the animal populations. It is, therefore, imperative that animal

populations should be controlled in order to ensure survival of all the species and the

quality of the environment. It is against this background that we develop optimal harvesting

models for interacting populations in a stochastic environment in the hope that sustainable

wildlife management policies can be developed based on research ®ndings like ours.

The mathematical model introduced and studied in this paper may be regarded as a
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multidimensional generalization of the one-dimensional model studied in Lungu and

éksendal (1997); see also the related paper of Alvarez and Shepp (1998). The sizes of the

n interacting populations are modelled as solutions of a (coupled) system of n stochastic

differential equations. The harvesting strategy is then introduced as a stochastic control. If

the prices per unit of each of the populations are given, the problem is to ®nd a harvesting

strategy which maximizes the expected total discounted income from the harvesting, up to

the time of extinction of one of the populations. As is clear from our model, we do not

exclude extinction, but after extinction there is no more harvesting and therefore it turns out

that the optimal harvesting strategy ± the strategy which maximizes the expected total time

± is in fact usually of a sustainable type; see, for example, the explicit solutions in the

corresponding one-dimensional cases studied by Alvarez and Shepp (1998) and Lungu and

éksendal (1997). We use stochastic calculus to give suf®cient conditions for the existence

of an optimal strategy. The conditions can be used to ®nd the optimal strategy in explicit

cases. This is illustrated by means of an example. This example might be more relevant for

®nance (optimal dividend strategy) than for population applications.

For other results on optimal harvesting in random environments, see Braumann (2000).

Our general results indicate that typically (generically) it will not be optimal to harvest

from more than one population at a time (the `one-at-a-time principle'). There seems to be

support for such a conclusion from observations of the behaviour of certain predators. For

example, it is observed that a pride of lions will hunt one type of prey at a time. The lions

do this because their hunting techniques for various species are not the same ± that for the

buffalo is different from that for the zebra. The young members of the pride are therefore

introduced to one hunting technique at a time. This approach reduces the risk of injury or

even death for these young members. The lions are forced to change from hunting one

species to another as the population of a species being hunted declines and the probability

of a successful hunt reduces. In doing so, however, nature has instilled in the lions an

optimal harvesting strategy which ensures that all prey populations are maintained at

acceptable levels.

2. The model

Suppose that when we do not intervene the sizes or densities X i(t), 1 < i < n, of interacting

populations at time t are given as the strong solutions of n stochastic differential equations

dX i(t) � bi(t, X (t))dt �
Xm

j�1

ó ij(t, X (t))dBj(t); s < t < T , (2:1)

Xi(s) � xi 2 R, (2:2)

where B(t) � B(t, ù) � (B1(t, ù), . . . , Bm(t, ù)), t > 0, ù 2 Ù, is m-dimensional Brownian

motion, and X (t) � (X1(t), . . . , X n(t)), bi and ó ij are given continuous functions. We assume

that T � T (ù) has the form

T � infft . 0; (t, X (t)) =2 Sg,

528 E. Lungu and B. éksendal



where S � Rn�1 is a given Borel set with the property that S � (S0), with S0 being the

interior of S, and (S0) its closure. We may think of S as the survival set of our population

and T as the time of extinction. An (n-dimensional) harvesting strategy is a stochastic

process ã(t, ù) � (ã1(t, ù), . . . , ãn(t, ù)) 2 Rn, t > s, ù 2 Ù, satisfying the following

conditions:

1. ã(t) is measurable with respect to the ó -algebra F t generated by B(s, �), s < t (i.e.

fã(t)gt>0 is adapted ).

2. ãi(t, ù) is non-decreasing with respect to t, for almost all (a.a.) ù, for 1 < i < n.

3. ã(t, ù) is right-continuous as a function of t for a.a. ù.

4. ã(s, ù) � 0 for a.a. ù.

The component ãi(t, ù) of ã(t, ù) represents the total amount harvested from the initial time

s up to time t from population number i, 1 < i < n. If we apply the harvesting strategy

ã(t, ù) then the corresponding population vector X ã(t) � (X
ã
1(t), . . . , X ã

n(t))T satis®es the

(matrix) equation

dX ã(t) � b(t, X ã(t))dt � ó (t, X ã(t))dB(t)ÿ dã(t), t > s,

X ã(sÿ) � (x1, . . . , xn)T,
(2:3)

where

b � (b1, . . . , bn)T, ó �
ó11 � � � ó1m

..

. ..
.

ó n1 � � � ó nm

264
375

and (�)T denotes matrix transposition. We de®ne Ã to be the set of all harvesting strategies ã
such that (2.3) has a unique strong solution X ã(t) which does not explode before time T and

such that X ã(T ) 2 S. Note the difference between X ã(s) and X ã(sÿ): X ã(sÿ) is the state

before harvesting starts at time t � s, while X ã(s) is the state immediately after. If ã consists

of an immediate harvest of size Äã at time t � s, then

X (s) � X (sÿ)ÿ Äã:

Suppose that the prices/utilities per unit of population number i when harvested at time t are

given by n continuous, non-negative functions f i(t), i � 1, . . . , n.

Note that in this paper we assume that the prices f i(t) depend on time t only. The

density-dependent case, with f i � f i(t, x), opens up a new type of optimal strategies, the

so-called `chattering' variety. This case is studied in Alvarez et al. (2001). For a discussion

of density-dependent prices in the one-dimensional situation, see Alvarez (2000).

The total expected discounted utility harvested from time s to time T is given by

Jã(s, x) � Es,x

�
[s,T ]

f (t) � dã(t)

� �
, (2:4)

where f � ( f 1, . . . , f n) and f � dã �Pn
i�1 f i � dãi, and Es,x denotes expectation with respect

to the probability law Qs,x of Y s,x(t) � (t, X ã(t)) for t > s, assuming that Y s,x(sÿ) � (s, x).
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Then the optimal harvesting problem is to ®nd the value function Ö(s, x) and an optimal

harvesting strategy ã�(t) such that

Ö(s, x) � sup
ã2Ã

Jã(s, x) � Jã�(s, x): (2:5)

Remark. Note that we can also give this problem an economic interpretation: we can let

X i(t) denote the value at time t of asset/security/investment i and we let ãi(t) represent the

total amount paid in dividends up to time t from asset i. Then S can be interpreted as the

solvency set, T as the time of bankruptcy and (2.5) becomes the problem of ®nding the

optimal stream of dividends from this collection of assets. In Jeanblanc-PicqueÂ and Shiryaev

(1995) this interpretation is used in a study of a one-dimensional version of (2.5).

In the following we let s < t1 , t2 , . . . denote the jumping times of a given strategy

ã 2 Ã, and we let Äã(tk) � ã(tk)ÿ ã(tÿk ) be the jump of ã(t) at t � tk . We let ãc(t) :�
ã(t)ÿPs< tk < tÄã(tk) be the continuous part of ã(t). We now formulate a suf®cient

condition for a given function ö(s, x) to be the value function Ö(s, x) of (2.5) and for a

given strategy ã̂ 2 Ã to be optimal. See Haussmann and Suo (1995a; 1995b) and Benth and

Reikvam (1998) for a viscosity formulation, and see Benth and Reikvam (1998) and Myhre

(1998), as well as the references therein, for a connection between (2.5) and an associated

optimal stopping problem.

Theorem 2.1. (i) Suppose ö > 0 is a continuous function on S, twice continuously

differentiable on S0, with the following properties:

@ö

@xi

> f i on S0, for all i � 1, . . . , n; (2:6)

Lö(t, x) :� @ö
@ t
�
Xn

i�1

bi(t, x)
@ö

@xi

� 1

2

Xn

i, j�1

(óó T)ij(t, x)
@2ö

@xi@xj

< 0 on S0: (2:7)

Then

ö(s, x) > Ö(s, x) on S: (2:8)

(ii) De®ne the non-intervention region

D � (t, x) 2 S0, t . s, and
@ö

@xi

(t, x) . f i(t), for all i � 1, . . . , n

� �
(2:9)

Suppose that

Lö � 0 in D (2:10)

and that there exists a harvesting strategy ã̂ such that the following hold:

(t, X ã̂(t)) 2 D for all t . s; (2:11)

@ö

@xi

(t, X ã̂(t))ÿ f i(t)

� �
dã̂c

i (t) � 0 for all i � 1, . . . , n (2:12)
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(i.e., ã̂c
i increases only when @ö=@xi � f i);

Äö(tk) :� ö(tk , X ã̂(tk))ÿ ö(tk , X ã̂(tÿk )) � ÿ f (tk) � Äã̂(tk) (2:13)

at all jumping times tk > s of ã̂(tk); and

Es,x[ö(TR, X ã̂(TR))]! 0 as R!1, (2:14)

where

TR � T ^ R ^ infft . s; jX ã̂(t)j > Rg:
Then

ö(s, x) � Ö(s, x) for all (s, x) 2 S

and

ã� :� ã̂ is an optimal harvesting strategy:

Proof. (i) Choose ã 2 Ã and assume that ö 2 C2 satis®es (2.6)±(2.7). Then by ItoÃ's

formula for semimartingales (see Protter 1990, Theorem II.7.33),

Es,x[ö(TR, X ã(TR))] � Es,x[ö(s, X ã(s)]

� Es,x

�TR

s�

@ö

@ t
(t, X ã(t))dt �

�TR

s�

@ö

@x1

(t, X ã(tÿ))dX
ã
1(t) � . . . � @ö

@xn

(t, X ã(tÿ))dX ã
n(t)

� �"

�
Xn

i, j�1

�TR

s�

1

2
(óó T)ij(t, X ã(t))

@2ö

@xi@xj

(t, X ã(t))dt

�
X

s, tk <TR

ö(tk , X ã(tk))ÿ ö(tk , X ã(tÿk ))ÿ
Xn

i�1

@ö

@xi

(tk , X ã(tÿk ))ÄX
ã
i (tk)

( )#
,

where the sum is taken over all jumping times tk 2 (s, TR] of ã(t) (and X ã(t)). Using (2.7),

this gives

Es,x[ö(TR, X ã(TR))] � Es,x ö(s, X ã(s))

"

�
�TR

s�
Lö(t, X ã(t))dt ÿ

�TR

s�

Xn

i�1

@ö

@xi

(t, X ã(tÿ)) � dãi(t)

( )

�
X

s, tk<TR

ö(tk , X ã(tk))ÿ ö(tk , X ã(tÿk ))�
Xn

i�1

@ö

@xi

(tk , X ã(tÿk ))Äãi(tk)

( )#

< ö(s, x)ÿ Es,x

�TR

s�

Xn

i�1

@ö

@xi

(t, X ã(tÿ))dãi(t)

" #
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� Es,x
X

s< tk <TR

Äö(tk , X ã(tk))�
Xn

i�1

@ö

@xi

(tk , X (tÿk ))Äãi(tk)

( )" #
ÿ Es,x

Xn

i�1

@ö

@xi

(s, x)Äãi(s)

" #
,

where

Äö(tk , X ã(tk)) � ö(tk , X ã(tk))ÿ ö(tk , X ã(tÿk )) for tk > s:

Let ãc(t) denote the continuous part of ã(t), that is,

ãc(t) � ã(t)ÿ
X

s< tk < t

Äã(tk):

Then we obtain

Es,x[ö(TR, X ã(TR))] < ö(s, x)ÿ Es,x

�TR

s

Xn

i�1

@ö

@xi

dãc
i

" #
� Es,x

X
s< tk <TR

Äö(tk , X ã(tk))

" #
:

By the mean value property, we have

Äö(tk , X ã(tk)) �
Xn

i�1

@ö

@xi

(tk , X̂
ã
(k))ÄX

ã
i (tk) � ÿ

Xn

i�1

@ö

@xi

(tk , X̂
ã
(k))Äãi(tk)

for some point X̂
ã
(k) on the line connecting the points X ã(tÿk ) and X ã(tk).

Hence

Es,x[ö(TR, X ã(TR))] < ö(s, x)ÿ Es,x

�TR

s

Xn

i�1

@ö

@xi

� dãc
i �

X
s< tk <TR

Xn

i�1

@ö

@xi

(tk , X̂
ã
(k))Äãi(tk)

" #
:

So condition (2.6) gives

ö(s, x) > Es,x

�TR

s

Xn

i�1

@ö

@xi

dãc
i �

Xn

i�1

X
s< tk <TR

f i(tk)Äãi(tk)

" #
� Es,x[ö(TR, X ã(TR))]

> Es,x

�TR

s

f � dã
" #

� Es,x[ö(TR, X ã(TR))]: (2:15)

Since R ,1, ã 2 Ã were arbitrary and ö > 0, this proves that (2.8) holds, that is,

ö(s, x) > Ö(s, x):

(ii) Next, assume that D is given by (2.9) and that (2.10)±(2.13) hold. Then the above

calculations with ã replaced by ã̂ give equality everywhere and we end up with equality in

(2.15). Hence

ö(s, x) � Es,x

�TR

s

f � dã̂
" #

� Es,x[ö(TR, X ã̂(TR))]:

By letting R!1 and using (2.14), we obtain
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ö(s, x) � Es,x

�T

s

f � dã̂
" #

: (2:16)

Combining this with (2.8), we see that

ö(s, x) � Ö(s, x) and ã̂ is optimal: h

To illustrate the content of this theorem a typical (generic) situation in the case n � 2 is

shown in Figure 1. Here the survival set is S � R 3 (0, 1) 3 (0, 1). The non-intervention

region D is bounded by the two curves Ë1, Ë2 given by

Ëi � (x1, x2);
@ö

@xi

(t, x1, x2) � f i(t)

� �
, i � 1, 2 (2:17)

x2

harvest from
X2 only

harvest
from either
population

∂φ
∂x1

5 f1

∂φ
∂x2

5 f2

Λ2

Λ1

D
(no harvesting in D)

∂φ
∂x1

. f1

Lφ 5 0

∂φ
∂x2

. f2

harvest
from
X1 only

x1

Figure 1. The one-at-a-time principle: harvest only from population 1 (horizontal re¯ection) on the

curve Ë1 \ @D; harvest only from population 2 (vertical re¯ection) on the curve Ë2 \ @D.
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(®xing the time t). From (2.12) we see that dã̂2 � 0 on Ë1, while dã̂1 � 0 on Ë2. Note that

generically (e.g. when óó T is bounded away from 0) the probability that (X 1(t), X 2(t)) hits

the intersection point Ë1 \Ë2 is 0. A similar argument holds in any dimension n. Then

generically Ëi will be submanifolds of dimension nÿ 1 and the intersection of two or several

Ëi will have dimension nÿ 2 or lower, and if, for example, the eigenvalues of óó T are

bounded away from 0 the diffusion will almost surely never hit such sets. Thus we arrive ±

heuristically ± at the following principle:

Principle 2.1 (One-at-a-time principle). Generically it is almost surely never optimal to

harvest from more than one population at a time.

We conjecture that, if properly formulated, a result like this can be rigorously proved.

Remark. Suppose we have found a function ö satisfying conditions (2.6)±(2.10). Then a

harvesting strategy ã̂ satisfying (2.11)±(2.13) can (usually) be found by solving the Skorohod

stochastic differential equation for the re¯ection Y ã̂(t) of the process Y (t) in D. This means

that we ®nd a harvesting strategy ã̂ with the following properties. If we de®ne Y ã̂(t) by the

equation

dY ã̂(t) � b(Y ã̂(t))dt � ó (Y ã̂(t))dB(t)ÿ è(Y ã̂(t))dã̂(t), (2:18)

where è(y) is the n 3 n diagonal matrix with ith diagonal entry

èii(y) � @ö

@xi

(y)ÿ f i(t), 1 < i < n, y � (t, x), (2:19)

then

Y ã̂(t) 2 D, for all t . s, (2:20)

where D is the closure of D, and

è(Y ã̂(t)) � dã̂(t) � 0 if Y ã̂(t) =2 @D: (2:21)

If such a ã̂ exists, it is called the local time for Y (t) in the direction è at @D.

For more information about Skorohod stochastic differential equations, suf®cient

conditions for the existence of a solution, and so on, see Bass (1997), Freidlin (1985)

and Lions and Sznitman (1984).

Remark. Theorem 2.1 is a veri®cation theorem. It gives suf®cient conditions that a given

function actually coincides with the value function Ö and, if it does, the theorem tells us how

to ®nd an optimal control. It is natural to ask if the converse is true: does the value function

Ö always satisfy the conditions of Theorem 2.1? If we concentrate on the three most basic

variational inequalities, (2.6), (2.7) and (2.10), we see that these can be combined into one

equation,

max Lö(t, x), max
1<i<n

f i(t)ÿ @ö
@xi

(t, x)

� �� �
� 0 in S0: (2:22)
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Then the question is: does Ö always satisfy (2.22)? The answer is no in general, simply

because Ö need not be smooth enough for LÖ to make (strong) sense. However, if we

interprete (2.22) in the appropriate weak sense of viscosity, then the answer is yes, at least if

b and ó are bounded functions. This was proved in a general setting by Haussmann and Suo

(1995a, Theorem 5.5): if b and ó are bounded then indeed Ö is the unique viscosity solution

of (2.22). This result, albeit important, does not eliminate the need for Theorem 2.1. First, the

assumption that b and ó are bounded is too strict for many applications. Second, Theorem

2.1 also provides a method of ®nding an optimal control, not just the value function.

3. Applications

In this section we apply Theorem 2.1 to study a speci®c case. Unfortunately, it seems dif®cult

to ®nd multidimensional examples which can be solved explicitly. Our example (with n � 2)

has the advantage of being solvable, but the disadvantage of being slightly degenerate, in the

sense that the two harvesting lines Ë1, Ë2 de®ned in (2.17) coincide. Because of this

degeneracy this example is actually a counterexample to the one-at-a-time principle.

Nevertheless, we include it because it serves as a good illustration of how to apply Theorem

2.1 in speci®c cases. The example is in Schulstok (1998), and presented here with his kind

permission. He also considers the n-dimensional analogue. The example may be regarded as

a two-dimensional analogue of the example studied in Jeanblanc-PicqueÂ and Shiryaev (1995).

Example 3.1 Optimization of the ¯ow of dividends.

In this example it is more natural to use a ®nancial interpretation than a biological

interpretation of the optimal harvesting problem. Consider a market with two investments

whose values X 1(t), X 2(t) at time t are given by the equations

dX i(t) � bidt � ó i1dB1(t)� ó i2dB2(t), i � 1, 2, (3:1)

where bi and ó ij are constants.

Suppose each unit of X i has a constant price èi. If we pay out dividends (i.e. apply a

harvesting strategy) ã(t, ù) � (ã1(t, ù), ã2(t, ù)) then the total value X
ã
i (t) of the

investments will satisfy the equation

dX
ã
i (t) � bidt � ó i1dB1(t)� ó i2dB2(t)ÿ dãi(t), t > 0, (3:2)

X
ã
i (0ÿ) � xi: (3:3)

The corresponding expected total discounted payoff is in this case given by

Jã(s, x1, x2) � Ex1,x2

�T ÿ

0

eÿr(s� t)(è1dã1(t)� è2dã2(t))

" #
, (3:4)

where

T � infft . 0; è1 X1(t)� è2 X 2(t) =2 Sg (3:5)

is the time of bankruptcy, with solvency region S � f(x1, x2); è1x1 � è2x2 > 0g.
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We seek an optimal divident payment policy ã� and the value function Ö given by

Ö(s, x1, x2) � sup
ã

Jã(s, x1, x2) � Jã�(s, x1, x2): (3:6)

From (3.4) we see that it is natural to try to look for a function Ö of the form

Ö(s, x1, x2) � eÿrsØ(x1, x2):

Hence in Theorem 2.1 we put

ö(s, x1, x2) � eÿrsø(x1, x2):

In terms of ø, the inequalities (2.6), (2.7) take the following form in S:

@ø

@xi

> èi, i � 1, 2, (3:7)

and

L0ø(x1, x2) :� ÿrø�
X2

i�1

bi

@ø

@xi

� 1
2
ó 2

1

@2ø

@x2
1

� ó1 � ó2

@2ø

@x1@x2

� 1
2
ó 2

2

@2ø

@x2
2

< 0, (3:8)

where ó i � (ó i1, ó i2) and ó i � ó j is the dot product of ó i and ó j, 1 < i, j < 2.

Now try a function ø of the form

ø(x1, x2) � F(z), where z � è1x1 � è2x2: (3:9)

Then (3.7) leads to just one inequality, namely

F9(z) > 1, for z . 0, (3:10)

and (3.8) takes the form

AF(z) :� ÿrF(z)� áF9(z)� âF 0(z) < 0, for z . 0, (3:11)

where

á � è1b1 � è2b2, (3:12)

â � 1
2
ó 2

1è
2
1 � ó1 � ó2è1è2 � 1

2
ó 2

2è
2
2: (3:13)

The general solution of AF � 0 is

F(z) � C1er 1 z � C2er 2 z, (3:14)

where C1, C2 are arbitrary constants and

r1 � 1

2â
ÿá�

�������������������
á2 � 4râ

p� �
, r2 � 1

2â
ÿáÿ

�������������������
á2 � 4râ

p� �
: (3:15)

We now guess that the non-intervention region D has the form

D � fz; 0 , z , z�g (3:16)

for some z�. 0. Thus, by (2.9) and (2.10) it is natural to try to put
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F(z) � z� K for z > z�,
C1er 1 z � C2er 2 z for 0 , z , z�,

(
(3:17)

for some constant K, and then try to determine the parameters C1, C2, K and z� such that F

becomes a C2 function at z � z�.
Continuity at z � z� gives the equation

C1er 1 z� � C2er 2 z� � z� � K: (3:18)

Differentiability at z � z� gives the equation

r1C1er 1 z� � r2C2er 2 z� � 1: (3:19)

Twice differentiability at z � z� gives the equation

r 2
1C1er 1 z� � r 2

2C2er 2 z� � 0: (3:20)

In addition, we know that F(0) � 0, hence

C1 � C2 � 0, i:e: C1 � ÿC2 �: C: (3:21)

The four equations (3.18)±(3.21) determine C1, C2, C3 and z� uniquely: from (3.20) and

(3.21) we obtain

z� � 2 lnjr2=r1j
r1 ÿ r2

. 0 (3:22)

and this gives, by (3.19) and (3.21),

C � (r1er 1 z� ÿ r2er 2 z�)ÿ1: (3:23)

Finally, applying this to (3.18), we obtain

K � C(er 1 z� ÿ er 2 z�)ÿ z�: (3:24)

With this choice of C1 � C, C2 � ÿC, K and z�, all the conditions of Theorem 2.1 are

satis®ed and we conclude that the value function Ö is given by

Ö(s, x1, x2) � Ceÿrs(er 1 z ÿ er 2 z) for 0 < z , z�,
eÿrs(z� K) for z� < z,

(
(3:25)

with z � è1x1 � è2x2.

Thus we obtain that the optimal strategy is to do nothing as long as (X 1(t), X 2(t)) 2 D,

that is, as long as

0 , è1 X 1(t)� è2 X 2(t) , z�

(see Figure 2). Then when (X1(t), X2(t)) reaches the value z�, we harvest (pay dividends)

according to local time ã� � ã̂ at @D of the re¯ected diffusion (X
ã̂
1(t), X

ã̂
2(t)), re¯ected in

the direction ÿ(è1, è2). Intuitively this means that we pay exactly what is needed to keep

(X
ã̂
1(t), X

ã̂
2(t)) to the left of the line è1x1 � è2x2 � z�. Moreover, we harvest from X 1 and X 2

simultaneously, at the ratio
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Äx2

Äx1

� è2

è1

:

Remark. The one-dimensional nature of the solution of this problem makes it natural to ask

whether the whole problem could be solved by transforming it to a one-dimensional problem

from the beginning. One could try to put

Z(t) � è1 X1(t)� è2 X 2(t) (3:26)

and then ask for the optimal dividend policy for Z(t), that is, try to ®nd H and Ã� such that

H(s, z) � sup
Ã

Ez

�T

0

eÿr(s� t)dÃ(t)

" #
� Ez

�T

0

eÿr(s� t)dÃ�(t)

" #
, (3:27)

the supremum being taken over all harvesting strategies Ã(t) for Z(t). The calculation above

shows that this problem has the same value function as problem (3.6). More precisely,

Ö(s, x1, x2) � H(s, è1x1 � è2x2):

This identity is not obvious, because it is required for the harvesting strategies Ã(t) for Z(t)

that they are adapted to the ®ltration G t generated by fZ(r); r < tg. This ®ltration is strictly

smaller than the ®ltration F t generated by fX i(r); r < t, i � 1, 2g.

θ1x1 1 θ2x2 5 0

x2

x1

D

θ1x1 1 θ2x2 5 z*

2(θ1,θ2)

Figure 2. Non-intervention region D in a market with two investments. To the right of D, dividends

are paid.
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