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ABSTRACT 

A general harvesting model is presented that allows the dynamics of the population to 

be divided into two distinct phases, viz, the harvesting-season dynamics, modeled by an 

n-dimensional system of ordinary nonlinear differential equations, and the spawning 

season, modeled by n difference equations. A maximum principle for this type of system is 

presented. The concept of “maximum sustainable yield” for periodic forms of such 

systems is introduced and discussed. The model is then simplified to exhibit linear-bilinear 

dynamics and in this form is shown to be a natural extension of the Beverton-Holt model 

in fisheries management. A method for deriving maximum-sustainable-yield solutions is 

presented, using this formulation and its corresponding maximum principle. By consider- 

ing the solution in the limit as the control constraint set [0, b] becomes unbounded above, 

the concept of the “ultimate” sustainable yield is introduced. Finally, models including 

only scalar harvesting are introduced as being of practical value. The question is explored 

as to how maximum-sustainable-yield solutions are to be constructed from the maximum 

principle. 

1. INTRODUCTION 

While the need for sound management policies in the exploitation of 

renewable resource stocks is self-evident, the development of such policies 

by the use of analytical techniques (mathematical modeling and systems 

theory) presents many problems. It is impossible to take into account all 

factors that influence the spatial and temporal dynamics of a biological 

population integrated into its natural environment. We can hope to estimate 

only certain aspects of the behavior of such populations: those aspects 

which are subjectively deemed to be the most essential in the formulation of 

sound management policies. 

*This work was partially supported by a grant from Control Data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t The author is indebted to Dr. D. H. Martin for helpful discussions during the 

preparation of this paper. 
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In this paper the problem considered is that of optimally harvesting a 

structured population. The application of results to problems in fisheries 

management is emphasized. In particular, consideration is given to the 

problem of estimating maximum sustainable economic returns and biomass 

yields for certain types of fisheries, and finding the corresponding harvest- 

ing strategies. 

The fundamental work on quantitative fisheries management was done 

mainly by Beverton and Holt [l], Ricker [2, 31 and Schaefer [4, 51. Clark [6] 

provides a recent comprehensive account of the field, while subsequent 

results may be found in Goh [7] and Silvert [8]. 

Various approaches have been taken in analyzing the problem of optim- 

ally exploiting a renewable resource. In one of these approaches it is 

assumed that the biomass density of the population [denoted by x(t)] 

satisfies a nonlinear ordinary differential equation with forcing terms relat- 

ing to the harvesting rate [u(t) will be used to denote harvesting intensity]. 

The well-known “Schaefer model” is of this type:‘ a logistic differential 

equation plus a harvesting term, bilinear in x and U. Maximum- 

sustainable-yield solutions can be derived on assuming that the population 

is in equilibrium (i.e., that the growth rate and harvest rates in the differen- 

tial equation balance each other) as was done by Fox [9] and Clark [6]. On 

the other hand Cliff and Vincent [IO], Clark and Munro [ 1 l] and Vincent et 

al. [ 121 obtained more general results by considering the population model 

in an optimal control setting, while Palm [13] specifically examined prob- 

lems formulated in terms of linear-quadratic optimal control. 

Two important drawbacks of the differential equation models discussed 

above are the following: the class structure within the population (e.g. age) 

is ignored; also ignored is the occurrence of certain discrete events (such as 

seasonal spawning). In the management of certain types of fisheries it is 

essential that both these features should be considered. 

Population class structures can be handled by constructing a separate 

equation for each class [14] or allowing each class to satisfy the same 

differential equation but start off at a different initial point in time. An 

example of the latter approach is the multiple-cohort model of Clark et al. 

[15]. Both approaches fail, however, to take cognizance of periodic discrete 

events such as spawning, where the number of new recruits entering the 

fishery is estimated by a suitable stock-recruitment relationship. 

Discrete events can be modeled by systems of difference equations, but 

such models, in contrast to differential-equation models, ignore effects 

related to continuous processes. For example, the Leslie matrix population 

model [ 161 has been used by Doubleday [ 171 and Rorres and Fair [ 181 to 

analyze the problem of harvesting a structured population, but the follow- 

ing essential information was not forthcoming: at what points in time 

between the iteration intervals of the model should harvesting take place? 
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This information is especially relevant to the problem of maximizing 

biomass yield in a population continuously gaining mass according to some 

prescribed growth function w(t). 

In the next section a model is presented that includes both a discrete 

periodic spawning event and a continuous harvesting rate. The model takes 

the form of a system of nonlinear ordinary differential equations with 

state-variable jump discontinuities at specified points. A maximum principle 

for such systems in an optimal-control setting has been derived by Getz and 

Martin [19] and applied to the problem of constructing maximum-sustain- 

able-rent solutions for certain management problems. A more detailed 

discussion then follows on systems to which Beverton-Holt type mortality 

and harvesting dynamics are assumed to be applicable. In particular, a 

method is presented by means of which maximum-sustainable-yield strate- 

gies for such systems can be evaluated, and which also indicates the 

maximum-sustainable-yield strategy when constraints on the harvesting 

rates are removed. The latter strategy thus provides an estimate of the 

ultimate biomass yield of the population under an “ideal” harvesting policy. 

The paper concludes with a discussion on the evaluation of maximum 

sustainable yields subject to the practical constraints of scalar control and 

continuous harvesting over a given harvesting season. 

2. GENERAL FORMULATION 

Let time, denoted by t, be measured in years. Let x E Iw” be a vector 

whose ith component x,(l), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1 , . . . , n - 1, represents the number of individ- 

uals in the age. group of i-year-olds and let x”(t) represent the number of 

individuals of age n years or more. Let’ u(t) E [0, b] c FP, for all t, represent 

the intensities of m different ways of harvesting the population (e.g. by 

using nets with different mesh sizes or fishing in spatially distinct regions 

that have dissimilar population age distributions), where 3(t) ~[0,6,] for all 

t, b,>O, j=l,..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. Let vCk)E D c W be vector of q parameters, each 

influencing in some way, at time t = k, k = 1,2,3,. . . , the stock-recruitment 

relationship and/or any of the functions associated with discrete periodic 

events occurring during the time interval [k, k + l] as included in the model 

below. 

Suppose that each year can be divided into a spawning and harvesting 

season, where the spawning season is closed to harvesting. A continuous- 

time system of differential equations will be used to model the dynamics of 

the population during the harvesting season, while a discrete-time system of 

difference equations will be used to model the transition of the population 

from the beginning of the spawning season to the beginning of the subse- 

‘Here [O,bl is the m-rectangle [0, b,] x [0, b,] x . . . x [0, b,J 
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quent harvesting season. Thus for some i~(0, l] our model assumes the 

following form: 

Harvesting season, t E [k, k + t>, k E Z k {non-negative integers}. 

.+=1(x, t) - h;(x,u, t), i=l ,...,n, (2.1) 

where conditions are imposed on J;( . , t) and h;(. , . , t) to ensure that for all t, 

ii = 0 when X, = 0 [i.e., that the non-negative orthant of R” is invariant with 

respect to (2. l)], that A(. , t) is a negative monotonically decreasing function 

of x,--since it reflects mortality-and that h;( ., ., t) is monotonically in- 

creasing in x, and uj, j = 1,. . . ,m-since it reflects harvesting. We shall also 

assume that J; and hi are C ’ in x and x, u respectively. 

Spawning season. 

x(k+l)=p(‘+‘)(x(k+i),v(“+‘)), kEZ. (2.2) 

where pk+ ’ : R” x D-R, k E I, is assumed to be C ‘. 

Note that for the case i= 1 a spawning season of zero duration is 

implied, whence (using a superscripted minus sign to denote the value of the 

limit “from the left:‘) x(k+ i) in (2.2) will be replaced by x(k+ l-). 

The problem of maximizing economic rent from a fishery over an N-year 

period can be stated as follows: Given x(0) = xe, maximize the functional 

N-2 

+ x F(k+“(x(k+t),~(k+‘))+FN(~(N-l++)) 

k=O 

(2.3) 

over all choices of piecewise continuous, and continuous from the left, 

controls u(t) E[O, b] for all t, and 2 v (k+‘)ED, k=O ,..., N- 1, subject to the 

constraint equation (2.1) for k = 0,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. , N - 1 and interior jump conditions 

(2.2), k = 0,. . , N - 2. The final state x( N - 1 + i) will be regarded as free, 

although the case is easily dealt with for which x(0) and x(N- 1 + f) are 

constrained to initial and terminal manifolds. 

The function gi( t) weights the yield h;(x, u, t) according to the commercial 

value of the individuals in the ith age class. The functions c(u, t) and a(t) 

respectively account for harvesting costs and the present-value discount rate 

Vbe greater generality of assuming u(t) ES? ck+‘) (a suitable constraint set) for r ~[k, k 

+i] and Y W+ ‘)E Dck+ ‘1 can be included without essential modification of later results. 
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on future returns. Since fixed capital costs do not enter into the minimiza- 

tion problem, c(u, t) is normalized to satisfy ~(0, t)=O. Further, c(u, t) is 

assumed to be (as it should be) a monotonically increasing function of 7, 

j=l ,...,m. The functions F@+‘)(x(k + t>, d“+‘)), k =O,. . . , N -2, reflect 

costs associated with the state of the system and the application of parame- 

ters during the kth spawning season, while the function FN(x(N - 1 + t>) 

reflects the cost associated with the final state of the fisheries. 

For convenience define T= LJ fci[k, k + i). Then we define an admissi- 

ble arc x(.),u(.),v(‘) ,..., &“-‘) for the above control problem to be the 

following: a piecewise continuous control u(e), with u(t) E[O, b], t E T; a 

sequence of vectors uck) E D, k = 1,. . . , N- 1; and a function x(.) that is 

absolutely continuous on each subinterval [k, k+ I), that satisfies (2.1) for 

all t E T with finite limits from the left at k + f, k =O,. . . , N - 1, and that 

satisfies (2.2) for k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=O, . . . , N -2. 

We are now in a position to state a maximum principle (necessary 

conditions) for the problem of maximizing (2.3). Since the problem under 

consideration refers to a special case of a more general class of optimal 

control systems with state-variable jump discontinuities considered in Getz 

and Martin [ 191, we adapt without proof the necessary conditions derived in 

this latter papes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

THEOREM 2.1 

Suppose the arc k( *), ii( .), C(l), . . , v *(N-‘) is optimal for the problem for- 

mulated above. Then there exist costate variables A,(.), . . .,A,,(*), not all zero, 

such that z4 

(i) The costate variables h.(. ) satisfy, for i = 1,. . . , n, the differential equa- 

tions 

4 -=- aff(qtp(q,qt),q 
dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax, 2 

tE T, 

where 

2 gi(t)hi(X,u,t)-Cc(u,t) a(t) 
i=l 1 

+ i: xi[A(x, t) - hi(x,u, [)I 
i=l 

(2.5) 

% ktain sign changes have been made, bearing in mind that the problem under 

consideration is a maximization rather than a minimization problem. 

?he multiplier X, is positive for the problem under consideration and has bean 

normal&d to unity. 
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X(k+i)= 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ap(k+l)(i(k+i),i(k+l)) Th(k+l) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ax(k  + i) 
1 

+ 
aF(k+l)(S(k+i),G(k+l))T 

ax(k+j) ’ 
k=O ,..., N-2, (2.6) 

and the final time condition5 

A(N-l+t)= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aP(x(N- 1+ Q)’ ; 

ax(N- 1+ r) 
(2.7) 

(ii) the parameters t ck) satisfy 

ap’k+‘)(%(k+t),i, ck+‘)) 

&,(k+ 1) 1 
TX(k+ l)+ aF(k+‘)(f(k.+i),i. (k+‘))T =o, &,(k+l) 

k=Q,...,N-2, (23) 

aF’N’(P(N- 1 +t),W) =o; 

av(N) 
(2.9) 

(iii) the inequal@ 

I?(t) p H(X( t),%(t),ti(t), t> > H(X(t),f(t),u, t) (2.10) 

holds for any u E [0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb] and all t E T. Furthermore, Z?(t) is continuous for t E T, 

and the limits Z?(k+f), k=l,...,N-1, exist. 

Theorem 2.1 can be utilized in the same manner as the standard 

maximum principle is utilized to construct candidate solutions to the 

maximization problem under consideration: given +,, U( .), is (I), . . . , V (N--‘), 

(2.1) and (2.2) can be used to obtain 2(t), t E T, from which-using (2.4) 

and (2.6)-&t) can be solved backwards on T from the final-time condition 

(2.9), whence the nominal controls ii(.) and nominal parameters Y ck), 

k=l , . . . , N - 1, can be updated according to some algorithm (e.g. [20]). 

Owing to the seasonal structure imposed upon biological systems, it may 

often be appropriate to model the dynamics of such systems using periodic 

functions of time. 

Assume that the functions j(x,u, t), h,(x,u,t), gi(t) (i= 1,. . .,n) and 

c(u,t) are periodic with period unity (i.e., one year), and that the functions 

pck+‘) and similarly Fck+*) are identical for each k. Since the discount factor 

a(t) is by nature a monotonically decreasing function of time, it is always 

‘Note that from (2.3) the optimization problem clearly terminates at N - 1 + f and not 

at N. 
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aperiodic, and thus for the purpose of discussing sustainable yields for 

periodic systems, cr(Q will be ignored [by setting a(t)= 1 in (2.3)]. Now if, 

for some N, a particular management policy applied to (2.1) and (2.2) (not 

necessarily the same policy on each subinterval [k, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk + i)) results in 

x(N) =x(O), (2.11) 

then, because of the periodicity of the system, a sustainable yield policy 

over an infinite time horizon is attainable by means of repeated application 

of that management policy over N-year intervals. 

Consider firstly the following one-year horizon problem: Maximize 

Jr(“(‘)*V)=l’[ $r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi( ) i( g t h X,&f)-c(u,t) dz+F(x(lj,v) (2.12) 

I 

subject to (2.1) and the constraints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x(l)=P(x(~),~) (2.13) 

and 

x( 1) =x(O). (2.14) 

Since (2.13) and (2.14) provide the boundary condition 

qq=P(x(+), (2.15) 

the maximization of (2.12) subject to (2.1) is in a standard form (i.e., no 

jump discontinuities are evident on [0, i)). The standard maximum principle 

of Pontryagin [21, Chapter 7.91 asserts that if r+?( .),u’( e), Y’ maximizes (2.12) 

subject to (2.1) and (2.15) then there exists A’(-) satisfying (2.4) on [O,?,) 

such that 

(2.16) 

(2.17) 

and condition (iii) of Theorem 2.1 holds on [0, i). 

Now consider the problem of maximizing 

JN(U(.),V(‘),...,V(N) = ) 

+F(x(k+ i),dk+‘) )I 
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subject to (2.1) for t E T, (2.2) (bearing in mind that p is independent of k) 

for k=O ,..., N-l, and (2.11). Define for k=O ,..., N-l and tE[k,k+i): 

?(t)=xS(t-k); C(t)=u”(r-k); A(t)=P(t-k); i’” + 1) = vs. 

(2.19) 

Then it is clear (recall the unit periodicity of all functions) that A(t) satisfies 

Theorem2.1 for9(.),ii(.),i(‘) ,..., i W) defined in (2.19) when the boundary 

conditions [(2.7) and (2.9) are replaced by conditions of the type (2.16) and 

(2.17). since the problem under consideration is subject to (2.11) rather than 

to a fixed initial point and a free final point specifications] are 

X(N- l+i)= 
8pT(B( N - 1 + t), v”) 

W) + 
MT&N- 1+ i),vs) 

ax(N- 1+ t) 8x(N-l+i) ’ 

(2.20) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ap=(B(N - 1 + t), v’) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
avs W) + 

CT&N-l+t),~“) =. 

avs 
(2.21) 

Note that since A(t)=X(k+t) and ?(t)=B(k+t) (k=O,...,N-1), (2.20) 

and (2.21) are really the only conditions on X(k + t) (k = 0,. . . , N- 1) and vs 

[cf. (2.6) and (2.8)]. 

Hence, from the above, n(.),ii(.),fi (“)=uS (k= 1,. . .,N) is extremal for 

the N-horizon problem. For obvious reasons the arc x’( .),u”( .),vs will be 

referred to as the maximum-sustainable-rent solution. Although for given 

but arbitrary N > 1 it does not immediately follow that the arc 

a(.),e(.),v(‘) )...) v (W maximizes (2.18). [‘Since only necessary conditions are 

satisfied, it does follow that if the maximum sustainable rent solution 

satisfies sufficiency conditions involving the existence of a suitable function 

A(t) (e.g. [22]) for the problem associated with (2.12) then the above arc 

satisfies the same sufficiency conditions for the problem associated with 

(2.18).] 

3. EXTENDED BEVERTON-HOLT THEORY 

Beverton and Holt [1] considered the problem of harvesting a single 

cohort recruited at time zero, using “knife-edge” selective fishing gear, of 

mesh size p, at intensity b, on a population of size x(t). They assumed the 

dynamics of the population to be modeled by 

i=-ax 

.C= -((Y+b)x 

for Octet,, 

for t > tU, 

(3.1) 
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where tp is the age at which the fish, when encountering the fishing gear, are 

first captured, and (Y >0 is a constant natural mortality rate. They also 

assumed that the biomass increase in the population could be modeled by 

the three-parameter von Bertalanffy growth function 

W(t)=W(1-Ke-p~)3, t>O with constants o>O, K >O, p>O, 

(3.2) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(t) is the average biomass of an individual (recruited to the 

population at time zero) at time t. Beverton and Holt then considered the 

problem of maximizing the biomass yield (for given b) over all choices of tp 

at which harvesting should commence. Viewing the optimal yield as a 

function of b, they were led to introduce the concept of the “eumetric yield 

curve.” 

The problem of optimally harvesting a multiple-cohort fishery is signifi- 

cantly more difficult to analyze. Clark [6, Sec. 8.61 extended the Beverton- 

Holt approach to multiple cohort fisheries by considering a fishery to be a 

conglomerate of single cohorts xk(t) each satisfying equations of the type 

(3.1), but with time intervals shifted to the right by the integer k and subject 

to the initial condition 

+(k) = R k=O,1,2 ,..., (3.3) 

for some given constant R. The relation (3.3) ignores an essential aspect of 

multiple-cohort fisheries: the existence of a stock-recruitment relationship. 

A multiple-cohort fishery including a stock-recruitment relationship can be 

modeled follotiing the formulation of state-variable jump-discontinuous 

systems considered in the previous section. 

A multiple-cohort model where the dynamics of each cohort is given by 

(3.1) can be translated into the following age-structure model: Suppose 

t,,E[r,r+l]andn>r+l; thenfortE[k,k+i)andk=0,1,2,..., 

ii = - ax,, i=l ,...,r-1, 

ir,= -ax ,-T t E 10, 0 

&= -(a+b)x,, t qt’,i), 

i,= -(a+b)x,, i=r+l,...,n, 

(3.4) 

where t’= t,, - r if t,, >r + < and t’= i otherwise. Furthermore, it follows for 

k=0,1,2,... that 

x;+,(k+l)=uixi(k+t), i=l,...,n-2, 

x,(k+l)=a,_,x,_,(k+i)+u,x,(k+t), 
(3.5) 
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where ~~=e-~(‘-fi (i=l,...,r-1), a,=e-(m+b)(‘-~ (i=r+l,...,n) and a,= 

e-(a+bX-r) if *,<r+ior q=e~4-&b(‘-1,) if l,>r+i 

In the Beverton-Holt model, harvesting is assumed to continue over the 

whole period [k, k + l), k E I. We shall revert, however, to our assumption of 

distinct harvesting and spawning seasons, i.e., we shall assume in case t< 1 

that (3.5) holds with 

a Ee-9(‘-‘) I i= 1 ,..., n, (3.6) 

where, for generality, distinct (Y;‘s are assumed to hold for each age group 

and (3.4) is replaced on [k, k + i), k E I, by the more general model 

iii= -[ai+Ui(t)]Xi, ai>O, i=l ,...,n, (3.7) 

and u,(t)~[O,&]. 

We notice that (3.5) contains only n - 1 equations: an expression for 

x,(k + 1) is absent. This expression is in fact the stock-recruitment relation- 

ship, which we assume has the form 

x,(k + 1) =p,(x(k + t)), k EZ, (3.8) 

wherep, : R”-+R is C’. 

If p, is linear, i.e., if 

x,(k+l)=c=x(k+i) e i c,x,(k+t), ci > 0, i=l,...,n, 
i=l 

then (3.5) and (3.8) are the well-known Leslie matrix transformation [16]. 

For certain demersal populations, Beverton and Holt [I] found a saturating 

stock-recruitment relationship, for which a general expression is 

x,(k+ 1)= 
pc’x( k + t) 

y+c=x(k+i) ’ 
P>O, y>O, Ci>O,i=l,..., n, (3.9) 

more suitable then a linear relationship, while Ricker [2] found an “ over- 

compensating”  curve, for which a general expression is 

p>O, y>O, c,>O,i=l,..., n, 

suitable for salmon populations. 

Finally, for any given growth function w(t), of which (3.2) is a specific 

example, it is clear in terms of age structure that the average biomass of an 



OPTIMAL HARVESTING OF STRUCTURED POPULATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA279 

individual in age class i at time t will, for any k E Z and t E[k, k + l), be 

wi(t)=w(t-k+i-l), i=l ,...,n. (3.10) 

We note that an error arises in assuming that w,(t) is the average weight of 

an individual in class n at time t, since x,(t) includes not only n-year-old 

individuals but older individuals as well [see (3.5)]. This error is small, 

however, if the mortality rate 4 of the nth class is high or if n is large [since 

w(t) saturates as a function of increasing t, and hence, from (3.10), w,(t) 

saturates as a function of increasing i]. Alternatively w,,(t) can be modified 

to account for this truncation. 

We also note that, by nature, biomass growth functions for fish should 

have the following intrinsic properties for all t > 0 and some W > 0: 

. (3.11) 

The von Bertalanffy growth function (3.2) satisfies inequalities (3.11) 

strictly. The last inequality in (3.11) is interperated as follows: the propor- 

tional rate of increase of biomass is a decreasing function of time. Assuming 

that the last inequality in (3.11) holds strictly, it follows from (3.10) that 

++iCtl> > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtii(tt,) 
- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wi(tl> wi( t2) 

for OGt,Gt,<l, i=l,..., n, (3.12) 

and 

*iCt) > *i+lCt) - ___ 
wi(f) wi+l(t) 

forallt and i=l,...,n-1. (3.13) 

Theorem 2.1 can now be applied to the problem of constructing optimal 

harvesting strategies for systems modeled by the above “extended 

Beverton-Holt model.”  Since, however, (3.7) is a linear system [for given 

u( *)I, analytical techniques can be used to gain further insight into solutions 

to such problems. This is done in the next section with respect to the 

problem of obtaining maximum-sustainable-yield strategies. 

4. MAXIMUM SUSTAINABLE YIELDS 

One of the long-term management problems to consider, and one that is 

essentially of sociological rather than economic importance, is that of 

estimating the maximum sustainable yield (disregarding control and other 

costs) that can be obtained from a fishery. Thus we shall consider the 

problem of maximizing 

J(u(*))=s’i wi(t)ui(t)xi(t)dt (4.1) 
0 i-l 
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over all piecewise continuous u( -) taking values in [0, b], subject to (3.7) and 

the following boundary conditions [recalling (2.14) (3.5) and (3.6) and 

assuming (3.8) has the form (3.9)]: 

X;+,(O)=e-“(‘~‘)x,(r), i=l,...,n-2, 

Xn(0)=e-4-1(‘--r)X,_,(t)+e-“~(‘-l),~(t), 

x,(O) = 
/3c’x( r) 

y+cTx(j) . 

The Hamiltonian for the problem under consideration [cf. (2.5)] is 

H(X,x,u,r)= i: [(w;(t)--X;)yx,-a;A$;], 
i=l 

which we note from (3.10) is a periodic function of t. 

Hence as discussed in Sec. 2, if x’(e), u”( .) maximizes (4.1), then it 

(4.2) 

(4.3) 

provides for a maximum-sustainable-yield solution [see Eq. (2.19)] and there 

exist X(e) satisfying the following differential equation [see (2.4), (2.16), 

(4.3), and replace (2.15) with (4.2)]: 

-i= -(ai+UiyS)Xi+W;(t)U;, i= I,...,& (4.4) 

and boundary conditions 

qi)=e-+$+*(o)+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPYci 

[ u+cTx,(i)]2 I w% i=l ,...,n- 1 

(4.5) 

&(T)=e- %I(’ -Q(O) + 

I 

PVC” 

[ y+cTX”(t)]2 I 

A,(O). 

In order that X(e) should satisfy (2.10), it is necessary that 

ui”( 2) = 0 whenever H;(t) < 0, i=l , . . . , n, (4.6) 

and 

u;‘(t) = bi whenever H,(t) > 0, i=l,...,n, (4.7) 
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where 

H”(t) p ~~(~(W(~)~u”(~)~~) 
Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaui zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~[wi (t )-~(t )l x is(t )’ (4.8) 

Using (3.7) and (4.4) to differentiate (4.8) with 

to show that 

respect to time, it is possible 

i=l ,...,n. (4.9) 

From (3.12) it then follows that &, can change sign at most once on [O,t] 

and cannot be identically zero on any open subinterval of [O,T]. Hence it is 

easily deduced that u;‘(.) must be nonsingular [i.e., u;(e) is characterized by 

(4.6) and/or (4.7) for almost all6 t E[O, r>] and of the following form. For 

some r,,q satisfying 0 < ri <a, < i, u( .) is specified by 

u,(t)=b,, t~[~~,q), and u,(t)=O, t~[O,i)\[r~,q). (4.10) 

Note that there are five distinct cases in (4.10): 

ri = ui [i.e., ui( .) GO]; 

T~=O, u,=t[i.e. ui(.)-bi]; 

ri =0, ai <i [i.e. ui( .) is “switched off” at ai]; 

ri > 0, ui = i [i.e., ui( .) is “switched on” at TJ; 

ri > 0, ui <i [i.e., ui( a) is “switched on” at ri and is “switched off” at q]. 

Furthermore, if it happens that a, = (Y (i = 1,. . . , n), as is often assumed to 

be the case (e.g. [6, Sec. 8.61) then using (3.13) it follows from (4.6)-(4.9) 

that for some r~{l,...,n}, u,(e) (i= l,...,r- 1) can at most be “switched 

on,” u,(e) can at most be “switched on and then off,” and ui(.) (i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr+ 

1 , . . . , n) can at most be “switched off.” The interpretation of this is simply 

that in the younger age groups, where biomass gains “outweigh” losses to 

natural mortality, late-season harvesting is preferable, while in older age 

groups, where losses to natural mortality “outweigh” biomass gains, early- 

season harvesting is preferable. 

The problem of finding ut( o), i = 1,. . . , n, has now been reduced to one of 

finding the corresponding T: and a; [see (4.10)]. Integrating (3.7) by using 

(4. IO), we obtain 

xi(i)=xi(0)e-4’-b,(~,-~,), i=l ,...,n. (4.11) 

%  the measure-theoretic sense. 
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Equation (4.11) can be substituted in (4.2) to eliminate x(i) and subse- 

quently solved to yield 

x,+,(O)= I? e-5-4(3/-r/)x,(O), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi=l ,...,n-2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J=l 

where 

n-l i 

4(u)= C qe4(1--J) a e-T-b,(“,-T) 

i=I j=l 

fi e-T-b,(“,-‘l) 

+c es(~-T) i=l 
n 

1 _e-%-bn(vd ’ 

(4.12) 

(4.13) 

Note that + depends on u through the specification of u by b, T and u using 

(4.10). Since II’ is of the form (4.10), x’(0) and hence 9(t) are obtained by 

substituting the corresponding ?s and a’ and the given b in (4.12) and (4.13) 

and integrating (3.7) on [0, i). From (4.12), however, a solution x(0) >0 

exists only if for some u 

w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>Y/ P. (4.14) 

From (4.13) it is clear that +(u) is a maximum at u = 0 [i.e., for given bi > 0 

we have a,-r,=O, i=l,...,n in (4.10)] and that +(u)+O as b,+cc for 

ui - 7, >O. Hence if cp(O)>y/ p, it is possible, since $I is a continuous 

function of T and u, to find u such that (4.14) holds. If, however, +(O) <a/ P, 

then it is clear that no sustainable-yield solution exists [i.e., no solution for 

which (2.14) is satisfied]. We shall thus assume that (4.14) holds with u=O 

(ui-Ti=o). 

Using (4.10), we can integrate (4.4) to obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

&(t)=e a,~+b.(..-T.)(&(O)- b,~~~i(t)e-~‘-bi(‘-~,)~~). (4.15) 
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Substitution of (4.15) in (4.5) to eliminate h(t) yields the following linear 

system in X(0) [where x’(i) is replaced by a candidate x(i) derived in 

(4.1 l)-(4.13) from a candidate u specified in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb,T,u]: 

_e-4(‘-‘)~+,(0)+e4i+4(~,-~‘)~(O)_ L-A,(O) 
/w(u) 

= b.esi+bAs-d 
0, 

I 

/ 

w,(t) 
-+--b,(~--7Jdt, 

i=l ,...,n- 1, 
7, 

(4.16) 

where +(u) is given by (4.13). 

Thus given ii defined in (4.10) in terms of +, a for given b, we can 

calculate X(0) and x(O) respectively from (4.12) (4.13) and from (4.16), 

whence Jz(.) and x( *) can respectively be determined by integrating (3.7) 

and (4.4) [replacing u’(v) and x”(e) by ii(.) and j2( *) in (4.4)]. The nominal 

control ii can then be updated using (4.6) (4.7) and a suitable algorithmic 

procedure. This aspect of the problem will not be pursued here. It should be 

borne in mind that even if a solution u’( .) is obtained in terms of 7’ and uJ, 

this solution may be impractical to implement, since it is very difficult, in 

general, to single out a specific age group for application of a given 

harvesting strategy u,. 

It is, however, worth considering the case for which the controls ui are 

allowed to become unbounded (i.e., when u is unconstrained), since this, as 

discussed in the next section, will lead to an estimate of the “ultimate” 

sustainable biomass yield potential of the population. Such an estimate will 

provide a useful standard against which the performance of any sustainable 

yield policy can be measured. 

5. THE ULTIMATE SUSTAINABLE YIELD 

Consider the problem of maximizing (4.1) subject to (3.7) and the 

boundary condition (4.2), where u(e) is now taken to be unconstrained. It 

follows from (3.7) that if q(o) assumes the value bi on any fixed open 

interval (rir q) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc [0, i) (no matter how small) and ~~(7~) > 0, then xi(q)+0 as 

bpco. Hence the optimal controller, in the unconstrained case, either 

removes all members of the ith age class at time +ri or acts impulsively,’ i.e. 

‘We shall admit impulse controls, and the ensuing discussion will be on a heuristic 

rather than a rigorous level. 
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~~-+a~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas &cc. In both cases, the application of the optimal controller is 

equivalent to removing a finite number of individuals, say z,, from the ith 

class at time <, say. It is thus clear that x,(t) will satisfy 

xi(t) = xi(0)e-4’, t<<, 

xi(t)=(xi(0)eC4~-zi)e~~(1~4, t,<t<t, (5.1) 

where the latter follows because the optimal controller either is an impulse 

at { or removes all individuals in the ith age class at time 4, whence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

zi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,(O)e-4; and x,(t)=O, t><. 

For finite b we know from (4.10) that xi(t) will satisfy 

(5.2) 

x,(t) = xi(0)e-4’, t<ri 

xi(t) = xi(0)e-4’-4(‘-T~), Ti<t<ui (5.3) 

x,(t) = (xi(0)e- 49-6,(0,-“))e-4(‘-u,) 0, Qt <i 

Hence in the limit as &+cc, we have, comparing (5.1) and (5.3), that 

lim e-b,(a,--7,)= xi(“~Tdt;qczi . 
b,+m I 

(5.4) 

Furthermore, for finite b. we can use a mean-value theorem [to take w,(t) 

outside the integral sign] and integrate (4.1) to obtain 

J(u(*))= 5 wi(()xi(0)e-%~[l -e-(as+h)(ac-i’)]&, (5.5) 
i-1 I I 

where < E[T,,u~]. On letting b+co, i= 1 , . . . , n, and recalling that either ri = ai 

or (5.2) holds, it is clear that (5.5) reduces to 

J(“(e))= $I wi(ti)zi. (5.6) 

In Sec. 4 it was shown that the problem of finding the II(.) that 

minimizes (4.1) reduces to the problem of finding three vectors u, r and x(0) 

related by n equations [see (4.12)]. From (5.1) and (5.6) we see that in the 

unconstrained case the problem now reduces to one of finding three vectors 

i, 2 and x(0) also related by n equations [see (5.8) below]. This latter 

problem can be viewed as the following programming problem: Firstly, the 

constraints 

x,(O)>0 and z,>O, i=l ,...,w (5.7) 
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follow from the original non-negativity constraints on x(t) and u(t). Sec- 

ondly, using (4.2) and (5.1) we obtain 

xi+,(0)=xi(O)e-~-zie-+~) 

xn(0)=xn_i(O)e-q-I--z,_,e -%-l(i-I.-J+xn(0)e-%-zL,e-“(‘-‘.) 

p i q[ xi(0)e-~i- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,e-“(‘-“) 1 (5.8) 
j=, L , 

x,(O) = 
y + i ci[ x,(O)e-qT- zie-4--I')] ’ 

i=l 

Suppose t is given (a simple means of determining t is discussed below). 

Then there are various techniques and algorithmic procedures available for 

solving the nonlinear programming problem of maximizing (5.6) subject to 

(5.7) and (5.8). This aspect of the problem will not be pursued here. 

Consider t selected in the following way. Let b,(t) denote the biomass of 

the ith class at time t. Then 

bi( t, = wi( r)xi(f)t tE[O,fJ, i=l,..., n. (5.9) 

In a naturally evolving system [(3.7) without controls] it follows that 

(5.10) 

Then from (3.12), b,(t) is a maximum on [O,i) at: tif tii(i)/wj(i)>cui; 0 if 

ki(0)/wi(O) <cui; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt; E(O,~) if tii(tf)/wi(t;‘) = a,. If 6 is chosen to be the value 

of t at which hi(t) assumes its maximum on [0, t), this will ensure that for a 

given set {x(0),x(i)} such that x(i) is obtainable from x(0) for some z for 

which (5.7) is satisfied, the greatest biomass yield is obtained from the 

population. Furthermore, since (4.9) and (5.10) are identical functions in x 

and t, it can be seen that < is the point at which one would expect the ith 

impulse controller to act when this impulse controller is taken as the limit of 

solutions to the constrained problem (i.e., letting &-+co). 

Note that from (5. l), (5.7) and (5.8) it follows that if (5.2) holds for i = k, 

then xi(O) = ~~(0) = 0, i = k + 1 , . . . , n. This fact may lead in some cases to the 

simplification of the solution procedure to the programming problem {(5.6), 

(5.7), (5.8)) as it stands. 

Now let J,, denote the maximum value of (4.1) where u( .) satisfies the - 

constraint u(t) E[O, b] for t E[O,~]. Then it follows from the maximum 

principle thats 

*Vector inequalities are taken to hold componentwise. 
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since [0, b2]>[0, b’]. Let J, denote the maximum value in the case of the 

unconstrained problem, i.e., let J, be the maximum value of (5.6). Then it 

is easily shown as follows that 

J, = sup Jb. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b>O 

(5.11) 

Let K= sup Jb. Then since [0, b]>[O, co) for all b > 0, we have J, a K. 
b>O 

However, by representing the optimal impulse controller as the limit of a 

sequence of controllers of the form @‘)( *) = N on [rjN),ujN)], ujN)( 0) =0 

otherwise, where @),~i(~) are chosen so that the optimal values for zi and < 

are obtained in the limit as N-+cc, one shows that J(dN)) < JN <K and 

J(dN))+J, as N-too, whence J, <K, i.e., (5.11) holds. 

Thus J, can be regarded as the “ultimate”  yield potential of the 

population under sustained exploitation. Since, however, J, can be attained 

only by using impulse controls which are not physically implementable, J, 

should be regarded as an idealized standard with which the performance of 

the physically constrained controls can be compared. 

6. SCALAR HARVESTING 

In many fisheries, for example purse-seine fisheries, harvesting proceeds 

by removing (according to mesh size of nets) individuals in a given age class 

and above, at a given intensity u(t). In this case u is a scalar and (3.7) 

becomes [cf. (3.4)], for9 r E (0,. . . , n - l}, 

ii = - 0L.x. I I7 i=l ,...,r, 
(6.1) 

iii= -[ar,+u(t)]xi, i=r+l ,...,n. 

The problem now under consideration is to maximize [cf. (4.1)J 

J,(u(.))=l’u(s) i wi(t)xi(t)dr (6.2) 
0 i--r+1 

over all piecewise continuous u( -) taking values in (0, b] and subject to (6.1). 

The Hamiltonian for this problem is [cf. (4.3)] 

H(X,x9u,t)=ui_$+, [wi(t>-xiJxi- 5 4ixi9 
i-1 

whence [cf. (4.8)] 

H,(t)= i: [wi(t)-xl(t)lxi(z)~ 
i-r+ 1 

(6.3) 

9r-0 is given the obvious interpretation of u included in all n equations. 
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and h(e) should satisfy [cf. (4.4)] 

-i= -Uihp i=l ,...,r, 
(6.4) 

--A+= -(aj+u))C,+wi(t)u, i=r+l,...,n. 

As in (4.6) and (4.7), 

u”(t) =o whenever H.“ ( ‘) < 0, (6.5) 

u”(t)=b whenever H:( ‘) > 0. (6.6) 

Given r and 6, the problem is to find the u( .) that maximizes (6.2) and 

hence results in a maximum sustainable yield. Let u’(a) denote the con- 

troller that maximizes J,(u( e)). Suppose u’( *) is found for r = 1,. . . ,n; then 

the value of r that maximizes J,(u’( e)) indicates the optimal choice of mesh 

size [in terms of the youngest age class which is harvested in (6.1)]. 

We note, however, that the optimal controller no longer has the simple 

form of q(t) given in (4. lo), since H,(t), given by (6.3), may pass through 

zero several times on [O,?), and may in fact be singular on subintervals of 

[0, i). In this case, systems of equations in x(0) and X(O), similar to (4.12) 

and (4.16), can be obtained, but a general expression for u( .) will have to be 

retained, i.e., we cannot a priori simplify the expressions [cf. (4.11) and 

(4.15)l 

and 

i-r+1 , . . .,a This then would seem to offer no substantial progress in 

solving the two-point boundary-value problem associated with the maxi- 

mum principle for the problem under consideration. 

Consider, however, the following problem relating to (6.1) and (6.2). Let 

r be given, and suppose u( *) is constrained, not to be piecewise continuous 

and taking values in [0, b], but rather to be constant on [O,i). This problem 

is of practical importance, since the constraint of harvesting at a given level 

over the whole season is often desirable: it avoids having to lay off 

fishermen during the harvesting season. The fact that there is no upper 

bound to u does not (in this case) necessarily imply that the maximum 

sustainable yield is obtained by letting u+co, since, depending on the value 

of r, this may cause the breeding-age classes to become depleted, in which 

case the population would not be able to reproduce. 
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Let u(a) = u for r E[O, t>. Then, as in deriving (4.12) and (4.13), we obtain 

(assuming zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr < n -  2)‘O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

xi+,(O) = Ii e-5x,(O), i=l ,...,r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j=l 

xi+,(O)= fJ e-4 i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-?-“‘x,(O), i=r+ l,...,n-2, 
j=l j=r+l 

(6.7) 

[ 

n-l 

x,(O)= fi e-4 D 
,-c-0; 

I 

X,(O)> 
j=I jcr+, l_e-%-d 

x,(()) = Mdu) - y 
&r(u) ’ 

where 

I 

+r(~)= i ciear(l-i) JJ e-5 

i=l j=l 

n-l 

+ 2 qe%(l-‘ ) fi e-4 fi e -a, -vi 

i=r+l j=l j=r+l 

+cne4C1-‘) fi e-5 fi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e-q-0i 

j- 1 j=r+l (1 -e-s--oi) ’  
(6.8) 

Furthermore, (6.2) becomes 

(6.9) 

Substituting (6.7) and (6.8) in (6.9) the problem under consideration 

reduces to that of finding the maximum of a scalar function J(u) with 

respect to the parameter v > 0. J(v) may, however, be an increasing function 

of v, in which case no maximum exists and J(cc) >J(u) for all v > 0. Again, 

J(cc) is finite and can be used as an idealized standard with which yields 

obtained for finite v can be compared. Also, it is clear from (6.1) that if 

v+cc, then in the limit all members in the age classes r + 1 to n will be 

removed at the instant t=O. 

Let the optimal value of b, for given r, be denoted by vr, where possibly 

v’ = co. Then the corresponding yield Jr(v’) will satisfy 

Jr(u’) BJ,(v) for all v > 0. 

‘me equations can be suitably adjusted for the case r= n - 1. If r = n - 2, then 

i=fl-I , . . . , n - 2 is taken to imply that no equations are present in the second subsystem 

of equations (6.7). 



OPTIMAL HARVESTING OF STRUCTURED POPULATIONS 289 

As before, if J,(ur) is calculated for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr= 1,. ..,n, then the optimal value of r, 

say r*, is chosen to satisfy 

J,*(d’) >Jr(u’) forall rE{l,...,n}. 

7. CONCLUSION 

In the Introduction (Sec. l), the history and present “state of the art” in 

fisheries management models was briefly reviewed. It was pointed out that 

an outstanding problem in this area is to link up into a unified setting the 

modeling of discrete events (using systems of difference equations) with the 

modeling of continuous ongoing processes (using systems of differential 

equations). This is done in Sec. 2 in the general setting of systems of 

differential equations with state-variable jump discontinuities. A general 

harvesting model is presented that divides the population into two distinct 

phases, viz. the harvesting-season dynamics and the spawning-season trans- 

formation. A maximum principle is presented for this type of system, and it 

is shown that in the case of periodic systems the maximum-sustainable-rent 

solution for the one-year harvesting problem satisfies the maximum princi- 

ple for the N-year harvesting problem. This maximum principle can be used 

in the same manner as the standard maximum principle is used to construct 

candidate optimal solutions from the associated two-point boundary-value 

problem. 

In Sec. 3 it is shown that the Beverton-Holt theory in fisheries manage- 

ment naturally extends into the state-variable jump-discontinuity setting: 

the harvesting-season dynamics are modeled by a system of differential 

equations that are linear in state but bilinear in state and control, while a 

stock-recruitment relationship is included in the spawing-season transfor- 

mation. This model is used in Sec. 4 in the presentation and subsequent 

analysis of a maximum-sustainable-yield problem. Application of the maxi- 

mum principle makes it possible to deduce the form of the optimal solution. 

This facilitates the reduction of the associated two-point boundary value to 

a parameter-selection problem. Numerical algorithms for solving the latter 

problem are not discussed in this paper, and they present an area for future 

research. 

In Sec. 5 the unconstrained version of the above maximum-sustained- 

yield problem is introduced as the limit of associated constrained problems 

as the constraints increase without bound. The solution to the uncon- 

strained problem is designated as the “ultimate’‘-sustainable-yield solution, 

as it provides the least upper bound to sustainable yields that can be 

realized by any bounded harvesting strategy. The unconstrained problem is 

shown to be equivalent to a programming problem which, although nonlin- 

ear, contains a number of linear structures. In a companion to this paper 
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[25], it has been shown that the above programming problem reduces to a 

linear parametric programming problem with two constraints. Furthermore, 

a solution to this problem is provided in [25] where the ultimate sustainable 

yield is evaluated for a real fishery. 

Finally, in Sec. 6. models including only scalar control (harvesting) are 

introduced, as these are particularly important in practical applications. 

These models, apart from being discussed in the usual maximum-sustain- 

able-yield formulation, are also discussed in the formulation where the 

additional constraint is imposed of constant harvesting intensity over the 

whole harvesting season. It is shown that under this constraint the problem 

reduces to a classical single-parameter optimization problem, which can be 

solved by applying standard techniques. More importantly, however, for 

given r and v the corresponding yield can be easily and directly computed 

from (6.9). If this is done over a grid of (r,v)-values, a comprehensive 

knowledge of the yield characteristics of the fishery as a function of r and v 

can be obtained. A full numerical example along these lines is presented in 

[26], where a refinement of the model presented here in Sec. 6 is also 

considered. 
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