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ABSTRACT 

This paper examines the optimal hedging ratio (OHR) for the Brent Crude Oil Futures using daily 

data over the period 1990/17/8-2014/11/3. To gain OHR, it is employed a Vector Autoregressive (VAR) 

and Vector Error Correction (VEC) and Baysian Vector Autoregressive (BVAR) models. At last, the 

efficiency of these calculated OHR are compared through Edrington's index.  
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1.  INTRODUCTION 

 

Price risk management, using hedging tools like futures and options and their 

effectiveness, is an active area of research. Hedging decisions based on futures contracts have 

to deal with finding optimal hedge ratio and hedging effectiveness. Role of hedging using 

multiple risky assets and using futures market for minimizing the risk of spot market fluctuation 

has been extensively researched. 

Traditionally, hedging is envisaged using a hedge ratio of ‘-1’, i.e., taking a position in 

futures contract which is equal in magnitude and opposite in sign to the position in spot market. 

If the movement of changes in spot prices and futures prices is exactly the same, then such a 

strategy eliminates the price risk. Such a perfect correlation between spot and futures prices is 

rarely observed in markets and hence a need was felt for a better strategy. Johnson (1960) 

proposed ‘minimum variance hedge ratio (MVHR)’, which factored in less than perfect 

relationship between spot and futures prices. Risk was defined as the variance of returns on a 

two-asset hedged position. 

Following Doan, Litterman and Sims (1984), the Bayesian approach to the estimation of 

vector autoregressive (VARs) is employed. The forecasting models have traditionally been 

formulated as simultaneous equation structural models. However, for a variety of reasons 

structural models have proved unreliable for forecasting. The VAR models have also been 

criticized insofar as they lack strong theoretical justification over and above the use of theory 

as a guide in deciding which variables to include in the analysis. Doan, Litterman and Sims 

(1984) in an attempt to improve the forecasting performance of unrestricted VARs suggested 

that they could be estimated using Bayesian techniques which take account of any prior 

information which may be available to the modeler. It is this Bayesian approach to parameter 

estimation in vector autoregressive which is employed in this study. 
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2.  METHODOLOGY AND EMPIRICAL RESULTS 

 

In this section we employ the VAR, VEC and BVAR to calculate the optimal hedge 

ratio(OHR). The financial variables used in the model are spot and futures price of Brent Oil. 

The data series are obtained from Energy Information Agency (EIA). The data are daily from 

1990/17/8-2014/11/3. 

 

2. 1. Hedge Ratio and Hedging Effectiveness 

The optimal hedge ratio is defined as the ratio of the size of position taken in the futures 

market to the size of the cash position which minimizes the total risk of portfolio. The return 

on an unhedged and a hedged portfolio can be written as:  

 

𝑅𝑈 = 𝑆𝑡+1 − 𝑆𝑡 

 

𝑅𝐻 = (𝑆𝑡+1 − 𝑆𝑡) − 𝐻(𝐹𝑡+1 − 𝐹𝑡) 
 

Variances of an unhedged and a hedged portfolio are:  

 

 𝑉𝑎𝑟(𝑈) =  𝜎𝑠
2 

 

𝑉𝑎𝑟(𝐻) =  𝜎𝑠
2 + 𝐻2𝜎𝐹

2 − 2𝐻𝜎𝑆,𝐹 
 

where, S
t 
and F

t 
are natural logarithm of spot and futures prices, H is the hedge ratio, R

H 
and 

R
U 

are return from unhedged and hedged portfolio, σ
S 

and σ
F 

are standard deviation of the spot 

and futures return and σ
S,F 

is the covariance.  

Hedging effectiveness is defined as the ratio of the variance of the unhedged position 

minus variance of hedge position over the variance of unhedged position. 

 

𝐸𝑑𝑟𝑖𝑛𝑔𝑡𝑜𝑛′𝑠 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑖𝑛𝑑𝑒𝑥 =
𝑉𝑎𝑟(𝑈)−𝑉𝑎𝑟(𝐻)

𝑉𝑎𝑟(𝑈)
 (1) 

 

2. 2. Models for Calculating Hedging Effectiveness and Hedge Ratio 

Several models have been used to calculate hedge ratio and hedging effectiveness such 

as  Vector Autoregressive regression (VAR) model, Vector Error Correction model (VEC), 

Baysian Vector Autoregressive regression (BVAR) model.  

The VAR models eliminates problems of autocorrelation but it does not consider the 

possibility of long term integration. The advantage of the Bayesian approach to statistics is that 

provides a general method for combining a modeler’s beliefs with the evidence contained in 

the data. 

 

2. 3. The VAR Model 

The bivariate VAR Model is preferred over the simple OLS estimation because it 

eliminates problems of autocorrelation between errors and treat futures prices as endogenous 

variable. The VAR model is represented as 
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𝑅𝑠𝑡 = 𝛼𝑠 + ∑ 𝛽𝑠𝑖𝑅𝑠𝑡−𝑖
𝑘
𝑖=1  + ∑ 𝛾𝑓𝑗𝑅𝑓𝑡−𝑗

𝑙
𝑗=1  + 𝜀𝑠𝑡     (2) 

𝑅𝑓𝑡 = 𝛼𝑓 + ∑ 𝛽𝑓𝑖𝑅𝑓𝑡−𝑖
𝑘
𝑖=1  + ∑ 𝛾𝑠𝑗𝑅𝑠𝑡−𝑗

𝑙
𝑗=1  + 𝜀𝑓𝑡 (3) 

 

The error terms in the equations, ε
St

, and ε
Ft 

are independently identically distributed 

(IID) random vector. The minimum variance hedge ratio are calculated as 

 

h =
𝜎𝑠𝑓

𝜎𝑓𝑓
 (4) 

𝜎𝑠𝑓 = 𝑐𝑜𝑣(𝜀𝑠𝑡 , 𝜀𝑓𝑡) 

𝜎𝑓𝑓 = 𝑣𝑎𝑟(𝜀𝑓𝑡) 
 

The VAR model does not consider the possibility of long term integration between spot 

and futures returns. 

 

2. 4. The Error Correction Model 

VAR model does not consider the possibility that the endogenous variables could be co-

integrated in the long term. If two prices are co-integrated in long run then Vector Error 

Correction model is more appropriate which accounts for long-run co-integration between spot 

and futures prices (Lien & Luo, 1994; Lien, 1996). If the futures and spot series are co-

integrated of the order one, then the Vector error correction model of the series is given as: 

 

𝑅𝑠𝑡 =  𝛼𝑠 + 𝛽𝑠𝑆𝑡−1 + 𝛾𝑓𝐹𝑡−1 +  ∑ 𝛽𝑠𝑖
𝑘
𝑖=1 𝑅𝑠𝑡−𝑖 + ∑ 𝛾𝑓𝑗

𝑙
𝑗=1 𝑅𝑓𝑡−𝑗 + 𝜀𝑠𝑡       (5) 

𝑅𝑓𝑡 =  𝛼𝑓 + 𝛽𝑓𝐹𝑡−1 + 𝛾𝑠𝑆𝑡−1 + ∑ 𝛽𝑓𝑖
𝑘
𝑖=1 𝑅𝑓𝑡−𝑖 + ∑ 𝛾𝑠𝑗

𝑙
𝑗=1 𝑅𝑠𝑡−𝑗 + 𝜀𝑓𝑡          (6) 

 

where, S
t 
and F

t 
are natural logarithm of spot and futures prices. The assumptions about the 

error terms are same as for VAR model. The minimum variance hedge ratio and hedging 

effectiveness are estimated by following similar approach as in case of VAR model. 

 

2. 5. The BVAR Model 

A Bayesian approach to vector autoregressive has in particular been put forward by Doan, 

Litterman and Sims (1984). The original Litterman or Minnesota prior was based on the idea 

that each series is best described as a random walk around an unknown deterministic 

component. Consider the n variable vector autoregressive of order p, VAR(p), given by (7) 

 

yt = 1 yt-1 + ... + py t-p + +             (7) 
 

where yt is an (n x 1) vector of non-stationary time series, m is an (n x 1) vector of constants 

coefficients and et is an n x 1 vector of error terms. Г1 through Г𝑝represent (n x n) matrices of 

parameters to be estimated. Hence the prior distribution is centered around the random walk 

specification for variable n given by (8) below. 

 

         Y(n,t) = n) + y(n,t-1) + n,t)           (8) 
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As described in Litterman (1986), the standard error on the coefficient estimate for lag l 

of variable j in equation i is given by a standard deviation of the coefficient on lag l of variable 

j in equation i given by a standard deviation function of the form S(i, j, l) given by equation (9) 

below. 

 

S(i, j, l)= 
[𝛾.𝑔(𝑙).𝑓(𝑖,𝑗)]𝑠𝑖

𝑠𝑗
             (9) 

where 

f (i, j) = 1 if i = j    and    wij     otherwise 

 

The “hyperparameter” and functions g(l) and f(i, j) determine the tightness or weight 

attaching to the prior in (8) above. Given the functional specifications of g(l) and f(i, j), can 

simply be interpreted as the standard deviation on the first own lag. It is also often termed the 

“overall tightness” of the prior. The function g(l) determines the tightness on lag one relative 

to lag l. The tightness around the prior mean is normally assumed to increase with increasing 

lag length. This is achieved by allowing g(l) decay harmonically with decay factor d, i.e. g(l) 

= 𝑙−𝑑. The tightness of the prior on variable j relative to variable i in the equation for variable 

i is determined by the function f(i, j); this can be the same across all equations in which case 

wij is equal to a constant (w) and the prior is said to be symmetric.  

Alternatively, the tightness of the prior for variable j relative to variable i (in the equation 

for variable i) can vary depending upon the particular equation and/or variable in question (this 

is known as a general prior). However, the flexibility inherent in the specification of a general 

prior may not always be desirable. On the one hand, as argued by Doan (1990), it simply 

transfers the problem of over-parameterization to one of having to estimate or search over too 

many hyperparameters. However, in a situation where the analyst has strong prior views that 

one of the variables is exogenous, the general prior may improve forecasting performance. In 

particular, the equations for exogenous variables may best be specified as univariate 

autoregressive with no feedback from the other variables in the system. This can be achieved 

by setting very low values for the off-diagonal elements in f(i, j) which correspond to that 

particular variable. 

 Finally, the multiplicative ratio si/sj in equation (9) reflects the fact that in general the prior 

cannot be completely specified without reference to the data. In particular it corrects for 

differences in the scale used in the measurement of each variables included in the system. For 

example, how tight a standard deviation of 0.5 is on the lags of prices in an equation for the 

interest rate will depend on whether the price index is based to equal unity or 100 in the base 

period.  

Litterman (1986) argues that the scale of the response of one variable to another is “a 

function of the relative size of unexpected movements in the two variables rather than the 

relative sizes of their overall standard errors”. Hence, he suggests scaling the standard error on 

the prior by the ratio of the standard deviations of the residuals (si) from a univariate 

autoregressive for variable i to the standard deviation of the residuals (sj) from a univariate 

autoregressive for variable j (both with p lags). 

 

2. 6. The VAR Estimates 

To calculate the hedge ratio and hedging effectiveness, system of equations is solved. We 

used covariance and variance errors from the equation [2, 3] to calculate hedge ratio and 
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hedging effectiveness (equation [1]) of futures contracts. The covariance and variance errors 

and OHR equations are given in Table 1 and hedge effectiveness is presented in Table 2. 

 
Table 1 

 

 

 
Table2 

 

 

 

2. 7. The VECM Estimates 

Using the same approach as in case of VAR model, errors are estimated and hedging 

effectiveness and hedge ratio are calculated for VECM model. Results of the equation [5, 6] 

and OHR are presented in Table 3. Table 4 illustrates the estimates hedging effectiveness of 

futures contracts. 

 

Table 3 

 

 

 
Table 4 

 

 

 

2. 8. The BVAR Estimates 

Errors are estimated through Baysian Vector Autoregressive (BVAR) model and hedging 

effectiveness and hedge ratio are calculated. OHR are presented in Table 5. Table 6 illustrates 

the estimate of hedging effectiveness of futures contracts. 

 

 

OHR Var (𝜺𝒇) Var (𝜺𝒔) Cov (𝜺𝒔, 𝜺𝒇)  

0.729 0.000502 0.000453 0.000366 Future1 

Hedging Effectivenss,  

E 
Var (H) Var (U)  

0.5894 0.000186 0.000453 Future1 

OHR Var (𝜺𝒇) Var (𝜺𝒔) Cov (𝜺𝒔, 𝜺𝒇)  

0.7454 0.000609 0.000526 0.000454 Future1 

Hedging Effectivenss, 

 E 
Var (H) Var (U)  

0.9013 0.00005188 0.000526 Future1 
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Table 5 

 

 

 
Table 6 

 

 

 

 

3.  CONCLUSION 

 

To hedging risk, it is important to evaluate the hedging effectiveness of derivatives. In 

the present paper, we report hedge ratios of Brent Oil futures through three alternative modeling 

frameworks: VAR model, VECM model and BVAR model. We compare the hedging 

effectiveness of the contacts using these models, ex post (in-sample) and ex ante (out-of-

sample) introduced by Edrington. The results show the VEC model is more effective than the 

other models used in this paper. 
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OHR Var (𝜺𝒇) Var (𝜺𝒔) Cov (𝜺𝒔, 𝜺𝒇)  

0.7173 0.000506 0.000468 0.000368 Future1 

Hedging Effectiveness,  

E 
Var (H) Cov (U)  

0.5576 0.000207 0.000468 Future1 
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