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Optimal Hedging and Carryover Storage Value
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Abstract: Properties of optimal hedging for water supply releases from reservoirs are developed and discussed. The fu
decision of how much water to release for beneficial use and retain for potential future use is examined analytically. Explicit c
dence is established between optimal hedging and the value of carryover storage. This more analytical view of hedging rules is
better understanding optimal hedging and simplifying numerical optimization of hedging operating rules. The derivations su
frequent optimality or near-optimality of two-point hedging policies for water supply operations.
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Introduction

In reservoir operations for water supply, water can be either r
leased for beneficial uses or retained in the reservoir for possi
future use. This simple choice becomes devilishly complex in t
presence of uncertain future inflows and nonlinear economic be
efits for released water~Shih and Revelle 1994, 1995!. The prob-
lem of how much water to withhold from immediately beneficia
deliveries, retaining that water in storage, is known as ‘‘hedging
~Bower et al. 1962!. This paper examines hedging rules analyt
cally, deriving them from the benefits of current deliveries com
pared to their expected value for future uses, through reserv
carryover storage.

The literature concerning development of operating rules f
water resource systems is extensive, particularly for water su
plies. In general, reservoir operating rules guide release decisio
Good reservoir management therefore requires creating ‘‘a se
operation procedures, rules, schedules, or plans that best me
set of objectives’’~USACE 1991!. Some general reviews of res-
ervoir operating rules can be found in Lund and Guzman~1996,
1999!, Loucks and Sigvaldason~1982!, and Bower et al.~1962!.

For water supply systems, the so-called standard operat
policy ~SOP! is perhaps the simplest reservoir operating rule. Th
SOP~Maass et al. 1962; Loucks et al. 1981! appears in Fig. 1.
Reservoir release is specified as a function of the total wa
available currently~i.e., current storage, plus projected inflows
minus evaporation during the present period!. If water supply is
less than a delivery targetT, all available water is released; no
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storage remains. Water availability exceeding the target is held
storage until at maximum capacityk the reservoir starts to spill.

In the diagram, feasible releases are constrained between tw
parallel lines. The upper line represents the release of all wat
available, with none left in storage. The lower line represents th
storage of all water possible, releasing only water in excess o
storage capacity. In essence, SOP places the highest priority
releasing water for immediate beneficial use, up to the level o
target demand, after which remaining water available is store
until storage capacity is reached.

Hedging rules curtail deliveries over some range of water sup
ply to retain water in storage for use in later periods~the thinner
line in Fig. 1!. Thus, some water is stored, rather than delivered
even when there is enough water for full target deliveries in the
present period. Hedging provides insurance for higher-value
water uses where reservoirs have low refill potentials or uncerta
inflows.

The intent of hedging is to reduce the risk and cost of large
shortages, but at a cost of more frequent small shortages. Has
imoto et al.~1982! show that where the loss function~on releases!
is linear, the SOP is the best policy. More generally, for hedging
to be optimal requires a convex, nonlinear loss function~concave
nonlinear benefits!. Klemes~1977! found that an optimal policy
converges to the SOP with increasing hydrologic or economi
uncertainty. To be optimal, hedging requires not only that the los
function be convex and nonlinear but also that the hydrology hav
substantial probability of persistence of dry periods. Hedging
would never be optimal for a hydrology that, perhaps oddly, ha
very severe droughts of one period followed by extremely we
conditions that always fill the reservoir. Calculation of the optima
amount of carryover storage for hedging entails an assessme
and balancing of risks and costs.

A variety of hedging rules and their effects have been investi
gated ~e.g., Klemes 1977; Stedinger 1978; Loucks et al. 1981
Hashimoto et al. 1982; Moy et al. 1986; Bayazit and Unal 1990
Shih and Revelle 1994, 1995; Srinivasan and Philipose 1996; O
iverira and Loucks 1997!. The most common hedging rule forms
are as follows~Lund and Guzman 1996!:
• One-point hedging, where the releases begin at the origin i

Fig. 1 and increase linearly~at a slope,1! until intersecting
with the target level of release~Shih and ReVelle 1994!,
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• Two-point hedging, where a linear hedging rule begins fro
first point~parameter! occurring somewhere up from the orig
on the shortage portion of the SOP rule to a second p
occurring where the hedging slope~,1! intersects the targ
release~Bayazit and Unal 1990; Srinivasan and Philip
1996!,

• Three-point hedging, where an intermediate point is spec
in the above rule, introducing two linear portions to the he
ing portion of the overall release rule,

• Continuous hedging, where the slope of the hedging portio
the rule can vary continuously~Hashimoto et al. 1982!, and

• Zone-based hedging, where hedging quantities are dis
proportions of release targets for different zonal levels of w
availability ~Hirsch 1978!.

Optimal Carryover Storage

The water availableA, in the present time period, is the sum
water currently in the reservoir plus the expected value of cu
period inflows minus any expected reservoir evaporation or s
age losses. This water is allocated to either delivery for imme
beneficial purposesD, or storage in the reservoirS, for potential
future use.

A value function typically can be specified for current wa
delivery benefits B~D!. This value function can be economic
nature or represent some other metric of the benefits from d
ering water from the reservoir for immediate use. Typically,
benefit function is concave or linear, with the marginal ben
usually decreasing with increasing use. Beyond some pointdm ,
there is no additional value for increasing water deliveries
course mathematically, deliveries are also non-negative.~Often
these functions are expressed as ‘‘loss’’ or ‘‘penalty’’ functio
representing reductions in benefits from some ideal level o
liveries.! Economic benefit functions for deliveries should gen
ally be rather smooth and convex for large water supply se
areas with many consumers and heterogeneity among consu
Water-supplying institutions and consumers usually have a
variety of water conservation and demand management op
which tend to be used in order of cost-effectiveness, leading
generally convex economic loss function~concave benefits!.
Mathematically, where benefit functions are convex~losses con
cave!, rather unusual optimal operating rules result which m
mize the frequency of shortages, but when shortages are una
able, shortage magnitudes tend to be maximized to keep wa
storage to reduce the probability of shortages in the next time
~Hashimoto et al. 1982!.

Fig. 1. Standard operating policy~thicker line!
84 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEME
a

int

e

ed
-

of

ete
er

f
nt

ep-
te

r

liv-
is
ts

f

,
e-
r-
ce
ers.
ge
ns,

a

i-
oid-
r in
tep

Let us also assume a value function for storing water at the en
of the current decision period. This carryover storage value func
tion C(S), represents the expected value of future economic o
other benefits from keeping water in the reservoir when it could
otherwise have been released. The estimation of this carryove
storage value function can be complex, as discussed later, but
affected by the benefit function for future use, the size of the
reservoir, and the particular hydrologic patterns likely in the fu-
ture. If the benefit function for useB(D) is concave or linear, the
economic value of storing water for the future should be concave
~Gal 1979!.

The economic value of carryover storageC(S) is the expected
value of the sum of its useful benefits discounted at rater into the
future @Eq. ~1!#, if the carryover storageS is partitioned into uses
and lossesst at future timest, such thatS5Sst . The value of
each future use or loss of carried-over storage released in yeat
would be the marginal value of additional release at that future
time (]B/]Dt), multiplied by an appropriate discount factor
@exp(2rt)#. Losses of carried-over storage in the future from
spills and evaporation create no benefit (]B/]Dt50). Future re-
leases also may be increased by the presence of carryover stora
in the reservoir from previous years. For each future time, this
increased release due solely to the presence of carryover stora
could be expressed as the rate of release per unit of water ava
able times the remaining carryover storage at each future time
(dDt /dAt)(S2(t51

t st). The estimation ofC(S) might not be
trivial but the existence of a carryover storage value function
reduces the operations problem to a deterministic equivalen
form.

C~S!5MaxFEVH(
t51

` S BtFDt1st1
]Dt

]At
S S2(

r 51

t

stD G
2Bt~Dt!D exp~2rt !J G (1a)

or

C~S!5MaxFEVH(
t51

` S dBt~Dt!

dDt
Fst1

]Dt

]At
S S2(

r 51

t

stD G
3exp~2rt !D J G (1b)

Release and carryover storage decisions should be made
maximize the sum of immediate use and carryover storage ben
efits. This situation can be summarized in the following simple
mathematical program:

Max z5B~D !1C~S! (2)

subject to

S1D5A (3)

S>0 (4)

S<k (5)

D>0 (6)

D<dm (7)

This formulation only applies where water available is less than
maximum demand plus storage capacity (A,dm1k). If A.dm

1k, hedging is irrelevant since ample water exists to supply al
demands, fill the reservoir, and spill, as with the SOP rule.
NT © ASCE / JANUARY/FEBRUARY 2004
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The Lagrangian for this problem, within the bounds of th
inequality constraints where hedging is relevant, is

L5C~S!1B~D !1l~A2S2D ! (8)

The first-order conditions for solving this problem are

]L

]S
505

]C~S!

]S
2l, (9)

]L

]D
505

]B~D !

]D
2l, (10)

]L

]l
505A2S2D (11)

Eq. ~11! gives the constraint

S1D5A (12)

Eqs.~9! and ~10! simplify to

]C~S!

]S
5

]B~D !

]D
(13)

In words, Eq.~13! states that at optimality the marginal benefit
of storage must equal the marginal benefits of release. These c
ditions, Eqs.~12! and ~13!, can be used to derive the optima
hedging rules for a range of conditions.

Optimal Hedging Rules

Optimal hedging rules can be derived from Eqs.~12! and~13! for
a variety of circumstances. IfB(D) is linear for 0<D<dm , then
hedging is not optimal under any circumstances, leaving the S
~Fig. 1! as the optimal rule. The release rule is bound by th
non-negativity of storage constraint forA<dm , and then bound
by D<dm ~maximum usable delivery! and finally byS<k ~spill!.
Some example derivations of optimal hedging rules follow, wit
their implications.

Quadratic Use and Carryover Value Functions

If both C(S) and B(D) are quadratic functions, of the formas

1bsS1csS
2 and ad1bdD1cdD2, respectively, then combining

Eqs. ~12! and ~13! to give optimal releaseD* as a function of
total water availabilityA gives
~4!–~7!.

JOURNAL OF WATER RESOURCES PLANN
-

bs12csS* 5bd12cdD* , or bs12cs~A2D* !5bd12cdD*
(14)

D* 5
bs2bd12csA

2~cs1cd!
(15)

This linear form of hedging would apply in the region where
inequalities~4!–~7! do not bind. This generally restricts this linear
hedging rule to where

A.~bs2bd!/~2cd! (16)

representing where the hedging rule intersects the release of
water available boundary and

A<MinFdmS 11
cd

cs
D1

bd2bs

2cs
,kS 11

cs

cd
D1

bs2bd

2cd
G (17)

representing the hedging portion of the rule encountering th
maximum useful releasedm or the release of all water remaining
after filling storage capacityk constraint. Eqs.~15!–~17! result in
the general form of hedging rule shown in Fig. 2, what has bee
called ‘‘two-point hedging.’’

Some interesting special cases exist. First, whencs50, the
carryover storage value function is a constant, and there exist
constant target release which may differ from that in the pure SO
rule. Second, wherebs5bd ~including whenbs5bd50), a ‘‘one-
point’’ hedging rule results, with a constant slope from the origin

Cubic Benefit and Carryover Value Functions

If both C(S) and B(D) are cubic functions, of the formas

1bsS1csS
21dsS

3 and ad1bdD1cdD21ddD3, respectively,
then combining Eqs.~12! and~13! to give optimal releaseD* as
a function of total water availabilityA gives

bs12csS* 13dsS* 25bd12cdD* 13ddD* 2, or (18)

~bs2bd!12cs~A2D* !13ds~A2D* !252cdD* 13ddD* 2

(19)

This can be solved as a quadratic equation forD* as
D* 5
~cs1cd!13dsA6A~cs1cd!213~dd2ds!~bs2bd!16~cdds1csdd!A19dsddA2

3~ds2dd!
(20)
e

This results in a form of hedging that differs somewhat from
linear hedging obtained for quadratic delivery and storage va
functions in Eq.~15!. However, increasing the order of the valu
functions does not increase the order of the optimal hedging
D* (A) proportionately. If the squared term parameterscs5cd

50 and the linear term parametersbs5bd , then Eq.~20! be-
comes a purely linear hedging function ofA, with only the cubed
term parameters remaining. Again, the applicability of the he
ing portion of the rule is restricted to the areas not bound by E
the
lue
e
rule

dg-
qs.

Power Benefit and Carryover Value Functions

Another common form of water demand value function is th
power law, where value5qDp, whereq andp are constants and
p,1 for a concave benefit function. Applying Eq.~13! with this
function gives

qsps~A2D* !~ps21!5qdpdD* ~pd21! (21)

which can be solved as
ING AND MANAGEMENT © ASCE / JANUARY/FEBRUARY 2004 / 85
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A5D* 1
D* ~pd21/ps21!

S qsps

qdpd
D ~1/ps21! (22)

For this case, the optimal hedging rule is nonlinear, but alway
passes through the origin.

Illustrative Example

The following examples illustrate the derivation of hedging rules
from carryover storage and water demand value functions. Para
eter values for quadratic, cubic, and power value functions appe
in Table 1 and are plotted in Fig. 3. The constant parametersas

andad are omitted since they disappear in the derivatives.
Applying Eqs.~15!, ~20!, and~22! yield the hedging portions

of the release rules appearing in Fig. 4. The applicable range
these rules is limited by where they intersect the lineD5A, rep-
resenting full release of all available water, and either the relea
of full demand,D5dm , or full storage,D5A2k.

Commentary

Water resources engineers and planners are well accustomed
estimating direct benefit functions for water uses, such asB(D) in
this paper. Economic and noneconomic benefit functions are no
commonplace in academic, theoretical, and even practical wor
For water supply purposes, economic benefit functions for wate
deliveries are usually concave~losses convex!.

Less common is the estimation of benefit functions for wate
storage, particularly carryover storage. Gal~1979! reasons math-
ematically that carryover storage value functions are monoton

Fig. 2. Optimal hedging with quadratic use and carryover value
functions

Table 1. Example Parameter Values

Value function b, q c, p d dm k

Quadratic
Demand 1,000 260 NA 8 NA
Carryover storage 800 230 NA NA 10

Cubic
Demand 1,000 235 22 8 NA
Carryover storage 800 230 21 NA 10

Power
Demand 1,000 0.7 NA NA NA
Carryover storage 800 0.7 NA NA 10
86 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMEN
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cally increasing and concave~losses convex and monotonically
decreasing!. Draper~2001! recently estimated parameters for qua-
dratic carryover storage economic value functions for several res
ervoir systems in California using nonlinear and grid search tech
niques. Carryover storage value functions were found which
optimized the total economic value of system operations over
73-year period of record. Draper found in all cases that a variet
of parameter sets provided near-optimal carryover storage valu
functions. Under these circumstances, it seems likely that qua
dratic carryover storage value functions are adequate for man
practical purposes.@As seen in Eq.~15!, a quadratic benefit func-
tion and a linear carryover storage value function, wherecs50,
will lead to a SOP-type rule being optimal.# Thus, for many cases
where hedging is desirable, ‘‘two-point’’ hedging rules appear
reasonable. Draper~2001! and Howitt~unpublished! also estimate
carryover storage value functions using stochastic dynamic pro
gramming~SDP! methods. SDP has some advantages in explicitly
providing carryover storage value functions and including dis-
count rates, but requires that hydrologic patterns follow one of a
few probabilistic processes~e.g., Markovian!, that there be good
parameter estimates for these processes, and that the system
be represented with only a few reservoirs. Overall, methods fo
estimating optimal carryover storage value functions are not ye
mature.

Where user benefit functions and optimal carryover storage
value functions are available, optimal hedging rules can be de
rived for water supply operations. Indeed, it may be easier to

Fig. 3. Plots of example benefit functions

Fig. 4. Resulting hedging portions of reservoir release rules
T © ASCE / JANUARY/FEBRUARY 2004
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search for the optimal carryover storage value function, and
derive the optimal hedging rule, than to search directly for
optimal hedging rule.

Where optimization is used directly to identify optimal he
ing rules, often it may be adequate to examine only ‘‘two-po
hedging rules, which have only two parameters. This re
should reduce the difficulty of direct searches for optimal hed
rules.

Of course, these theoretical results also have some limita
Most reservoirs are not operated solely for water supply purp
Flood control, recreation, hydropower, environmental, and o
uses further complicate real operating rule studies. Even w
these benefit function complications are surmountable, estim
of optimal carryover storage value functions can remain chall
ing, particularly for more complex multi-reservoir syste
~Draper 2001!.

Conclusions

This paper demonstrates that the optimal hedging policy for w
supply reservoir operations depends on a balance between b
cial release and carryover storage values. Optimal hedging
cies can be derived for a given pair of beneficial delivery
carryover storage value functions. This provides an analy
view of hedging rules and operations.

Given that quadratic carryover storage value functions ma
a range of reservoir operations settings well~Draper 2001!, it
seems likely that where hedging is desirable, a linear ‘‘two-po
hedging policy may be near optimal for a wide range of circ
stances. Even where a third-order carryover storage functi
optimal, the optimal hedging policy might not deviate gre
from a ‘‘two-point’’ linear policy.
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