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Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging

technique and measures brain activities by means of near-infrared light of 650–950 nm

wavelengths. The cortical hemodynamic response (HR) differs in attributes at different

brain regions and on repetition of trials, even if the experimental paradigm is kept exactly

the same. Therefore, an HR model that can estimate such variations in the response is

the objective of this research. The canonical hemodynamic response function (cHRF) is

modeled by two Gamma functions with six unknown parameters (four of them to model

the shape and other two to scale and baseline respectively). The HRF model is supposed

to be a linear combination of HRF, baseline, and physiological noises (amplitudes and

frequencies of physiological noises are supposed to be unknown). An objective function

is developed as a square of the residuals with constraints on 12 free parameters. The

formulated problem is solved by using an iterative optimization algorithm to estimate

the unknown parameters in the model. Inter-subject variations in HRF and physiological

noises have been estimated for better cortical functional maps. The accuracy of the

algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy

subjects participated in the experiment and their HRF for finger-tapping tasks have been

estimated and analyzed. The statistical significance of the estimated activity strength

parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and

p-value < 0.05).

Keywords: hemodynamic response model, physiological noises, functional near-infrared spectroscopy,

optimization algorithm, brain imaging

Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive and an emerging neuro-imaging
technique (Santosa et al., 2013, 2014). The brain functional information is decoded through the
interpretation of the variation in the optical properties of near-infrared (NIR) light (Naseer et al.,
2014). NIRS monitors regional cerebral blood flow (rCBF) variations through the absorption
changes of the NIR light at wavelengths between 650–950 nm. The oxy-hemoglobin (HbO) and
deoxy-hemoglobin (HbR) are two major chromospheres in the blood which absorb NIR light
(Cope and Delpy, 1988). The concentration of HbO and HbR varies in the capillary blood during
the rest and task sessions (Hu et al., 2013). Thus, brain functional information can be revealed
by the estimation of HbO and HbR. fNIRS, with the ability to estimate both chromospheres, is
a potential brain imaging modality (Kamran and Hong, 2014). Functional-magnetic resonance
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imaging (fMRI) (Cohen et al., 2014; Zhou et al., 2014) and
electro-encephalography (EEG) are most frequently used cortical
imaging modalities in past. In comparison, the huge size of
fMRI and its paramagnetic constraints and low spatial resolution
of EEG (Soekadar et al., 2014) enhance the potential position
of fNIRS with good temporal resolution applicable to brain-
computer interface (BCI) applications (Hu et al., 2010). Its spatial
resolution is affected by the low penetration depth but lies in
between fMRI and EEG (Boudriay et al., 2014). In addition to
these attributes, its portability, safety and low cost features makes
it on top position for rehabilitation and BCI applications (Khan
et al., 2014).

The detection of neuronal activation in a particular cortical
area refers to find out a specific waveform in the hemodynamic
response (HR) (Ciftçi et al., 2008). In hemodynamic related
neuro-imaging modality, likewise fNIRS, the existence of such
waveform is indicated as a statistical comparison to a specific
time series shape, known as canonical hemodynamic response
function (cHRF) (Abdelnour and Huppert, 2009). The cHRF has
a key role in the analysis of fNIRS time series as its shape varies
between different brain regions, repetition of trials, and among
subjects as well (Hong and Nugyen, 2014). The difference in the
dynamic shape of HRF during event-related motor and visual
paradigms revealed that the peak times of HbO, HbR, and total
hemoglobin (HbT) for visual paradigm are approximately equal
unlike for motor paradigm (Jasdzewski et al., 2003). Additionally,
it is found that the wavelength dependent differential path length
factor (DPF) and age can also affect the characteristics of HR
(Duncan et al., 1996). A mismatch between these features could
result as a decrease in the detection performance (Ciftçi et al.,
2008).

The most commonly used model for cHRF is composed of
two gamma functions to characterize the shape and undershoot,
respectively. It has been frequently be implemented in the
analysis of fMRI temporal data. The performance accuracy of
detection is improved by modifying the basis set, incorporating
temporal derivative (TD) and dispersion derivation (DD) along
with blood oxygen level dependent (BOLD) in the design matrix
(Friston et al., 1998). Thus, modeled HR is represented as
a linear combination of three waveforms. The characteristics
of BOLD response are similar to cHRF used in NIRS data
analysis. But fNIRS signal has additional challenge of temporal
correlation present in the optical signal caused by physiological
noises (Hu et al., 2010). The feature values for basis set
were imposed constraints (time-to-peak, number of positive
and negative peaks, time to- and magnitude of undershoot)
to improve the extraction of the specific wave-pattern that
formulate the dynamic shape of cHRF (Ciftçi et al., 2008).
Finally, a general linear model (GLM) framework is being
utilized to tune the unknown parameters in the model using
Bayesian approach (Ciftçi et al., 2008). A new public statistical
toolbox (NIRS-SPM freely available at http://bispl.weebly.com/
nirs-spm.html#/) for the analysis of NIRS data was introduced
in 2009, incorporating GLM based estimation of the cortical
activity (Ye et al., 2009). NIRS-SPM is an extension of statistical
parameter mapping toolbox for fMRI, thus it uses the GLM
approach with basis set (Friston et al., 1998) to map the neuronal
activities on brain templates. A detailed comparison of modeling

techniques for HRF in fMRI regarding assumptions in the
models, the complexity in their design and interpretation shows
that it is difficult to accurately recover true task-evoked changes
(Lindquist et al., 2009). In their study, the gradient approach
has been utilized for the estimation of the free parameters that
define the shapes of different HRF models. The fNIRS time
series is contaminated with physiological noises. Thus, addition
of physiological signals in the design matrix could improve
the detection of task-related HR and its application to BCI
(Abdelnour and Huppert, 2009). The parameters of cHRF were
assumed to be fixed in Abdelnour and Huppert (2009) and
activity strength parameters have been estimated using Kalman
filters. The conventional averaging techniques have been used
most frequently in past but its major drawback is the number
of trials necessary to derive the stable HRF (Scarpa et al., 2010).
Scarpa et al. (2013) proposed the methodology of near/closed
channels to remove the physiological noises with fix parameters
to extract cHRF. Several studies in past have presented the idea of
combining HR model and adaptive signal processing algorithms
to recursively tune the model parameters (Kamran and Hong,
2013; Santosa et al., 2013; Hong and Nugyen, 2014). Thus, an
optimal HR model is still a topic of interest for many researchers
in fNIRS area.

In this paper, an optimal HR model has been proposed
for the analysis of fNIRS time series. The measured HR is
modeled as a linear combination of evoked-HR, the physiological
noises (cardiac pulsation, respiratory beat and low frequency
Mayer waves) and base-line correction. The evoked-HR is the
convolution of cHRF and the experimental paradigm. The cHRF
has been modeled as a linear combination of two gamma
functions (Lindquist et al., 2009). Six parameters in the cHRF
model have been supposed as free parameters (delay of response
relative to onset, delay of undershoot, dispersion of response,
dispersion of undershoot, baseline, and a scaling factor) (Friston
et al., 1994). The selection of optimal parameters in cHRF is
the crucial step due to the variability of HR in different brain
regions, repetition of trials and among subjects as well. In
addition, the variation in the frequency and amplitudes of the
physiological noises is a common phenomenon in the optical
signal (Abdelnour and Huppert, 2009). Thus, these parameters
in physiological noises are also supposed as free. The optimal
parameters whose subsequent results best fit to the measured HR
are found through an iterative optimization process. Initial values
for these free parameters have been used from existing literature
(Friston et al., 1994; Abdelnour and Huppert, 2009). Finally, the
brain-activation model is formulated as an optimization problem
with 12 free parameters. The formulated pre-optimized model
is passed to an iterative simplex method with initial parameter
vector. The simplex algorithm (Spendley et al., 1962) and its
modified version (Nelder and Mead, 1965) has frequently been
used in past for many signal processing and engineering-design
optimization applications (Luersen and Riche, 2004). Fifteen
simulated data sets have been generated with known parameters
to verify the correctness of the proposed algorithm. Simulated
data sets have been generated through method described in
Prince et al. (2003). A low error in the estimation of free
parameters shows great potential of the proposed algorithm in
this field. Ten healthy participants have been examined for motor
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related, typically box-car based rest-task-rest experiment. Finally,
brain functional maps have been shown to localize the cortical
activity.

Materials and Methods

Data Acquisition and Pre-Processing
Three different types of optical neuro-imaging systems are
available commercially, namely, continuous wave (CW),
frequency domain (FD), and time-resolved spectroscopy (Hu
et al., 2012; Schudlo et al., 2013). CW is the least expensive
and most frequently used approach for BCI applications. It
provides the relative change in the concentration of HbO and
HbR. The CW-NIRS imaging system (DYNOT: Dynamic Near-
infrared Optical Tomography; NIRx Medical Technologies,
Brooklyn, NY) was used in this study with two wavelengths of
NIR light (760 and 830 nm). It has 32 optodes which can be
configured as emitters or detectors according to the experimental
requirement with data acquisition frequency of 1.81Hz. The
optodes were placed on the left motor cortex at 16 different
emitter–detector–pair locations. The source–detector separation
was approximately 3 cm. The optode configuration has been
shown in Figure 1A.

The optical density variations measured through NIRS
imaging system is converted into relative concentration changes
of HbO and HbR using modified-Beer Lambert law (MBLL).
According to MBLL, the optical densities at two different
wavelengths can be solved by simple algebra to estimate the
relative concentration changes of HbO andHbRwith assumption
of constant scattering (Power et al., 2011; Kamran and Hong,
2013)
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where 1HbOi(k) and 1HbRi(k) are relative concentration
changes of HbO and HbR, respectively, k is the discrete time,
i represents the ith-channel of emitter-detector pair, λ1 and
λ2 represent 760 and 830 nm wavelengths, ε

λ1

HbO
, ε

λ1

HbR
, ε

λ2

HbO
,

and ε
λ2

HbR
indicates the extinction coefficients (refers to the

measure of absorption of light) of HbO and HbR at two
different wavelengths, respectively, 1ODλj (k) is the optical
density variation at kth-sample time at particular wavelength (j =
1, 2), li is the source-detector separation and DPFλj is the DPF
at particular wavelength (j = 1, 2). The extinction coefficients
corresponding to 760 nm are 1.486 (for HbO) and 3.843 (for
HbR) and those corresponding to 830 nm are 2.231 (for HbO)
and 1.791 (for HbR) (Kamran and Hong, 2014).

Experimental Setup and Paradigm
Ten right-handed healthy subjects (age: 28 ± 7 years)
participated in this study. None of the subject has the neuronal-
disorder history before the experimentation. The written consent

of each participant was collected before experimentation. The
experiment was in accordance with the latest version of the
Declaration of Helsinki. The subjects were completely introduced
about the experiment and instrument before the start of
the experimentation. The subjects were advised to avoid the
head motion as much as possible. The load of NIRS optode
fibers were supported through the hanger available with the
instrument. The experiment includes a typical box-car rest-
task-rest session. The experiment includes an initial rest of
10 s followed by a task session of 10 s and 30 s of a rest at
the end. The subjects were instructed to tap their right index
finger during task. A monitor screen was placed in front of
the subject at a distance of approximately 110 cm. It remained
blank during rest sessions and showed “finger tapping” during
task session. The experimental paradigm has been shown in
Figure 1B.

Simulated Subjects Data
The proposed algorithm is based upon an iterative optimization
algorithm. Thus, it is necessary to verify the algorithm through
simulated data sets with known values of free parameters. The
simulated data is generated and supposed to be combination
of HRF, three physiological signals, baseline term and random
Gaussian noise. Fifteen different simulated data sets were
generated using different values of free parameters. The data
set has been generated with the methods described in existing
literature (Prince et al., 2003; Abdelnour and Huppert, 2009)

HRF(k) = h(k) ∗ u(k), (3)

h(k) =

[

kα1−1βα1
1
e−β1k

Ŵ(α1)
−

kα2−1βα2
2
e−β2k

6Ŵ(α2)

]

(4)

where u is the experimental paradigm, h is the cHRF, α1 is the
delay of the response, α2 is the delay of the undershoot, β1 is the
dispersion of the response, β2 is the dispersion of the undershoot
and Ŵ represents the Gamma distribution. The physiological
signals in simulated data have been generated through the linear
combination of three sinusoids (Abdelnour and Huppert, 2009;
Kamran and Hong, 2014). The specific values of free parameters
used for all 15 data sets have been listed in Table 1.

Linear Brain Model and Parameter Optimization
GLM is a statistical linear model to decompose the output into
predefined regressors. The existence of a particular regressor
of interest depends upon the intensity of the activity strength
parameter (Santosa et al., 2013). The positive value of the activity
strength parameter with increasing t-value shows the significant
existence of the particular regressor in the measured waveform
(Hu et al., 2010). In this study, the measured HbO concentration
change is supposed to be the linear combination of evoked-HRF,
physiological noises and base-line correction

yi
HbO

(k) = ao + a1HRF(k)+ ac sin(2π fck)+ ar sin(2π frk)

+ am sin(2π fmk)+ εi(k), (5)
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FIGURE 1 | Source/detector locations and distribution of channels (A) and experimental paradigm (B).

TABLE 1 | The results of 15 simulated data-sets: the actual values of parameters (A) and estimated ones through the proposed algorithm (E).

Sub. A/E ac fc ar fr am fm α1 α2 ß1 ß2 a0 a1

1 A 1 1 1 0.2 1 0.07 6 16 1 1 14 10

E 1.44 0.81 0.90 0.24 0.72 0.01 6.01 15.97 1.00 0.99 13.99 10.07

2 A 1.1 0.9 1.2 0.3 1.1 0.09 7 15 0.8 0.7 12 8

E 1.59 0.79 1.74 0.007 0.71 0.018 9.23 16.38 0.98 1.5 13.5 4.40

3 A 1.2 0.95 1.3 0.22 1.2 0.08 3 12 0.9 1.1 12 6

E 0.85 1.33 1.75 0.25 1.49 0.009 2.99 11.63 0.90 1.06 12.00 6.14

4 A 0.9 1.1 1 0.24 0.9 0.07 8 7 1 1 9 7

E 1.42 1.22 0.85 0.29 1.73 .009 8.40 15.56 1.02 0.03 7.50 6.99

5 A 0.8 1 1.3 0.25 0.8 0.06 5 11 0.7 1.1 12 5

E 1.05 1.10 1.44 0.22 0.01 0.009 5.34 8.75 0.77 0.99 11.98 5.16

6 A 0.7 0.9 0.9 0.25 0.7 0.05 9 18 0.9 1.3 14 9

E 1.32 1.05 1.12 0.06 0.11 0.01 8.96 18.24 0.89 1.31 14.00 9.034

7 A 0.5 0.95 0.7 0.29 0.6 0.06 3 8 0.6 0.2 12 9

E 0.96 1.3 1.20 0.24 1.68 0.01 2.99 8.23 0.60 0.20 11.99 9.03

8 A 0.4 1.1 0.6 0.3 0.5 0.07 4 18 1 1 8 5

E 0.37 0.74 1.53 0.27 0.60 0.02 4.00 18.18 1.00 1.00 7.99 5.06

9 A 0.2 0.9 1 0.2 0.3 0.08 6 16 0.6 1.2 7 4

E 1.99 1.29 0.23 0.23 1.51 0.01 4.93 6.70 0.57 1.35 6.95 4.50

10 A 1.2 0.9 1.2 0.23 1 0.09 5.5 17 0.8 1.4 11 3

E 0.93 0.91 0.77 0.23 0.78 0.01 5.50 16.98 0.80 1.39 10.99 3.00

11 A 1.2 0.8 1 0.24 1.1 0.02 7 12 1.1 1.2 15 5

E 0.48 1.40 1.18 0.11 1.78 0.01 8.91 7.01 1.53 0.04 12.72 2.05

12 A 1.1 0.85 0.9 0.26 0.8 0.03 4 10 1 0.8 11 7

E 1.59 0.60 1.89 0.27 0.28 0.01 3.99 9.92 1.00 0.78 11.00 6.94

13 A 0.6 1.2 0.8 0.28 0.9 0.07 8 12 1.3 1 9 4

E 1.98 0.88 0.50 0.17 0.89 0.01 7.99 11.63 1.30 0.96 8.99 4.04

14 A 0.4 0.8 0.9 0.20 0.6 0.08 9 12 0.5 0.3 10 3

E 1.81 1.49 0.68 0.02 1.55 0.09 9.99 15.39 0.58 1.02 11.44 2.71

15 A 0.9 0.7 1.1 0.25 1 0.06 7 18 0.7 1.5 12 5

E 1.36 1.05 1.36 0.11 1.09 0.01 6.55 15.44 0.69 0.02 9.95 5.60

where yi
HbO

is the measured HbO time series at ith-channel, ao
is the baseline, a1 is the activity strength parameter, ac, ar , am,
fc, fr , fm are the amplitudes and the frequencies of the cardiac,

respiratory and Mayer wave respectively and εi(k) is the zero
mean Gaussian noise at kth-sample time. Let us define a cost
function J as sum of squares of residuals
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J =
N

∑

k=1

{yi
HbO

(k)− (ao + a1HRF(k)+ ac sin(2πfck)+

ar sin(2πfrk)+ am sin(2πfmk))}2. (6)

The above cost function can be formulated in an optimization
environment with constraints

min J(α1, α2, β1, β2, ao, a1, ac, am, ar, fc, fr, fm) s.t
C1 : 2 ≤ α1 ≤ 10, C7 : 0 ≤ ac ≤ 2,
C2 : 6 ≤ α2 ≤ 20, C8 : 0 ≤ ar ≤ 2,
C3 : 0.5 ≤ β1 ≤ 2, C9 : 0 ≤ am ≤ 2,
C4 : 0 ≤ β2 ≤ 1.5, C10 : 0.5 ≤ fc ≤ 1.5,
C5 : 0 ≤ ao ≤ 20, C11 : 0.2 ≤ fr ≤ 0.3,
C6 : 0 ≤ a1 ≤ 15. C12 : 0.09 ≤ fm ≤ 0.1.

(7)

The optimal values of free parameters
(α∗

1
, α∗

2
, β∗

1
, β∗

2
, a∗

o
, a∗

1
, a∗

c
, a∗

m
, a∗

r
, f ∗

c
, f ∗

r
, f ∗

m
) are estimated

by improved version of simplex method [later named as Nelder–
Mead simplex method (NMSM)]. The iteration of NMSM can
be performed by three steps, namely, ordering, centroid and
transformation. The simplex of size a is defined at initial point
(Haftka et al., 1990)

xj = xo + pej +
n

∑

k = 1
k 6= j

qek; j = 1, 2, . . . , n, (8)

p =
a

n
√
2
(
√
n+ 1+ n− 1) & q =

a

n
√
2
(
√
n+ 1− 1) . (9)

where xj (j = 1, 2, .., n) represent the vertices, xo is the initial
guess, n = 12 in this study and represents the number of free
parameters, ej represents the unit vector in the direction of jth
vertex. The next step is to order the function in increasing order
at all vertices and it is easy to sort as

J(xl) < J(xs) < J(xh). (10)

where xl, xh, and xs, are the vertices with minimum value,
maximum value and second highest value of the cost function,
respectively. The next step is to discard the highest value by
defining the centroid

x̄ =
1

n

n
∑

i = 0
i 6= h

xi, (11)

where x̄ is the centroid. The replacement of upper bound vertex
of the cost function is done by reflection, expansion, contraction,
and shrinkage (Lagarias et al., 1998). Themathematical equations
for all these steps are given below

Reflection : xr = x̄+ δ1(xh − x̄), (12)

Expansion : xe = x̄+ δ2(xr − x̄), (13)

Contraction : xc = x̄+ δ3(xh − x̄), (14)

Shrinkage : xe = x̄+ δ4(xl − xi); i = 0, 1, . . . , n, (15)

where δ1, δ2, δ3, and δ4 are coefficients of reflection, expansion,
contraction, and shrinkage, respectively. The typical values of
these coefficients have been chosen as 1, 2, 0.5, and 0.5,
respectively (Lagarias et al., 1998; Luersen and Riche, 2004). The
schematic of the algorithm is shown in Figure 2. The updated
value at any step of iteration shall be replaced with bounded
value, if it crosses bound at any step. The detail about the
algorithm can be found in Haftka et al. (1990), Lagarias et al.
(1998), and Luersen and Riche (2004).

Functional Brain Maps and Statistical
Significance
The estimation of the cortical activation and its localization is
a challenging task in the analysis of fNIRS data series. Previous
studies showed that localization of the cortical activation could
be statistically estimated by fitting the estimated HRF to a pre-
defined HRF (Hu et al., 2010; Kamran and Hong, 2014; Santosa
et al., 2014). Let the optimal brain activation model is

yi
HbO

(k) = a∗0 + a∗1HRF
∗(k)+ a∗c sin(2π f

∗
c k)+ a∗r sin(2π f

∗
r k)

+ a∗m sin(2π f ∗mk)+ εi(k), (16)

The estimated optimal value of the activity strength parameter,
a1, related to HRF indicates the activation of the particular brain
region with proper statistics (Hu et al., 2010). The basic idea
is to test whether the estimated value of the activity strength
parameter is greater or less than a target value zero with
statistically significance (t-value > tcritical and p-value < 0.05).
Thus, it is equivalent of testing a null hypothesis Ho with proper
statistics i.e.,

Ho : a∗1 = 0 (17)

tvalue =
a∗1 − 0

SE(a∗1)
. (18)

where SE is the standard error of the estimated coefficient.

FIGURE 2 | Schematic of Nelder–Mead simplex method.
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FIGURE 3 | Hemodynamic response function generations: two Gamma functions for generation of cHRF (top left), the standard cHRF (top right) and

different simulated HRF (bottom).

FIGURE 4 | HRF using actual values of free parameter (solid) and HRF using estimated values of free parameter (circular blue).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 June 2015 | Volume 9 | Article 151

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Kamran et al. Optimal hemodynamic response model

Results

In this study an online recursive optimization algorithm is
proposed for cortical activation detection to display discrete
brain maps. The algorithm is verified through 15 synthetic
data sets and implemented to real data sets of 10 healthy
subjects. The cHRF (Figure 3, top right panel) is modeled as two
Gamma functions (Figure 3, top left panel). All the simulated
data sets have been displayed in Figure 3 (bottom panel). It
is obvious to note that different width, height and undershoot
have been considered for verifications. Table 1 summarized the
values of free parameters and their estimate through proposed
algorithm. The comparison of HRF with actual parameter values
and estimated parameter values has been shown in Figure 4.
The results of the estimated-evoked-HR of 10 subjects have
been presented in Figure 5. The significance of results has been

verified using t-test. The t-maps of the cortical activations have
been presented in Figure 6. Figures 7, 8 display a comparison of
the estimated parameters related to most active channel in each
subject of real data set and simulated data set, respectively.

Discussion

The non-invasive neuro-imaging techniques have a favorable
position due to an increasing demand of BCI applications in the
rehabilitation and medical diagnostics. There are several studies
reported for the estimation of HRF in fMRI with numerical
optimization techniques (Lindquist et al., 2009; Shah et al., 2014).
But in the case of fNIRS, it constitutes an additional challenge
of the physiological noise in the optical signal. Recently, several
studies have been reported to analyze fNIRS time series using

FIGURE 5 | Results of estimated HRF related to most active channel corresponding to all subjects.

FIGURE 6 | t-Maps of each subject and all channels.
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existing/new and/or modified versions of existing HRF models
(Abdelnour and Huppert, 2009; Hu et al., 2010; Kamran and
Hong, 2013, 2014; Santosa et al., 2013; Scarpa et al., 2013; Hong
andNugyen, 2014). The approaches vary in their implementation
from simple estimation algorithms to more complex adaptive
algorithms (Kamran andHong, 2013) and blind signal processing
(Santosa et al., 2013).

Hu et al. (2010) decomposed measured HRF into predefined
regressors (evoked-HRF, base line correction and three
others were included to design a set of high pass filter).
Santosa et al. (2013) implemented the independent component

analysis (ICA) framework to extract the statistically significance
of a known wave pattern in the observed fNIRS data. Kamran
and Hong (2013) explored the idea of adaptive signal processing
to tune the variations in the measured HRF using parameter
varying methodology. Later Kamran and Hong (2014) proposed
to decompose HbO signal using ARMAX model for better
cortical estimation as compared to existing ones. Abdelnour
and Huppert (2009) proposed the adaptive framework to tune
the HR with pre-built HRF in the model. Scarpa et al. (2013)
emphases to remove the physiological noises by incorporating a
near-detector (<0.7 cm from source) and to model the remaining

FIGURE 7 | Variations in the estimated parameters in real data sets.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 June 2015 | Volume 9 | Article 151

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Kamran et al. Optimal hemodynamic response model

signal as linear combination of pre-set evoked-HR and base line
in Bayesian framework for adaptive tuning.

The DPF is a wavelength dependent factor and also varies
with age of the subject causing variations in the hemodynamic
signal (Duncan et al., 1996). Jasdzewski et al. (2003) reported that
difference found in the characteristics of HRF in multiple brain
regions. Their results suggest that the characteristics of HRF in
different brain regions show variations. It is also observed in their
study that some of the features like initial dip could be found
in certain brain regions but not all. Hong and Nugyen (2014)
developed a state-space model for different brain regions using
adaptive signal processing framework. Their results revealed that
there exist a significant difference between responses of different
brain regions. It is a well-known fact that the hemodynamic
signal has inter-subject variability as well as inter-trial variations.
Hu et al. (2013) analyzed the reduction of trial-to-trial variations

by analyzing correlation in the observed signal of different
channels.

Thus existing literature suggest that the HR varies in its
shape and characteristics not only in different brain areas, but
it differs corresponding to the different mental task complexity,
repetition, inter-subject and inter-trials as well. Some fNIRS-
based BCI studies suggest that learning can improve the response,
that is, less effort is required to repeat the same mental task.
Thus, it is very important to model the HR in an adaptive
framework together with a setup in which the parameters of HRF
could be optimized as per real-time information in the measured
response. Therefore, a recursive optimization algorithm have
been presented in this study to model the variations in the HR.
In contrast to existing fNIRS data analysis models, the proposed
model has the capability to track time-varying characteristics (if
exist) of HRF within same experiment as well. The estimation of

FIGURE 8 | Variations in the estimated parameters in simulated data sets.

TABLE 2 | The values of free parameter estimated through proposed algorithm in most active channel of each subject.

Sub. ac fc ar fr am fm α1 α2 β1 β2 a0 a1

1 0.00189 0.80311 0.15 0.28625 1.02993 0.08562 5.00065 10.5287 1.38593 0.15405 0.00011 8.02E-5

2 1.39E-10 0.92423 0.15 0.29274 0.44333 0.08792 6.35815 13.3583 1.19083 0.49997 5.41E-12 5.23E-5

3 7.57E-10 0.82143 0.15 0.29286 0.66165 0.08904 5.95863 12.8180 1.00771 0.31555 2.78E-13 2.69E-05

4 0.000866 0.803147 0.15 0.286365 0.775247 0.085313 5.497915 13.69872 1.044254 0.140721 6.68E-12 2.38E-05

5 0.0018793 0.815845 0.15 0.28643 0.72472 0.087949 5.020148 13.44807 1.051638 0.146827 6.34E-05 3.87E-05

6 0.0018195 0.790466 0.15 0.286283 0.773555 0.085377 5.63 13.39223 1.054951 0.172463 1.29E-05 3.71E-05

7 0.0006532 0.778724 0.15 0.286524 1.900005 0.08407 4.811197 8.741103 0.521305 0.02237 0.00014 1.43E-05

8 0.0020988 0.816158 0.15 0.286284 0.560308 0.085565 4.190606 16.95479 1.050989 0.694504 0.000153 1.85E-05

9 0.0017808 0.815718 0.15 0.286434 1.245347 0.085161 8.609862 9.202103 0.910313 0.273311 0.000123 1.5E-05

10 0.001092 0.803117 0.15 0.286282 0.71349 0.086521 5.750496 14.08988 1.127646 0.245757 5.33E-05 1.21E-05
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pre-defined parameters of simulated data is shown in Table 1. It
is obvious to observe that the proposed model estimated these
parameters with a significant accuracy. After the validation of the
algorithm using simulated data set, the methodology is applied to
real data set of 10 subjects. The optimized values of HRF model
parameters for 10 subjects have been listed inTable 2. The t-maps
of each subject and all channels have been presented in Figure 6.
It is evident from Figures 5, 6 that inter-subject difference exist in
HRF parameters. Generally, inter-subject variability is due to the
individual’s differences in anatomical factors likewise skull and
cerebrospinal fluid (CSF) structure, vessels distributions and the
ratios of the arteries and veins. Thus, some of the subjects have
more activation as compared to others.

Conclusion

An optimal HR model has been proposed that can extract the
shape and scale of the HRF in addition to the amplitudes and the

frequencies of the physiological sinusoids. Twelve parameters in
the HRmodel have been supposed free with bounded constraints.
The problem is formulated as an optimization problem and
solved through an iterative optimization framework. The
algorithm is first verified through different simulated data
sets with known values of free parameters. A low error in
estimation shows the accuracy of the proposed methodology.
Furthermore, the algorithm is implemented to real data sets
of 10 healthy participants. The parameters in HRF while
repeating same trials are found to be different. Thus, it shall be
beneficial for fNIRS data analysis, as the proposed model can
track the characteristics of changes in HRF and physiological
noises.
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