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A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design
them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to con	rm
the theoretical results and to compare the new methods with other known ones.

1. Introduction

�e rapid advances in the development of digital computer
have established the need to design newmethods with higher
computational e
ciency for solving problems of practical
relevance for applied mathematics, engineering, biology, and
so forth. A variety of problems in di�erent 	elds of science
and technology require 	nding the solution of a nonlinear
equation. Iterative methods for approximating solutions are
the most used technique. �e interest in the multipoint
iterative methods has been renewed in the 	rst decade of the
21st century as they are of great practical importance because
they exceed the theoretical limits of the methods of a point
on the order of convergence and computational e
ciency.

�roughout this paper we consider multipoint iterative
methods to 	nd a simple root � of a nonlinear equation�(�) = 0, where � : � ⊂ R → R, restricted to real
functions with a unique solution inside an open interval �.
Many modi	ed schemes of Newton’s method, probably the
most widely used iterative method, have been proposed to
improve the local order of convergence and the e
ciency
index over the last years. �e e
ciency index, introduced by

Ostrowski in [1] as � = �1/�, where � is the order of conver-
gence and 	 the number of functional evaluations per step,
establishes the e�ectiveness of the iterative method. In this
sense, Kung and Traub conjectured in [2] that a multipoint
iterative scheme without memory, requiring 	 + 1 functional
evaluations per iteration, has order of convergence at most

2�. �e schemes which achieve this bound are called optimal
methods.

A common way to increase the convergence order in
multipointmethods is to useweight functions that are applied
to construct families of iterative methods for nonlinear
equations. See, for example, the text by Petković et al. [3]
and the references therein. �e main goal and motivation
in the construction of new methods is to attain as high as
possible computational e
ciency. Optimal methods of order
four were discussed, for example, in [4, 5]. Many optimal
methods of order eight have been suggested and compared
in the literature; see, for instance, the recent results obtained
by Kim in [6], Khan et al. in [7], Džunić and Petković in [8],
and Soleymani et al. in [9]. Recently, by usingweight function
method some sixteenth-order iterative schemes have been
also published as [10, 11].

�e outline of the paper is as follows. In Section 2 the
families of optimal sixteenth-order methods are constructed
and the convergence analysis is discussed. In Section 3
numerical experiments are performed and the proposed
methods of order sixteen are compared with the mentioned
sixteenth-order schemes on academic test functions. Finally,
in Section 4, the problem of preliminary orbit determination
of arti	cial satellites is studied by using the classical 	xed
point method and numerical experiments on the modi	ed
Gaussian preliminary orbit determination are performed and
the proposed methods are compared with recent optimal
known schemes.
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2. Description of the Family of
Optimal Multipoint Methods

Our starting point is Traub’s scheme (see [12], also known as
Potra-Pták’s method) whose iterative expression is

��+1 = 
� − � (
�)�� (��) = �� −
� (��) + � (
�)�� (��) , (1)

where 
� is Newton’s step. �is method has order three but
it requires three functional evaluations, so it is not optimal
according to Kung-Traub conjecture and our purpose is to
design optimal methods.

So, we begin the process from the iterative scheme (see
[13])


� = �� − 
 � (��)�� (��) ,

��+1 = 
� − � (� (��)) � (
�)�� (��) ,
(2)

where 
 is a real parameter and �(�) is a real function with� = �(
)/�(�).
�e method de	ned by (2) has order four if 
 = 1 and

a function � is chosen so that the conditions �(0) = 1,��(0) = 2, and |���(0)| < ∞ are ful	lled. Some known
iterative schemes are obtained as particular cases of this

family. Choosing �(�) = 1/(1 − �)2, we obtain the fourth-
order method described by Kung and Traub in [2]. King’s
family [14] of fourth-order methods is obtained when we
choose �(�) = (1 + 
�)/(1 + (
 − 2)�). Also, if we take�(�) = (1 + 2� + 
�2)/(1 + (
 − 5)�2), we obtain the family
of fourth-order methods de	ned by Zhao et al. in [15].

Recently, taking (2) with 
 = 1 as the 	rst two steps and
adding a new step, Džunić et al. in [16] designed the following
three-step method:

�� = 
� − � (� (��)) � (
�)�� (��) ,

��+1 = �� − � (� (��) , V (��)) � (��)�� (��) ,
(3)

where 
� is Newton’s step and �(�, V) is a function of two
variables: � = �(
)/�(�) and V = �(�)/�(
).

�ey proved in [16] that the method de	ned by (3) has
optimal eighth-order of convergence, if su
ciently di�eren-
tiable functions� and � are chosen so that the conditions

�(0) = 1, �� (0) = 2, � (0, 0) = 1,
�� (0, 0) = 2, �

V
(0, 0) = 1,

��� (0, 0) = 2 + ��� (0) , ��V (0, 0) = 4,
(4)

and ����(0, 0) = −24 + 6���(0) + ����(0) are satis	ed. �e
iterative method resulting from introducing these conditions
and the simplest form for � and �, obtained by using the

Taylor polynomial of the functions: �(�) = 1 + 2� and�(�, V) = 1 + 2� + V + �2 + 4�V − 4�3, is denoted by�8.
Now, we wonder if it is possible to 	nd a sixteenth-order

iterative method by adding a new step with the same settings
accompanied with a weight function � that depends on three
variables �, V, and � = �(�)/�(�), where � is the last step of
the eighth-order method (3). �e iterative expression of the
new scheme is

�� = �� − � (� (��) , V (��)) � (��)�� (��) ,

��+1 = �� − � (� (��) , V (��) , � (��)) � (��)�� (��) ,
(5)

where 
� and �� are the same steps as in method (3). �e
following result can be proved that establishes the sixteenth-
order of family (5).

�eorem 1. Let � ∈ � be a simple zero of a su�ciently
di�erentiable function � : � ⊂ R → R in an open interval� and �0 an initial guest close to �. 	e method de
ned by (5)
has optimal sixteenth-order convergence if su�ciently di�eren-
tiable functions�, �, and � are chosen so that the conditions
on method (3) (proved in [16]) and the following requirements
are satis
ed:

��� (0) = 0, �(3) = 24,
�(4) (0) = −72, ��� (0, 0) = 2,
���� (0, 0) = 0, ����V (0, 0) = 24,
���VV (0, 0) = −16, ���V (0, 0) = 6,
����� (0, 0) = 0, � (0, 0, 0) = 1,
�� (0, 0, 0) = 2, �

V
(0, 0, 0) = 1,

�� (0, 0, 0) = 1, ��� (0, 0, 0) = 2,
��V (0, 0, 0) = 4, �

VV
(0, 0, 0) = �

VV
(0, 0) ,

�
V� (0, 0, 0) = 2, ���V (0, 0, 0) = 8,

���� (0, 0, 0) = 0, ��VV (0, 0, 0) = 4 + ��VV (0, 0) ,
��V� (0, 0, 0) = 8, ��� (0, 0, 0) = 2,

���� (0, 0, 0) = 2,

(6)

��VV(0, 0) = 8 − (1/3)(��VVV(0, 0) + 6�VV
(0, 0)), and �

VVV
(0,0, 0) = −6 + 3�

VV
(0, 0) + �

VVV
(0, 0). 	e error equation of the

method is

��+1 = − 148�2 (5�22 − �3) (�1 − 2�2�4)
× (�2 + 6�3�5) �16� + O (�17� ) ,

(7)
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where

�1 = 5�1�42 + 2�2�22 �3 +�3�23 − 2�2�4,
�2 = 25�1�82 − 20�2�62 �3�3�43 + 60�4�52 �4

+ 24�5�32 �3�4 + 12�6�2�23 �4
+ 6�42 (�7�23 + 20�5) − 4�22 (�8�33 + 3�9) �24
+ 6�3�5,

(8)

�� = (1/�!)(�(�)(�)/��(�)), � = 2, 3, . . ., �� = �� − �, and��, ��, � = 1, 2, . . . , 8 depend on the partial derivatives of order
one, two, and three of the weight functions � and � at zero.

Proof. �e proof is based on Taylor’s expansion of the ele-
ments appearing in the iterative expression (5). We only
show the necessary elements of the expressions in order
to determine the conditions needed to attain the order of
convergence. �e Taylor expansion of the weight functions
used is developed around zero but, for the sake of simplicity,
we will omit the zero in the Taylor expansion of�, �, and �.

By using Taylor’s expansion about �, we have �(��) =��(�)∑16�=1 ����� +O(�17� ), where �1 = 1 and ��(��) = ��(�)(1 +∑15�=2 "����−1� ) + O(�16� ). By substituting the expression in the

	rst step of (5), we obtain 
� − � = ∑16�=2 #���� +O(�16� ), where#2 = �2, #3 = 2(�3 − 2�22 ), and #4 = 4�32 − 7c2�3 +3�4. Using again Taylor’s expansion, we obtain �(
�) and
we calculated �(��) = �(��)/��(��) and �(�(��)) ≈ 1 +
2�(��) + (1/2)���(0)�(��)2 + (1/6)�(3)(0)�(��)3 + (1/24)�(4)(0)�(��)4, wherewedemand conditions�(0) = 1 and��(0) = 2. �is allows us to obtain the error equation

(fourth-order) for the second step ��: �� − � = ∑16�=4 %���� +
O(�16� ), where %4 = (5 − ���(0)/2)�32 − �2�3. We use again
Taylor’s expansion about � for obtaining �(��), calcu-
late V(��), �(�(��), V(��)), introduce the known conditions
([16]): �(0, 0) = 1, ��(0, 0) = 2, �V

(0, 0) = 1, ���(0, 0) = 2 +���(0),��V(0, 0) = 4 and����(0, 0) = −24+6���(0)+�(3)(0),
and obtain Taylor’s series of ��:

�� − � =
16∑
�=8
'���� + O (�17k ) , (9)

where

'8 = − 148�8,1 (�8,2�42 + �8,2�22 �3 + �8,4�23 + 24�2�4) ,
�8,1 = ��32 + 2�2�3,

�8,2 = 1080 − ����� (0, 0) − 300�VV
(0, 0) + 6����V (0, 0)

× [−108 + 3�
VV
(0, 0) (20 − ��� (0))��� (0)]

+ 8�(3) (0) + �(4) (0) ,

�8,3 = −12 (38 − ���V (0, 0) + ��VV
(0, 0) − ��� (0)) ,

�8,4 = 12 (2 − �VV
(0, 0)) ,

(10)

and � = ���(0)−10. So, using again Taylor’s expansion about�, we obtain�(��) anduse it to get Taylor’s expression of�(��)
and �(�(��), V(��), �(��)). Finally, we obtain the error equa-

tion of the proposed iterative scheme (5): ��+1 = ∑16�=8����� +
O(�17� ), where �8 = [1 − �(0, 0, 0)]'8. If �(0, 0, 0) = 1, then�8 = 0 and ��+1 = ∑16�=9�1,���� + O(�17� ), where �1,9 =[2 − ��(0, 0, 0)]'8. Taking ��(0, 0, 0) = 2, we obtain ��+1 =∑16�=10�2,���� +O(�17� ), where�2,10 = (1/2)[(12+��V(0, 0, 0)−���(0, 0, 0))�22+2(���(0, 0, 0)−1)�3]'8. If wemake�

V
(0, 0, 0) =

1 and ���(0, 0, 0) = 2 + ���(0), we ensure order of
convergence is at least eleven. �e error equation in this case

takes the following form: ��+1 = ∑16�=11�3,���� + O(�17� ) and�3,11 = −(1/6)�2[(96+�(3)(0)−����(0, 0, 0) + 3���(0)(��V(0,0, 0) − 2) − 30��V(0, 0, 0))�22 + 6(��V(0, 0, 0) − 4)�3]'8. Taking��V(0, 0, 0) = 4 and�(3)(0) = 24 − 6���(0) + ����(0, 0, 0), we
obtain the new expression

��+1 =
16∑
�=12
�4,���� + O (�17� ) , (11)

where

�4,12 = ; [;12,2�42 + ;12,3�22 �3
+;12,4�23 − (�� (0, 0, 0) − 1) �2�4] ,

; = 1
1152 (��32 + 2�3) [;12,1 − 24�2�4] ,;12,2

= 1392 + �(4) (0) − 60���V (0, 0, 0) + 8���� (0, 0, 0)
+ 30�

VV
(0, 0, 0) − (1272 − 60���V (0, 0)

− ����� (0, 0) − 300�VV
(0, 0)

− �(4) (0) + 8���� (0, 0, 0)) �� (0, 0, 0)
− 6��� (0) [28 − ���V (0, 0, 0) − 10�VV (0, 0, 0)

− (26 − ���V (0, 0) − 10�VV
(0, 0)) �� (0, 0, 0)]

− 3���(0)2 (�
VV
(0, 0, 0) − �

VV
(0, 0) �� (0, 0, 0)) ,

;12,3 = − 12
× [40 − ���V (0, 0, 0) − 10�VV (0, 0, 0)
− (38 − ���V (0, 0) − 10�VV

(0, 0)) �� (0, 0, 0)]
+ 12��� (0) (1 − �

VV
(0, 0, 0) − �� (0, 0, 0)

+�
VV
(0, 0) �� (0, 0, 0)) ,

;12,4 = 12 [2 − �VV (0, 0, 0) + (�VV
(0, 0) − 2) �� (0, 0, 0)] .

(12)

If ;12,2 = ;12,3 = ;12,4 = 0 and ��(0, 0, 0) − 1 = 0, the
order of convergence is at least thirteen.�e solution of these
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four equations determine that �u�V(0, 0, 0) = 2 + ���V(0, 0),�
VV
(0, 0, 0) = �

VV
(0, 0), and ��(0, 0, 0) = 1 and the error

equation is

��+1 =
16∑
�=13
�5,���� + O (�17� ) , (13)

where

�5,13 = ;�2 [;13,1�42 + ;13,2�22 �3 + ;13,3�23
−24 (��� (0, 0, 0) − 2) �2�4] ,

;13,1 = 3254 − 2�����V (0, 0) − 384��� (0)
+ 2�(4) (0) − 6����V (0, 0) (��� (0, 0, 0) − 2)
+ 16���� (0, 0, 0)
+ 3 (100 − 20��� (0) + ���(0)2)��VV (0, 0)
− 6 (100 − 20��� (0) + ���(0)3)�

VV
(0, 0)

− (1278 + 300�
VV
(0, 0) + 156��� (0)

−60�
VV
(0, 0)��� (0) − 8���� (0, 0, 0))

× ��� (0, 0, 0)
+ (36�

VV
(0, 0)��� (0) − �(4) (0)) ��� (0, 0, 0) ,

;13,2 = 4 [����V (0, 0)
+ 3 (���V (0, 0) + ��VV

(0, 0)) (��� (0, 0, 0) − 2)
+ 3 (108 − ���VV (0, 0) − 4���� (0)
− (38 − ��� (0)) ��V (0, 0, 0)) ] ,

;13,3 = 12 [8 + ��VV (0, 0) + �VV
(0, 0)

× (��� (0, 0, 0) − 2) − 2��� (0, 0, 0)] .
(14)

For obtaining order of convergence of at least fourteen it is
necessary that ;13,1 = ;13,2 = ;13,3 = 0 and���(0, 0, 0)−2 = 0.
�is gives us the conditions: ��V(0, 0, 0) = 2, ��VV(0, 0) = −4,
and ����V(0, 0) = −6(���(0) − 4) and the error equation is

��+1 =
16∑
�=14
�6,���� + O (�17� ) , (15)

where

�6,13 = ; [;14,1�62 − 2;14,2�42 �3 − 12;14,3�22 �23
+ 8;14,4�33 − 24;14,5�32 �4
−48 (�

V� (0, 0, 0) − 2) �2�3�4] .
(16)

If �
V�(0, 0, 0) = 2,

;14,1 = 2976 − 2400�VV
(0, 0)

− 100�
V� (0, 0) − 3�2���VV (0, 0)

− (2112 − 1080�
VV
(0, 0) − 300�

VVV
(0, 0))��� (0)

+ (216 − 144�
VV
(0, 0) − 30�

VVV
(0, 0))���(0)2

+ (6�
VV
(0, 0) + �

VVV
(0, 0))���(0)3 + 8�(4) (0)

− ��� (0)�(4) (0) − 6����V (0, 0)
× (8 − 2��� (0) + ���� (0, 0, 0))
+ (1272 − 300�

VV
(0, 0) − 156��� (0)

+ 60�
VV
(0, 0)��� (0)

−3�
VV
(0, 0)���(0)2 + �(4) (0)) ���� (0, 0, 0)

− 8 (2 + ��� (0) − ���� (0, 0, 0)) ���� (0, 0, 0)
+ (1000 − 300��� (0) + 3���(0)2 − ���(0)3)
× �

VV
(0, 0, 0) ,

;14,2 = 10176 − 780�VV
(0, 0)

− 300�
VVV
(0, 0) − 6����VV (0, 0)

− (144 − 228�
VV
(0, 0) + 60�

VVV
(0, 0))��� (0)

+ (12 − 15�
VV
(0, 0) − 3�

VVV
(0, 0))���(0)2

+ �(4) (0) − 6���V (0, 0)
× (18 − 3��� (0) + ���� (0, 0, 0))
+ 6 (38 + ��

VV
(0, 0) − ��� (0)) ���� (0, 0, 0)

+ 3 (100 − 20��� (0) + ���(0)2) �
VVV
(0, 0, 0) ,

;14,3 = − 52 + 2���V (0, 0) + ���VV (0, 0)
+ 6��� (0) + 4�

VV
(0, 0) (7 − ��� (0))

− ��
VVV
(0, 0) + ��

VVV
(0, 0, 0)

+ ���� (0, 0, 0) (�VV
(0, 0) − 2) ,

;14,4 = 6 − 3�VV
(0, 0) − �

VVV
(0, 0) + �

VVV
(0, 0, 0) ,

;14,5 = 2 + ��� (0) − ���� (0, 0, 0) .
(17)

Now, if we demand ;14,1 = ;14,2 = ;14,3 = ;14,4 = ;14,5 = 0,
the order of convergence is at least 	�een, and the necessary
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conditions are ����(0, 0, 0) = 2 + ���(0), �
VVV
(0, 0, 0) =6 − 3�

VV
(0, 0) + �

VVV
(0, 0, 0), ���VV(0, 0) = −2(2 + ���V(0, 0) −���(0)),�(4)(0) = 12(���(0) − 6). Taking into account these

conditions, the error equation is

��+1 = �7,15�15� + �7,16�16� + O (�17� ) , (18)

where �7,15 = −(1/6);�2[(;15,2�62 − ;15,3�42 �3 + ;15,4�22 �23 +24;15,5�33 − ;15,6�32 �4 − 144(��V�(0, 0, 0) − 8)�2�3�4]. By taking��V�(0, 0, 0) = 8 and simplifying the error equation, we
obtain

��+1 = − 1
6912�22 (��22 + 2�3)

× [;15,7 − 24�2�4] [;15,8 − 24���� (0, 0, 0) �32 �4]
× �15� + �8,16�16� + O (�17� )

(19)

and ����(0, 0, 0) = 0; we have

��+1 = − 1
768�22 (��22 + 2�3)

2

× [;15,9 − 8�2�4] [;15,10�42 + 4;15,11�22 �3 + 4;15,12�23 ]
+ �8,16�16� + O (�17� ) .

(20)

By solving the system

;15,10 = −12����V (0, 0) + �2��VVV (0, 0)
+ 6 [�2�

VV
(0, 0) − 4 (180 − 3��� (0) + ���(0)2)

= 0,
;15,11 = 396 − 6���V (0, 0)

− 10��VVV (0, 0) − 60�VV
(0, 0)

− (30 − ��VVV (0, 0) − 6�VV
(0, 0))��� (0) = 0,

;15,12 = ��VV (0, 0) + 6 (�VV
(0, 0) − 6) = 0,

(21)

we obtain ��VVV(0, 0) = −6(−6 + �VV
(0, 0)),���(0, 0) = 0, and���V(0, 0) = 6. Finally, the error equation is

��+1 = 1
48�2 (5�22 − �3) [�1 − 2�2B3] [�2 + 6B3�5] �16�
+ O (�17� ) .

(22)

�is 	nishes the proof.

A particular element of family (5), denoted by M16, is
obtained by choosing the weight functions:

�(�) = 1 + 2� + 4�3 − 3�4,
� (�, V) = 1 + 2� + V + �2 + 4�V

+ 3�2V + 4�V2 + 4�3V − 4�2V2,
� (�, V, �) = 1 + 2� + V + � + �2 + 4�V

+ 2�� + 4�2V + �2� + 6�V2
+ 8�V� − V3 + 2V�,

(23)

which we will use in the following sections.

3. Numerical Tests for
Sixteenth-Order Methods

�e proposed iterative scheme with order of convergence
sixteen M16 is employed to estimate the simple solution of
someparticular nonlinear equations. It will be comparedwith
some known methods existing in the literature. In particular,
the iterative scheme of the sixteenth-order scheme designed
by�ukral in [10] is

�� = 
� − � [��, ��]� [��, 
�]
� (
�)� [��, 
�] ,

C� = �� − 1
(1 + 2�3�24) (1 − �2)

× � (��)� [
�, ��] − � [��, 
�] + � [��, ��] ,

��+1 = C� − �� (C�) � [
�, ��]� [
�, C�] � [��, C�] ,

(24)

where 
� is Ste�ensen’s step, �� = �� + �(��), �1 = �(��)/�(��), �2 = �(��)/�(��), �3 = �(
�)/�(��), �4 = �(
�)/�(��), �5 = �(C�)/�(��), �6 = �(C�)/�(��), and � = 1 +�1�2 − �1�3�24 + �5 + �6 + �21�4 + �22�3 + 3�1�24((�23 −�24)/�[��, 
�]). We will denote this scheme by T16.
We will also use the sixteenth-order procedure designed

by Sharma et al. in [11] that will be denoted by S16, whose
iterative expression is

�� = �� − � (��)� (��) − 2� (��)
� (��)�� (��) ,

D� = �� − � (��) (� + E + F)�� [��, ��] + E�� (��) + F� [��, ��] ,

��+1 = �� − �1� [��, ��] + E1� [��, ��] + F� [D�, ��]�1G + E1H + F;
× � (��) ,

(25)
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where �� is Newton’s step and

� = (�� − ��) � (��) � (��) ,
E = (�� − ��) � (��) � (��) ,
F = (�� − ��) � (��) � (��) ,
�1 = (�� − D�) � (��) � (D�) ,
E1 = (D� − ��) � (D�) � (��) ,

G = � (��) � [��, ��] − � (��) � [��, ��]�� − �� ,

H = � (��) �� (��) − � (��) � [��, ��]�� − �� ,

; = � (��) � [��, D�] − � (D�) � [��, ��]� − D .

(26)

�e numerical behavior will be analyzed by means of
the test functions and the corresponding simple roots listed
below:

(a) �1(�) = log�2 + 1 + exp(�) sin(�), � = 0,
(b) �2(�) = 1 + exp(�3 − �) − cos(1 − �2) + �3, � = −1,
(c) �3(�) = (� − 2)(�10 + � + 1) exp(−� − 1), � = 2.
All the computations have been carried out by using

variable precision arithmetics with 4000 digits of mantissa.
�e exact solution of the nonlinear equations is known, so
the exact absolute error of the 	rst three iterations of each
procedure is listed in Table 1, joint with the computational
order of convergence BIB (see [17]), for di�erent initial
estimations �0.

From results shown in Table 2, it can be deduced that
the proposed scheme is, at least, as competitive as recently
published methods of the same order of convergence, being
better in some cases.

4. Preliminary Orbit Determination

A classical reference in preliminary orbit determination is F.
Gauss (1777–1855), who deduced the orbit of theminor planet
Ceres, discovered in 1801 and a�erwards lost. �e so-called
Gauss’ method is based on the rate 
 between the triangle
and the ellipse sector de	ned by two position vectors from
astronomical observations. �is proportion is related to the
geometry of the orbit and the observed position by


 = 1 + J (G + �) , (27)

where G = (F1 + F2)/4√F1F2 cos((]2 − ]1)/2) − (1/2), � =
sin2((L2−L1)/4), andJ = (L2−L1− sin(L2−L1))/sin3((L2−L1)/2). �e angles L�, ]�, � = 1, 2, are the eccentric and
true anomalies, respectively, associated with the observed

positions M→F1 and M→F2 (let us denote by F� the modulus of vectorM→F� , � = 1, 2).

Equation (27) is, actually, the composition of the First and
Second Gauss Equation


2 = H
G + � , 
2 (
 − 1) = HJ, (28)

where H = NO2/[2√F1F2 cos((]2 − ]1)/2)]3, N is the gravi-
tational parameter of the motion, and O is a modi	ed time
variable.

�e original iterative procedure used to solve the nonlin-
ear Gauss equation (27) is the 	xed point method (see, e.g.,
[18]) and is described in the following scheme.

(i) From the initial estimation 
0 = 1, �0 = H/
20 − G is
obtained (it is possible to calculate H and G from the

observed positions M→F1 and M→F2 and the time O.
(ii) From �0 and cos((L2 − L1)/2) = 1 − 2�0, sin((L2 −L1)/2) = +√4�0(1 − �0), we calculate L2 − L1. �en,

we obtain J0 = (L2 − L1 − sin(L2 − L1))/sin3((L2 −L1)/2).
(iii) By using the combined Gauss equation (27), a new

iteration 
1 is calculated and the process starts again.

�e iterative process follows as described above, getting
new estimations of the ratio, until it does not vary within a
given tolerance. Once the method has converged, the semi-
major axis C can be calculated by means of equation


 = √N� ⋅ O
F2F1 sin (]2 − ]1)

= √N ⋅ O
2√C√F2F1 sin ((L2 − L1) /2) cos ((]2 − ]1) /2) ,

(29)

from the last estimations of ratio and di�erence of eccentric
anomalies, and the last phase is then initiated, to determine
velocity and orbital elements.

Let us note that the original Gauss’ scheme has a restric-
tion when the angle formed by the two position vectors is
greater than R/4, since in this case the areas of the triangle
and the ellipse sector are not similar.

Now, we are going to compare schemes M8 and M16
with other known ones of orders 8 and 16, respectively. In
particular, we analyze the behavior of thesemethods to obtain
the preliminary orbit of an arti	cial satellite.

All the iterative schemes introduced in the following are
optimal in the sense of Kung-Traub’s conjecture and have
been designed with the weight function technique, so they
are fully comparablewith the newones designed in this paper.
Let us refer now to the procedure that Kim presents in [6]: a
three-step eighth-ordermethod, whose iterative expression is

�� = 
� − 1 + �� + 2/3�
2
�1 − �� − 2�2�
� (
�)�� (��) ,

��+1 = �� − 1 − 2�� + V�1 − 3�� − 2V�
× � (��)�� (��) + � [
�, ��, ��] (�� − ��) ,

(30)
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Table 1: Comparison of sixteenth-order schemes.

Test functions �0 T16 S16 M16

�1(�) 0.3

|�1 − �| 2.079� − 5 5.991� − 8 5.987� − 5
|�2 − �| 5.195� − 67 3.791� − 112 3.613� − 58
|�3 − �| 1.202� − 1052 1.74� − 1779 1.125� − 909
COC 16.0 16.0 16.0

�1(�) 1

|�1 − �| 0.05729 7.143� − 4 1.549� − 2
|�2 − �| 7.02� − 14 6.056� − 47 4.122� − 20
|�3 − �| 1.483� − 202 4.408� − 736 9.269� − 301
COC 16.0 16.0 16.0

�2(�) −2
|�1 − �| 0.1511 6.887� − 3 7.588� − 5
|�2 − �| 4.801 2.374� − 38 5.508� − 65
|�3 − �| 0.8086 1.299� − 605 3.5019� − 1023
COC — 16.0 16.0

�2(�) −3
|�1 − �| 0.1002 0.3238 8.93� − 3
|�2 − �| 1.153� − 5 3.062� − 8 8.602� − 32
|�3 − �| 6.83� − 75 7.209� − 224 7.042� − 496
COC 16.0 16.0 15.99

�3(�) 2.1

|�1 − �| 2.365� − 5 4.299� − 11 3.28� − 6
|�2 − �| 2.087� − 51 1.015� − 159 4.371� − 74
|�3 − �| 2.859� − 788 9.445� − 2538 4.319� − 1160
COC 16.0 16.0 16.0

Table 2: Comparison of modi	ed-Gauss schemes for Orbit I.

|(�1 − �0)| |S(�1)| |(�2 − �1)| |S(�2)| |(�3 − �2)| |S(�3)| ACOC

FP 0.6450� − 2 — 0.8288� − 4 — 0.1055� − 5 — 1.002

K8 0.6368� − 2 0.2059� − 21 0.2033� − 21 0.6553� − 158 0.647� − 158 0.2164� − 1113 7.001

S8 0.6368� − 2 0.1377� − 23 0.1359� − 23 0.5565� − 197 0.5495� − 197 0.3967� − 1584 8.001

M8 0.6368� − 2 0.1382� − 23 0.1365� − 23 0.5791� − 197 0.5718� − 197 0.5488� − 1584 8.000

T16 0.6368� − 2 0.2662� − 63 0.2628� − 63 0.1642� − 1045 NaN NaN —

S16 0.6368� − 2 0.7454� − 48 0.7361� − 48 0.6647� − 783 0.6563� − 783 0.0 16.000

M16 0.6368� − 2 0.6998� − 47 0.6910� − 47 0.2286� − 766 0.2258� − 766 0.0 16.000

where 
� is Newton’s step, �� = �(
�)/�(��), V� = �(��)/�(��), and �[⋅, ⋅, ⋅] denotes the divided di�erence of order
two. We will denote this scheme by K8.

We will also compare our new schemes with the method
designed by Soleymani et al. in [9] (denoted by S8), initialized
with Ostrowski’s procedure,

�� = 
� − � (��)� (��) − 2� (
�)
� (
�)�� (��) ,

��+1 = ��
− � (��)2� [
�, ��] − �� (��) + � [��, ��, ��] (�� − 
�)
× (1 + �� + 2V� − 2�3� + 25

� (��)�� (��)) ,
(31)

where 
� is Newton’s step, �� = �(
�)/�(��), V� = �(��)/�(��), and �� = �(��)/�(
�).

�e proposed iterative scheme M16 will be compared
again with T16 and S16.

In the numerical test made, variable precision arithmetics
has been used, with 4000 digits of mantissa inMatlab R2011b.
Some reference orbits have been used in the test that can
be found in [18]. As orbital elements of each one of the test
orbits are known, the vector position in the instants D1 and D2
have been recalculated with 3998 exact digits. �en, our aim
is to solve the uni	ed Gauss equation from these positions,
with the highest possible precision. In this term, the orbital
elements can be calculated with the best accuracy.

(i) Test Orbit I has the position vectors

⃗F1 ≈ [2.46080928705339,
2.04052290636432, 0.14381905768815]

⃗F2 ≈ [1.98804155574820,
2.50333354505224, 0.31455350605251] ,

(32)
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Table 3: Comparison of modi	ed-Gauss schemes for Orbit II.

|(�1 − �0)| |S(�1)| |(�2 − �1)| |S(�2)| |(�3 − �2)| |S(�3)| ACOC

FP 0.2397� − 1 — 0.1132� − 2 — 0.5163� − 4 — 1.011

K8 0.2289� − 1 0.2830� − 15 0.2707� − 15 0.7343� − 113 0.7023� − 113 0.5810� − 796 7.007

S8 0.2289� − 1 0.6075� − 17 0.5809� − 17 0.8328� − 142 0.7964� − 142 0.1039� − 1140 8.006

M8 0.2289� − 1 0.3696� − 17 0.3534� − 17 0.9933� − 144 0.9500� − 144 0.2705� − 1156 8.005

T16 0.2289� − 1 0.2913� − 45 0.2786� − 45 0.4103� − 748 0.3924� − 748 0.0 16.000

S16 0.2289� − 1 0.1482� − 34 0.1417� − 34 0.4368� − 556 0.4195� − 556 0.0 16.010

M16 0.2289� − 1 0.4590� − 34 0.4389� − 34 0.1062� − 557 0.1016� − 557 0.0 16.000

Table 4: Comparison of modi	ed-Gauss schemes for Orbit III.

|(�1 − �0)| |S(�1)| |(�2 − �1)| |S(�2)| |(�3 − �2)| |S(�3)| ACOC

FP 0.5499� − 1 — 0.5830� − 2 — 0.5723� − 3 — 1.034

K8 0.4968� − 1 0.1579� − 11 0.1437� − 11 0.1661� − 85 0.1512� − 85 0.2376� − 603 7.02

S8 0.4968� − 1 0.5842� − 13 0.5317� − 13 0.6265� − 109 0.5701� − 109 0.1095� − 876 8.017

M8 0.4968� − 1 0.1092� − 13 0.9941� − 14 0.2294� − 115 0.2087� − 115 0.8667� − 929 8.007

T16 0.4968� − 1 0.2742� − 34 0.2495� − 34 0.1560� − 567 0.1419� − 567 0.7� − 3998 16.010

S16 0.4968� − 1 0.1550� − 26 0.1411� − 26 0.1066� − 435 0.9702� − 436 0.1� − 3998 16.020

M16 0.4968� − 1 0.3967� − 27 0.3610� − 27 0.1512� − 445 0.1376� − 445 0.1� − 3998 16.010

measured in Earth radius (e.r.) on the Julian days
(J.D.) from the perigee D1 = 0 and D2 =0.01044412000000. �e orbital elements correspond-
ing to the geometry of the orbit are the semimajor axisC = 4 e.r., the eccentricity � = 0.2, the epoch of the
perigee �0 = 0ℎ0H0�, and the Euler angles which
	t the orbit in space are the right ascension of the
ascending node,Ω = 30∘, the argument of the perigeeY = 10∘, and the inclination of the orbit � = 15∘.

(ii) Test Orbit II has the following position vectors and
times:

⃗F1 ≈ [−1.75981065999937,1.68112802634201, 1.16913429510899] e.r.,
D1 = 0 J.D.,⃗F2 ≈ [−2.23077219993536,0.77453561301361, 1.34602197883025] e.r.,

D2 = 0.01527809 J.D.

(33)

Orbital elements are Ω = 80∘, Y = 60∘, � = 30∘, C =3 e.r., � = 0.1, and �0 = 0ℎ0H0�.
(iii) Test Orbit III has the following position vectors and

times:

⃗F1 ≈ [0.41136206679761,−1.66250000000000, 0.82272413359522] e.r.,
D1 = 0 J.D.,⃗F2 ≈ [0.97756752977209,−1.64428006097667, −0.04236299091612] e.r.,

D2 = 0.01316924 J.D.
(34)

Orbital elements are Ω = 120∘, Y = 150∘, � = 60∘,C = 2 e.r., � = 0.05, and �0 = 0ℎ0H0�.

We will compare the di�erent error estimations at the
	rst three iterations of the proposed eighth-order method
M8 and the known schemes K8 and S8, and the sixteenth-
order method M16 and the schemes T16 and S16. We also
include, in Tables 2, 3, and 4, the approximated computational
order of convergence (ACOC) (see [19]), in order to check
the computational e
ciency of the schemes related to their
theoretical rate of convergence.�is index is evaluated by the
formula:

� ≈ #BIB = log
ZZZZ(��+1 − ��) / (�� − ��−1)ZZZZ

log
ZZZZ(�� − ��−1) / (��−1 − ��−2)ZZZZ . (35)

�e di�erent test orbits have been chosen with increasing
angle ]2 − ]1. It measures the spread in the observations and
by the design of Gauss’ procedure, it induces instability in the
system when it gets higher. �e di�erence between the true
anomalies of the observations is, for the test orbits I to III,12.23∘, 22.06∘, and 31.46∘, respectively. It can be observed in
Tables 1–4 that, when the spread of the observations increases,
the precision obtained in the calculations per step reduces at
the same rate for any method of the same order.

It is clear that the application of high-order schemes to the
problem of preliminary orbit calculation by Gauss procedure
gets an important success, as the gain in speed and the
precision obtained in the calculations are increased.

Let us note that the precision of the orbital elements cal-
culated with the third estimation provided by any sixteenth-
order method is total, as all the 4000 decimal digits of the
solution considered as exact are reached with only three
iterations.

5. Conclusion

We have extended the idea of other researchers for designing
higher-order iterative methods by using weight function
procedure.



Journal of Applied Mathematics 9

�e Gaussian procedure for determining preliminary
orbits has beenmodi	ed in order to use modern and e
cient
iterative schemes of any optimal order of convergence and
achieve high-level accuracy.

From the obtained results, it can be deduced that the
proposed schemes are, at least, as competitive as recently
published methods of the same order of convergence, being
better in some cases. It has also shown to be robust enough
to hold the theoretical order of convergence when an exigent
precision is demanded.
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