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Abstract

In this paper conditional hidden Markov model
(HMM) �lters and conditional Kalman �lters
(KF) are coupled together to improve demod-
ulation of di�erential encoded signals in noisy
fading channels.

We present an indicator matrix representation
for di�erential encoded signals and the optimal
HMM �lter for demodulation. The �lter requires
O(N3) calculations per time iteration, where N
is the number of message symbols. Decision
feedback equalisation is investigated via coupling
the optimal HMM �lter for estimating the mes-
sage, conditioned on estimates of the channel pa-
rameters, and a KF for estimating the channel
states, conditioned on soft infomation message
estimates. Here the soft message estimates are
conditional mean estimates. The conditional KF
is an adaptive channel estimation scheme based
on modelling the phase and amplitude variations
as a stochastic linear system.

The key to our coupled HMM-KF �lter approach
is that the HMM �lter provides immediate soft
information message estimates and our Kalman
Filter exploits the idempotent nature of Markov
chains.

The particular di�erential encoding scheme ex-
amined in this paper is di�erential phase shift
keying (DPSK). However, the techniques devel-
oped can be extended to other forms of di�eren-
tial modulation. The channel model we use allows
for multiplicative channel distortions and additive
white Gaussian noise. Simulation studies are also
presented.

1 Introduction

A frequently occurring problem encountered in
wireless digital communication systems is signal
fading which results from multiple propagation
paths [8]. Two complementary techniques to
enhance detection of a message sequence trans-
mitted over unknown channels are decision feed-
back equalisation (DFE) and di�erential encoding
schemes.

In message estimation, channel knowledge can
be used to counter the distortions introduced by
the channel, yet the transmission channel is fre-
quently unknown, see [14, 15, 10, 2]. In 1965,
Lucky [13] proposed an adaptive method for es-
timating the channel distortions now known as
decision feedback equalisation. Decision feedback
equalisation uses `best' estimates of the transmit-
ted message to estimate the transmission channel
and hence improve message detection.

In slowly varying channel environments, message
estimates from a Viterbi algorithm, proposed in
1967 by Viterbi[9], invariably delayed to give im-
proved estimation, can be used in a decision feed-
back structure [8, Page 651]. However, in wire-
less transmission the fading environment typi-
cally varies relatively rapidly [12] and channel es-
timates are required immediately.

In di�erentially encoded signals, the message is
encoded in the di�erence between symbols, see
Proakis[8, Page 187] for further explanation. This
means that the signals can be detected even when
the transmission channel is unknown as long as
the channel variation between successive symbols
is small. Demodulation of di�erential encoded
signals is therefore not contingent on explicit
knowledge of the transmission channel. An im-



portant property of di�erential modulation is that
there is rapid recovery after channel nulls such
as are typical in Rayleigh fading transmission
channels. However, the performance of di�erence
modulation can be poor when there is rapid chan-
nel variation. Standard demodulation of di�eren-
tial signals should be viewed as a form of digital
demodulation (or decision feedback equalisation)
where the channel estimate is derived only from
the previous symbol [8].

Decision feedback equalisation based on immedi-
ate message estimates is one technique for over-
coming channel distortion introduced into di�er-
ential transmission. Here we propose a receiver
that uses more than the last received symbol to
estimate the transmission channel.

For clarity, in this paper we only consider the sim-
plest encoder structure, that is, di�erential mod-
ulation without trellis coding or bit interleaving,
and consider a simply decision feedback equal-
isation structure. A similar approach to here
was taken by Collings and Moore in [10], the
key di�erence here is that we propose the opti-
mal HMM �lter and exploit the idempotent prop-
erty of Markov chains in the formulation of our
Kalman �lter, parallelling the work in [3, 4]. The
techniques developed is this paper can be easily
extended for more complicated transmitter struc-
tures.

We begin this paper by introducing a indicator
vector state space formulation of di�erential sig-
nalling. Using this state space formulation and
by exploiting the idempotent nature of Markov
states, an O(N3) optimal HMM �lter is presented
in an informative way which highlights the struc-
ture of the problem.

We next incorporate our HMM �lter into a de-
cision feedback equalisation structure. We pro-
pose a receiver structure where a conditional
HMM �lter is coupled to a conditional Kalman
�lter to incorporate decision feedback equalisa-
tion to aid demodulation. In order to investi-
gate the proposed decision feedback equalisation
we �rst present a standard di�erential demodu-
lation scheme and highlight the e�ect of rapidly
changing channel conditions on its performance.
Following this we investigate the use of decision
feedback on di�erentially coded transmission sys-
tems.

This paper is organised as follows: In Section 2,
we formulate the HMM, signal model and chan-
nel model for a di�erential encoded system. In
Section 3, we introduce our optimal HMM �lter.
In Section 4, we present a standard di�erential
receiver and highlight the e�ect of rapid channel
variation on receiver performance. In Section 5, a

decision feedback equaliser is proposed based on
a Kalman �lter. In Section 6, simulation stud-
ies are presented. Finally, some conclusions are
presented in Section 7.

2 State Space Formulation

In this section we present a di�erential phase
modulation signal model, a channel model and
then reformulated these as an HMM signal model
in state space form and an associated state space
stochastic channel model respectfully.

To simplify the discussion in this paper, we as-
sume that digital phase modulation is used to
transmit the signal. This type of digital phase
modulation is usually called phase-shift keying
(PSK). Other forms of modulation not consid-
ered here that could be handled by this approach
include: Pulse amplitude modulation (PAM),
quadrature amplitude modulation (QAM) and
others.

We assume that the relevant match or correlation
�lter demodulators have been implemented and
symbol synchronisation and timing issues have be
resolved. We proceed now with a signal space
analysis.

2.1 Signal Model

In MDPSK transmission schemes the carrier sig-
nal is transmitted as phase information over the
channel. Let fk be our message signal, being a
real values discrete-time signal, where

fk 2 Zf = fZ
(1)
f ; : : : ; Z

(N)
f g ;

Z
(i)
f = (i=N)2� 2 R (2.1)

and we denote the vector zf as follows

zf = (Z
(1)
f ; : : : ; Z

(N)
f ): (2.2)

In di�erential transmission systems the carrier
symbol is the modulo sum of the message se-
quence. If we let �k denote the carrier symbol,
then

�k = (�k�1 + fk)2� (2.3)

where (:)2� denotes a modulo 2� operation.

The transmitted symbol at time k, represented in
the customary complex baseband notation,

mk = exp(j�k) 2 C (2.4)

where imaginary and real components are trans-
mitted using the quadrature and in-phase com-
ponents of a carrier waveform.



2.2 Channel Model

The baseband signal mk is transmitted via a
channel which can cause both amplitude atten-
uation and phase shift. The channel can be rep-
resented as a multiplicative disturbance, gk.

gk = �k exp(j�k) = gRk + jgIk 2 C (2.5)

where the superscripts R and I refer to the real
and imaginary parts. This disturbance introduces
time-varying gain and phase changes to the signal
and is assumed to vary slowly.

The baseband observation process yk is thus as-
sumed to have the form

yk = gkmk + wk 2 C (2.6)

We de�ne Yk
4
= (y0; :::; yk) and wk � N(0; Rk).

We assume wk is complex with real and imaginary
parts that are i.i.d., with zero mean and Gaussian
density, ie. wR

k � N(0; �2R) and wI
k � N(0; �2I ),

where wR
k and wI

k are the real part and imagi-
nary parts of wk respectively. Let Yk denote the
complete �ltration generated by y`; ` � k. As a
consequence,

E[wk+1jYk ] = 0: (2.7)

This model of the channel is simplistic in that it
allows no inter-symbol interference (ISI) and as-
sumes Gaussian noise, but it is realistic in narrow
band communication. This channel model can
represent fading channels through the variation
in �k and �k.

2.3 State Space Signal Model

A discrete-time state space model for the signal
model in the previous section is now presented.
Consider the following assumption on the mes-
sage sequence, fk

Assumption on the message source

fk is a �rst order Markov chain (2.8)

For linear modulation without memory (such as
PSK and QAM) this assumption appears inap-
propriate because the symbols from the message
source are usually assumed to be mutually in-
dependent. There would seem no advantage in
viewing the message sequence as a Markov chain.
However, for various other modulation techniques
such as NRZI and Miller coding this Markov as-
sumption appears more natural. This assumption
also appears appropriate for the case when mes-
sage symbols are convolutional coded. The HMM

�lter we present below could be used to generate
preliminary state estimates for the sole purpose
of estimating the channel in systems with trel-
lis or turbo coded signals with interleaving. The
Viterbi algorithm then later used in parallel to
produce the �nal message estimates.

Let us de�ne an indicator vectorXf
k 2 fe1; :::; eng

associated with message symbol, fk 2 Zf , where
ei = (0; :::; 0; 1; 0; :::0)0 with 1 in the ith position.

That is, to each possible message symbol, Z
(i)
f ,

we associate an indicator vector, ei. We can now
write fk in terms of Xf

k as

fk = z0fX
f
k : (2.9)

Hence, under assumption (2.8) the transition
probability matrix of the message process is

A = (aij) 1 � i; j � N (2.10)

where

aij = P (Xf
k+1 = eijX

f
k = ej) (2.11)

so that
E[Xf

k+1jX
f
k ] = AXf

k (2.12)

where E[:] denotes the expectation operator. We
also denote fF`; ` 2 Z+g the complete �ltration

generated by Xf
k , that is, for any k 2 Z

+; Fk is

the complete �ltration generated by Xf
` ; ` � k.

Lemma 2.1 Under the assumption that fk is a

�rst order Markov chain the dynamics of Xf
k are

given by the state equation

Xf
k+1 = AXf

k +Mk+1 (2.13)

where Mk+1 is a (A;Fk) martingale increment,

in that E[Mk+1jFk] = 0.

Proof See [1]

Likewise, let us de�ne an indicator vector, X�
k 2

fe1; :::; eng, associated with carrier symbol, �k,
such that

�k = z0fX
�
k (2.14)

Lemma 2.2 The indicator functions X�
k and Xf

k

are related as follows

X�
k+1 = D(Xf

k+1)X
�
k or (2.15)

X�
k+1 = D(X�

k)X
f
k+1 (2.16)

where D(ei)=S
n0ei the shift operator. Note, S is

de�ned as

S =

0BBBBB@
0 0 : : : 0 1
1 0 : : : 0 0
0 1 : : : 0 0
...

...
. . .

...
...

0 0 : : : 1 0

1CCCCCA (2.17)



and n = (1; : : : ; N)0.

Proof Equation (2.15) comes from equation
(2.3). Equation (2.16) follows from noting that

Xf
k+1 and X�

k are indicator vectors and as such
non-linear functions can be written as linear
functions, see [1]. 2

The observation process can now be expressed in
terms of the indicator vectors as follows.

yk =

�
yRk
yIk

�
=

�
mR

k �mI
k

mI
k mR

k

��
gRk
gIk

�
+

�
wR
k

wI
k

�
=

�
(zRf )

0X�
k �(zIf )

0X�
k

(zIf )
0X�

k (zRf )
0X�

k

��
gRk
gIk

�
+

�
wR
k

wI
k

�
= H(zf ; X

�
k)

�
gRk
gIk

�
+ wk

with appropriate de�nition of H(zf ; X
�
k) and

where the superscripts R and I refer to the real
and imaginary parts.

We shall de�ne two vectors of parametrised prob-
ability densities asBk = diag(bk(e1); : : : ; bk(eN )),
and bk(ei) = P [YkjX

�
k = ei] and

Bkji = diag(bkji(e1); : : : ; bkji(eN )), and

bkji(ej) = P [YkjX
f
k = ej ; X

�
k�1 = ei].

In the special case, as here, when wk is complex
and its components have Gaussian densities, we
can write

bk =
1

2��R�I
exp

�
�
(yR �H(zf ; ei)

Rgk)
2

2�2R

�
(yI �H(zf ; ei)

Igk)
2

2�2I

�
;

bkji(ej) = ajibk�1(ei)

where H(zf )
R and H(zf )

I are the real and imag-
inary parts of H(zf ) respectively.

3 Optimal HMM �lter

Standard demodulation of DPSK is performed
by phase comparison. Optimal path demodula-
tion of convolution coded signals is performed by
the Viterbi algorithm. Here we present the opti-
mal HMM �lter for message demodulation in two
ways.

The key advantage of the HMM �lter over
standard demodulation techniques is that it
provides instantaneous soft decision information.

The standard techniques being the maximum
a posterior estimates of standard demodulation
techniques such as matched �lter-phase com-
parison demodulation or the delayed maximum
likelihood estimates of the Viterbi algorithm.

The hidden Markov signal model o�ers the 
exi-
bility of being able to model communication sys-
tems with various degrees of complexity. For ex-
ample, the HMM �lter can be based on knowledge
of only the digital modulation layer of a commu-
nication system, as we consider in this paper, or
include knowledge of the channel encoder layer
as in the case when the information source has
been convolutional coded. Due to the soft infor-
mation the HMM �lter provides it also appears
well suited to communication systems in which
bit interleaving is performed. The HMM �lter
structure presented in this paper could be used
to generate preliminary soft message estimation
for the purpose of channel estimation and in par-
allel the Viterbi algorithm conditioned on these
channel estimates could be used to produce the
hard decision on message estimates.

3.1 State Space Representation

Let X 0
k denote the space of the modulation

scheme. This space is also represented by the
indicator vectors Xf

k and X�
k . The approach

taken in the previous formulation of HMM �lters
is obtain X 0

k from the Kronecker product of these
indicator vectors. That is,

X 0
k := Xf

k 
X�
k�1 (3.1)

where 
 is the Kronecker product. X 0
k is known

to be a Markov process and standard HMM �l-
tering theory can be applied. However, X 0

k is
(N2 � 1) and hence the �lter calculations are of
order N4, including zero operations.

If instead we de�ne an indicator matrix Xk as
follows

Xk := Xf
kX

�0

k�1 (3.2)

then we note that

Xf
k = Xk1N and

X�
k�1 = X 0

k1N (3.3)

where 1N = (1; : : : ; 1)0, an N -vector of ones.

Lemma 3.1 The dynamics of Xk are given by

the state equation

Xk+1 =

NX
i=1

(ei(Ai(A)(e
0
iXk)

0)0 +Mk+1 (3.4)



where eiXk gives the ith row of matrix Xk written

as a column vector, Ai(A) is a transition matrix,

and Mk+1 = Mk+1e
0
(i+j mod N) and is a (A;Fk)

martingale increment, in that E[Mk+1jFk] = 0

Proof

Xk+1 = Xf
k+1 X

�
k

0

= (AXf
k +Mk+1)(D(Xf

k )X
�
k�1)

0

= AXf
kX

�0

k�1D(Xf
k )

0 +Mk+1(D(Xf
k )X

�
k�1)

0

Now by noting that Xk is a function of Xf
k and

X�
k�1, that is, Xk(X

f
k ; X

�
k�1) = Xf

kX
�0

k�1 and de-

noting Mk+1 =Mk+1(D(Xf
k )X

�
k�1)

0 we obtain

Xk+1 = AXk(X
f
k ; X

�
k�1)D(Xf

k )
0 +Mk+1

=

0@ NX
i=1

NX
j=1

AXkhej ; eiiD(Xf
k )

0

1A+Mk+1

Using the idempotent property of indicator vec-
tors we can write

Xk+1 =

0@ NX
i=1

NX
j=1

Aeje
0
iD(ej)X

(j;i)
k

1A+Mk+1

where the jith element of Xk as X
(j;i)
k . Perform-

ing the inner summation and writing as a matrix
product we obtain

Xk+1 =

 
NX
i=1

Ai(e
0
iXk)

!0

+Mk+1

where

Ai =

2664
Ae1e

0
iD(e1)

Ae2e
0
iD(e2)
: : :

AeNe
0
iD(eN )

3775

It follows from Lemma 2.2 that M
(i;j)
k+1 =

Mk+1e(i+j mod N). From Lemma 2.1, Mk+1 is a
(A;Fk) martingale increment and hence Mk+1

is a (A;Fk) martingale increment.

2

From Lemma 3.1 it can be seen that the dynamics
of Xk can be viewed as N parallel independent
HMMs, that is if we denote the ith row of Xk+1

by X
(i)
k+1

X
(i)0

k+1 = AiX
(i)0

k+1

We use standard HMM �lter techniques on each
of the rows of X to obtain an estimate of bXk =
E[XkjYk]. That is for each row ,

bX (i)0

k+1 = Nk Bk+1ji Ai
bX (i)0

k (3.5)

where Nk = hBk+1ji Ai
bX (i)0

k ; 1i�1 where 1 is the
vector of ones.

The estimate bXf
k can be obtained from bXk+1 us-

ing property (3.3).

Remarks

1. Lemma 3.1 states that the rows of Xk can be
considered as Markov states that evolve to
form rows of Xk+1. This structure is hidden
in the X 0

k formulation.

2. This �lter requires order N3 calculations per
time instant.

3.2 Conditional Filters Formula-

tion

In this subsection we present a more convenient
formulation of our optimal HMM �lter using cou-
pled conditional HMM �lters. In this formulation
we introduce conditional HMM �lters for Xf

k+1

and X�
k+1 which exploiting the interdependence

between the signals.

Let bXf
k+1 and bX�

k+1 denote the conditional �l-

tered normalised state estimates of Xf
k+1 and

X�
k+1 respectively. That is,

bXf
k+1 := E[Xf

k+1jYk]bX�
k+1 := E[X�

k+1jYk] (3.6)

First consider the intermediate conditional state
estimate, bXf

k+1ji, given by

bXf

k+1ji := E[Xf
k+1jYk; X

�
k = ei] (3.7)

From Bayes rule it is clear that

bXf
k+1 =

NX
i=1

bXf

k+1ji
bX�
k(i) (3.8)

where bX�
k(i) is the ith element if bX�

k . Note thatbX�
k(i) = P (X�

k = eijYk).

Lemma 3.2 The following forward recursion ex-

ists to estimate bXf

k+1ji

bXf

k+1ji = N
(1)
k Bk+1jiA bXf

k (3.9)

where N
(1)
k = hBk+1jiA bXf

k ; 1i
�1 is a normalising

factor.



Proof Follows from assumption (2.8), Lemma
2.1 and standard HMM theory. 2

Lemma 3.3 The conditional �ltered normalised

state estimates bX�
k+1 is given by

bX�
k+1 = N

(2)
k Bk+1

NX
i=1

D(ei) bXf

k+1ji (3.11)

where N
(2)
k = hBk+1

PN
i=1D(ei) bXf

k+1ji; 1i
�1 is a

normalising factor.

Proof Follows from (2.16) and Bayes rule. 2

Lemma 3.4 The conditional �ltered normalised

state estimates bXf
k+1 is given by

bXf
k+1 = N

(3)
k

NX
i=1

bXf

k+1jie
0
i
bX�
k+1 (3.12)

where N
(3)
k = h

PN
i=1

bXf

k+1jie
0
i
bX�
k+1; 1i

�1 is a nor-

malising factor.

Proof Follows from de�nition of bXf
k+1 and (3.8)

2

Application of these last three Lemmas gives a
recursive �lter for estimating bXf

k+1, and hence
fk+1, at each time instant.

Remarks

1. The primary di�erence between the sub-
optimal approach in [5] and here appears
in Lemma 3.3. The suboptimal approach
would update bX�

k+1 as follows

bX�
k+1 = Bk+1

bX�
k

rather than (3.11).

2. These �lters take O(N3) calculations per
time step to implement.

4 Di�erential Receiver

In this section we introduce the standard di�er-
ential receiver and highlight the e�ect of channel
variation on receiver performance.

The transmitted symbol is recovered from the
quadrature and in-phase components of the car-
rier waveform. Then the message symbol is re-
covered from the di�erence between successive re-
ceived carrier symbols, for the case of DPSK the

message is stored in the carrier phase. Let ��k de-
note the received phase at time k. The received
phase ��k is related to the transmitted phase �k as
follows,

��k = (�k + �ck + �(wk))2� (4.1)

where �ck is the channel phase and time k and
�(wk) is the phase of wk . The di�erence between
successive received phase signals is

(��k���k�1)2� = (fk+�
c
k+�(wk�wk�1))2� (4.2)

where �c
k = �ck � �ck�1.

When no information is available about the chan-
nel phase then the standard estimate of the mes-
sage symbol, see Figure 1, isbfk = (��k � ��k�1)2� (4.3)

Phase

  Detector         

Delay

Differential Phase

Message
Estimate

Received
Theta(k)

Figure 1: Block diagram of M-ary di�erential co-
herent receiver

It is clear from (4.2) that the quality of the esti-
mate (4.3) will degrade as the rate of change of
the channel, � �c

k, increases.

However, if estimates of the channel phase, b�ck,
are available then these can be used to improve
the performance of the receiver by including these
estimates into the received structure. Consider
the message estimate, �fk which includes channel
estimates, see also Figure 2.

�fk = (��k � ��k�1 � b�c
k)2� (4.4)

where b�c
k =

b�ck � b�ck�1,

Delay

Theta(k)
Received

Channel

Phase
  Detector         

Differential Phase

Message
Estimate

Information

Figure 2: Block diagram of di�erential receiver
using channel estimates

In this receiver the message estimate are related
to the message as follows:

�fk = (fk +�c
k �

b�c
k + �(wk � wk�1))2� : (4.5)



comparing with (4.2) it is clear that the perfor-
mance of the receiver that uses the channel esti-
mates will be better when j�c

k �
b�c
kj < j�c

kj

This is the motivation for the following section.

5 Decision Feedback Chan-

nel Estimation

To produce channel estimates we propose the use
of a coupled conditional hidden Markov model
(HMM) �lter and conditional Kalman �lter (KF).
The HMM �lter provides soft decision informa-
tion about the received message symbol. In this
paper we consider a decision feedback structure
in which the Kalman �lter estimates are based on
the maximum a posteriori (MAP) estimate of the
message symbol from the HMM �lter. Similarly,
the HMM �lter is conditioned on this channel es-
timate.

More complicated decision feedback equalisation
structures are possible using banks of Kalman �l-
ters conditioned according to the soft estimate in-
formation (as suggested in [14]), or Kalman �lters
with more complicated structures are possible but
not considered here.

5.1 Conditional HMM �lter

Let bXkjCk denote the conditional �ltered state es-
timate of Xk, where Ck = f�go; : : : ; �gkg. By de�ni-
tion, bXkjCk = E[XkjYk ; Ck] (5.1)

Lemma 5.1 The estimates bXkjCk can be found-

ing using the forward recursion

bX (i)0

k+1jCk
= Nk Bk+1ji;Ck Ai

bX (i)0

kjCk
(5.2)

where Nk = hBk+1ji;Ck Ai
bX (i)0

kjCk
; 1i�1 is

a normalising factor for each row and

Bkji;Ck = diag(bkji;�gk(e1); : : : ; bkji;�gk (eN )), and

bkji;�gk (ej) = P [YkjX
f
k+1 = ej ; X

�
k = ei; gk = �gk],

Ai =

2664
Ae1e

0
iD(e1)

Ae2e
0
iD(e2)
: : :

AeNe
0
iD(eN )

3775
and Mk+1 =Mk+1e(i+j mod N)

Proof See [11]

5.2 Conditional KF Channel Esti-

mate

The observation process (2.6) is bi-linear in the
channel parameter, gk, and the message symbol,
mk. Note that �ck = �(gk). In this subsection a
conditional KF is proposed for estimation of the
channel parameter given the message symbol.

If we assume the channel dynamics are given by
the following linear time invariant stochastic sys-
tem

gk+1 = Fgk + vk inC

yk = H(zf ; X
�
k)gk + wk 2 C (5.3)

for some known F and where vk = N [0; Qk].
Then the KF equation for estimating gk given
the message estimate X�

k is,

bgk = Fbgk�1 +Kk[yk � bgk�1mk]

Kk = �kjk�1
�Hk( �H

0
k�kjk�1

�Hk +Rk)
�1

�kjk = (I �Kk
�H 0
k)�kjk�1

�k+1jk = F�kjkF
0 +Qk (5.4)

where we have �Hk := H(zf ; X
�
k). We note that

��1
kjk = ��1

kjk�1 +H(zf ; X
�
k)R

�1
k H(zf ; X

�
k)

0

= ��1
kjk�1+

�
�RwLk(X

�
k) 0

0 �IwLk(X
�
k)

�
(5.5)

where

Lk(X
�
k) = (zRf )

0X�
kX

�0
k z

R
f + (zIf )

0X�
kX

�0
k z

I
f

= (zRf )
0diag(X�

k)z
R
f

+(zIf )
0diag(X�

k)z
I
f ; (5.6)

and where diag(X�
k) is the diagonal matrix with

X�
k on its diagonal.

In equation (5.6) we have exploited the idempo-
tent nature of Markov chains by replacing the
product X�

kX
�0
k by diag(X�

k). This is a key con-
tribution of this paper. This forces the Kalman
�lter to incorporate more a priori knowledge. In
the following section we will replace X�

k by the

conditional mean estimate bX�
k . It is important to

including this extra structure here, that X�
kX

�0
k

equals diag(X�
k) before replacing X�

k by bX�
k be-

cause bX�
k
bX�0
k 6= diag( bX�

k). Other formulations of
the Kalman �lter for this problem, for example
[10] and [8, Page 656], do not exploit this struc-
ture.

To reduce computational e�ort we note that if
��1
0j0 is diagonal, F is diagonal and Qk is diag-

onal then ��1
kjk and ��1

k+1jk will be diagonal and

the Kalman �lter equations can be simpli�ed. In



particular, the recursion for Kk can be rewritten
in terms of ��1

k+1jk . The simpli�ed Kalman �lter

equations are as follows

bgk = Fbgk�1 +Kk[yk � bgk�1mk]

Kk = F��1
k+1jk

�HkR
�1
k

��1
kjk = ��1

k�1jk�1+

�
�RwLk(X

�
k) 0

0 �IwLk(X
�
k)

�
�k+1jk = F�kjkF

0 +Qk (5.8)

Estimates for the channel phase, b�ck, are given byb�ck = �(bgk).
Remarks

� Even when the channel dynamics are not
given exactly in the form (5.3) they can often
be approximated by (5.3).

� F is typically approximated to be of the form
fI for some f < 1 which allows the use of the
(5.8) equations and reduces computational
e�ort. A forgetting factor can be introduced
into line 4 of recursions (5.8) to allow for
model variations and modelling errors.

� The Kalman �lter requires O(N2) calcu-
lations per time instant. The simpli�ed
Kalman �lter requires O(N) calculations
per time instant.

5.3 The Complete Algorithm

To allow simultaneous estimation of the channel,bgk, and message, bmk or bXk, the conditional �lters
(5.2) and (5.4) are coupled together, see Figure 3.

Message

Estimates

Channel

Estimates

yk

Conditional HMM filter

Conditional Kalman filter

Figure 3: Block diagram of coupled �lter struc-
ture

Remarks

� The coupled algorithm requires O(N3) cal-
culations per iteration.

� Need to boost noise in each model to
\model" estimation errors as is suggested in
[3].

� The decision feedback structure does not suf-
fer from the usual error propagation e�ects.
While message estimation errors may indeed
introduce constant phase errors in the chan-
nel phase estimate, these absolute phase er-
rors do not degrade the performance of the
di�erence receivers, as is well known [7]. In
the usual way, a message error will be fol-
lowed by at least one more message error.

6 Simulations

6.1 Di�erential decoding with and

without Decision Feedback

In our simulations we investigate the gain in per-
forming decision feedback on a un-coded trans-
mission system. To evaluate the performance of
the receiver in a likely environment the trans-
mitted message sequence is actually generated by
convolutional coded a i.i.d. message sequence us-
ing a rate 2/3 convolutional code. However, the
HMM-KF �lter does not use this information to
produce estimates of the i.i.d. message sequence
and only estimates the encoded sequences. This
environment represents the case when the HMM-
KF �lter is used to produce channel estimates
that are passed to a Viterbi algorithm to perform
optimal decoding of the i.i.d. message sequence.

The encoded signal is transmitted over a trans-
mission channel that is time varying and un-
known. The variations are deterministic, with the
phase and amplitude varying sinusoidally from
50% to 150% of a nominal value. The optimal
HMM decoder is used to demodulate the encoded
symbols, but the original i.i.d. message sequence
is not decoded from the demodulated symbols.
In a realistic application the Viterbi algorithm
would be used in parallel for optimal decoding.

Figure 4 shows an improvement in bit error per-
formance in terms of the encoded symbols due
to decision feedback. Likewise, the channel esti-
mates are seen to improve the bit error rate in
terms of the i.i.d. message sequence This curve
demonstrate that there is over half a dB gain to
achieve Pe = 10�3.

7 Conclusion

In this paper we have investigated optimal hidden
Markov model (HMM) �ltering and decision feed-
back equalisation of di�erentially encoded trans-
mission signals. We have presented the optimal
(HMM) �lter for demodulation of di�erentially



encoded signals. We then proposed a decision
feedback structure that coupled together a condi-
tional HMM �lter to a conditional Kalman �lter.
A key point being that the Kalman �lter exploited
the idempotent nature of Markov chains include
more a priori structural information. We also
present simpli�ed Kalman �lters for a particular
channel assumptions. The HMM �lter requires
O(N3) calculations per time instant, where N is
the number of message symbols. The Kalman �l-
ter requires O(N2) calculations per time instant
which is reduced to O(N) under the channel as-
sumptions.

Simulation studies demonstrated a half dB gain
to achieved a bit error rate of 1� 10�3.

Without DFE  

With DFE     

Known channel

20 21 22 23 24 25 26 27 28 29
10

−5

10
−4

10
−3

10
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10
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SNR, dB

S
E

R

Figure 4: Improvement in BER performance due
to Decision Feedback Equalisation.
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